第一篇:高中数学 2.1.2指数函数及其性质(二)教案 新人教A版必修1
2.1.2指数函数及其性质 第2课时
教学过程:
1、复习指数函数的图象和性质
2、例题
例1:(P66例7)比较下列各题中的个值的大小
2.5 3(1)1.7 与 1.7(2)0.80.1(3)1.70.3 与0.8
0.2
与 0.9
3.1 解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y1.7x的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5864y1.7x5102-10-50-2-4-6-8的点的上方,所以 1.72.51.73.2.5解法2:用计算器直接计算:1.7所以,1.72.53.77 1.734.91
1.73
解法3:由函数的单调性考虑
因为指数函数y1.7在R上是增函数,且2.5<3,所以,1.7x2.51.73
仿照以上方法可以解决第(2)小题.注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合.0.33.1 由于1.7=0.9不能直接看成某个函数的两个值,因此,在这两个数值间找到1,0.33.1把这两数值分别与1比较大小,进而比较1.7与0.9的大小.思考:
1、已知a0.8,b0.8,c1.2,按大小顺序排列a,b,c.2.比较a与a的大小(a>0且a≠0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.例2(P67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?
分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题: 1999年底 人口约为13亿
经过1年 人口约为13(1+1%)亿
第二篇:高中数学《指数函数》教案1 新人教A版必修1
3.1.2指数函数
(二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程:
本节课为习题课,可分以下几个方面加以练习: 备选题如下:
1、关于定义域
x(1)求函数f(x)=11的定义域
9(2)求函数y=1x的定义域
51x1(3)函数f(x)=3-x-1的定义域、值域是……()
A.定义域是R,值域是R
B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1)
2、关于值域
(1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞)
B.(-∞,1) C.(0,1)
D.(1,+∞)
(5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像
用心 爱心 专心 1
(1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象()
A.向右平移3个单位
B.向左平移3个单位 C.向右平移8个单位
D.向左平移8个单位
(2)函数y=|2x-2|的图象是()
(3)当a≠0时,函数y=ax+b和y=bax的图象只可能是()
(4)当0 B.第二象限 C.第三象限 D.第四象限 (5)若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),则b=______.(6)已知函数y=(12)|x+2|. ①画出函数的图象; ②由图象指出函数的单调区间并利用定义证明.(7)设a、b均为大于零且不等于1的常数,下列命题不是真命题的是() 用心 爱心 专心 A.y=a的图象与y=a的图象关于y轴对称 B.若y=a的图象和y=b的图象关于y轴对称,则ab=1 C.若a2x-xxx>a22-1,则a>1 ,则a>b D.若a>b 24、关于单调性 (1)若-1 A.5-x<5x<0.5x C.5<5<0.5x-xx B.5x<0.5x<5-x D.0.5<5<5 x-xx(2)下列各不等式中正确的是() A.()3()3()3 252C.()3()3()3 52212121211 B.()3()3()3 225 D.()3()3()3 *** 1211(x+1)(3-x)(3).函数y=(2-1)的单调递增区间是() A.(1,+∞)C.(1,3) B.(-∞,1) D.(-1,1) (4).函数y=()2xxx2为增函数的区间是() (5)函数f(x)=a-3a+2(a>0且a≠1)的最值为______.(6)已知y=(数.(7)比较52x12x12)xx22+1,求其单调区间并说明在每一单调区间上是增函数还是减函与5x22的大小 5、关于奇偶性 (1)已知函数f(x)= m21x2x为奇函数,则m的值等于_____ 11(1)如果82 x2x=4,则x=____ 用心 爱心 专心 3 6阶段检测题: 可以作为课后作业: 1.如果函数y=ax(a>0,a≠1)的图象与函数y=bx(b>0,b≠1)的图象关于y轴对称,则有 A.a>b B.a 3(3x-1)(2x+1) ≥1},则集合M、N的关系是 B.MN D.MN 3.下列说法中,正确的是 ①任取x∈R都有3x>2x ②当a>1时,任取x∈R都有ax>a-x ③y=(3)-x是增函数 ④y=2|x|的最小值为1 ⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴 A.①②④ C.②③④ B.④⑤ D.①⑤ 4.下列函数中,值域是(0,+∞)的共有 ①y=31 ②y=(A.1个 x1)③y=1()④y=3x B.2个 x11xC.3个 D.4个 5.已知函数f(x)=a1-x(a>0,a≠1),当x>1时恒有f(x)<1,则f(x)在R上是 A.增函数 B.减函数 C.非单调函数 D.以上答案均不对 二、填空题(每小题2分,共10分)6.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如下图,则a、b、c、d、1之间从小到大的顺序是__________.用心 爱心 专心 4 7.函数y=ax1的定义域是(-∞,0],则a的取值范围是__________.8.函数y=2x+k-1(a>0,a≠1)的图象不经过第四象限的充要条件是__________.9.若点(2,14)既在函数y=2ax+b的图象上,又在它的反函数的图象上,a=________,b=________.10.已知集合M={x|2x2+x≤(14) x- 2,x∈R},则函数y=2x的值域是__________.三、解答题(共30分)11.(9分)设A=am+a-m,B=an+a-n(m>n>0,a>0且a≠1),判断A,B的大小.12.(10分)已知函数f(x)=a- 22x1(a∈R),求证:对任何a∈R,f(x)为增函数.x1213.(11分)设0≤x≤2,求函数y=42a2xa21的最大值和最小值.课堂练习:(略)小结: 课后作业:(略) 用心 爱心 专心 则 河北省衡水中学高一数学必修一强化作业:2.1.2指数函数及其性质 (第二课时) 一、选择题 1.函数y1的定义域为()2x1 A.RB.,C.,0D.x|xR且x0 2.函数y1()x2的定义域为()2 A.,1 B.(,1)C.(1,)D.1, 3.当x>0时,函数y(a1)的值总大于1,则a的取值范围是() A、0a1B、a1 C、0a2D、a2 4.函数y=x1的值域是()2x1 A、(-,1)B、(-,0)(0,+) C、(-1,+)D、(-,-1)(0,+) 5.若指数函数ya在[-1,1]上的最大值与最小值的差是1,则底数a等于 x() A.151 B.22C.151 D.22 6.下列各不等式中正确的是() 12111321323222A、(3>()3B、C、()2>23D、(2<232222 7.若指数函数ya在[0,1]上的最大值与最小值的和是3,则底数a等于()x23 A.151 B.C.2 22D. 51 2 二.填空题 -0.10.28.对于正数a满足a>a,则a的取值范围是。 9.对于x<0,f(x)(a1)1恒成立,则a的取值范围是。x 10.90.4810.比较大小:y14,y28,y32 1.5。1 11.函数y1 10x11的定义域为。 三.解答题 12.求下列函数的定义域: x1(1)y10x1;(2)y6 2x1 13.求下列函数的值域: (1)y2x1x 2x1;(2)y4x6210 14.设0x2,求函数y4x1 22x15的最大值和最小值。 m3x1115.若函数y的定义域为R,求实数m的取值范围。x1m31 2.1.2指数函数及其性质(第二课时) 1.D 【解析】提示2x10 2.A x 【解析】提示1 220 3.D4.D5.D6.D 7.C 【解析】提示:a0a13 8.0<a<19.a>010.y1y3y2 11.x|x1 12.(1)解:因为x10 所以x1 故定义域为x|x1 (2)因为x20 2x10解得x2且x0 故定义域为x|x2且x0 13.(1)(-1,1)(2)(,+∞) 【解析】 提示:换元:令t2x则t0 14.当x=1时,最小值为3; 当x=2时,最大值为5 15.m0 3.2.2对数函数 (二)教学目标:进一步理解对数函数的定义,掌握对数函数的图象和性质 教学重点:掌握对数函数的图象和性质.教学过程: 1、复习对数函数的概念 2、例子: (一)求函数的定义域 1. 已知函数f(x)lg(x23x2)的定义域是F, 函数g(x)lg(x1)lg(x2)的定义域是N, 确定集合F、N的关系? 2.求下列函数的定义域: (1)f(x) 1(2)log(x1)3f(x)log2x13x2 (二)求函数的值域 f(x)log2x 2.f(x)logax 3.f(x)log2x[1,2] x[1,2] x224.求函数(1)f(x)log2(x22)(2)f(x)log 2(三)函数图象的应用 1的值域 x22ylogax ylogbx ylogcx的图象如图所示,那么a,b,c的大小关系是 2.已知ylogm(3)logn(3)0,m,n为不等于1的正数,则下列关系中正确的是() (A)1 (1)y|lgx|(2)ylg|x| (四)函数的单调性 1、求函数ylog22(x2x)的单调递增区间。 ylog1(x2x2) 2、求函数2的单调递减区间 (五)函数的奇偶性 1、函数ylog22(xx1)(xR)的奇偶性为[ ] A.奇函数而非偶函数 B.偶函数而非奇函数 C.非奇非偶函数 D.既奇且偶函数 (五)综合 1.若定义在区间(-1,0)内的函数f(x)log2a(x1)满足f(x)0,则a的取值范围() (A)(1,1)(B)(1,12](C)(12,)(D)(0,)2 课堂练习:略 小结:本节课进一步复习了对数函数的定义、图象和性质 课后作业:略 函数的单调性与最大(小)值(1) 设计理念 新课标指出:“感知数学,体验数学”是人类生活的一部分,是人类生活劳动和学习不可缺少的工具。课程内容应与学生生活实际紧密联系,从而让学生感悟到生活中处处有数学,进而有利于数学学习的生活化、情境化。因此我在教学“交通与数学”这一节内容的过程中,从实际生活中的实例出发,让学生感受到交通与数学的密切联系,体会到教学在实际生活中的应用,并学会运用所学的知识解决实际生活中的简单的问题。这样就充分体现学生的主体地位,充分提供让学生独立思考的机会。 本节内容是在学生已经学习和掌握了一位数乘三位数的乘法计算和搭配方法等数学知识的基础上进行教学的。其目的在于引导学生将学过的知识与生活实际联系起来,综合运用,提高解决问题的能力。因此,在教学中我尝试以“交通”为主线,设计密切联系学生实际生活的学习情境;在整个设计中,我始终引导学生在生活情境中提出问题,解决问题,这些都是和学生息息相关的生活问题,因此学生始终能保持较高的学习兴趣,乐于将自己的想法与他人交流,积极性很高。 教学内容: 本节课是《普通高中课程标准实验教科书.数学1》(人教版A)第一章第三节第一课时(1.3.1)《单调性与最大(小)值》。 教学目标: 1、理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性; 2、启发学生发现问题和提出问题,培养学生分析问题、认识问题和解决问题的能力; 3、通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。 4、通过数形结合的数学思想,对学生进行辩证唯物主义的思想教育。 学情与教材分析: 本节课是1.3.1第一课时。根据实际情况,将1.3.1划分为三节课(函数的单调性,函数单调性的应用,函数的最大(小)值),这是第一节课“函数的单调性”。函数的单调性是函数的最重要的基本性质之一,它不仅是求函数最大值与最小值的基础,同时在研究函数及 1第三篇:河北省衡水中学高中数学 2.1.2指数函数及其性质(第二课时)强化作业 新人教A版必修1
第四篇:高中数学 2.2.2对数函数及其性质(二)教案 新人教A版必修1
第五篇:高中数学《函数的基本性质》教案12 新人教A版必修1