高中数学必修一教案2.1指数函数(推荐阅读)

时间:2019-05-13 01:27:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学必修一教案2.1指数函数》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学必修一教案2.1指数函数》。

第一篇:高中数学必修一教案2.1指数函数

《指数函数》教学设计

一、教材分析

1、教学背景:

函数是整个高中数学的教学重难点,是必修一的主要内容。而这一节的内容以上一小节指数和指数运算为基础,进一步研究指数基本运算式Nab所构成的第一个函数形式yax,这就是学生在高中所学的第一个基本初等函数——指数函数。

对于学生而言,这是第一次尝试利用所学的函数基本概念和性质来分析具体函数的一节课,也是高中阶段第一次借助图像来分析函数性质的一节课。这节课要教会学生的不仅仅是指数函数的图像和性质本身,更是可用于今后研究一个具体函数(如:对数函数、幂函数、三角函数等)的一般方法,使图像和函数的关系在学生心中更加清晰,为整个高中数学中对函数的学习研究打下基础。因此,这节课的内容是十分重要的。

2、教学目标:(1)知识目标:

①理解指数函数的概念;

②掌握指数函数的图像特征,如定点、变化情况;

③掌握指数函数的基本性质,如定义域、值域、单调性、函数值的分布等;(2)能力目标:

①培养学生观察、分析、归纳问题的能力; ②培养学生的数形结合和分类讨论的思想; ③增强学生的读图识图能力。(3)情感目标:

①使学生进一步了解从抽象到具体(抽象函数与具体函数)、从现象到本质(由图像总结规律)、从特殊到一般(把研究指数函数的方法应用到对其他函数的研究中)的辩证思想,潜移默化地对学生进行辩证唯物主义教育;

②全课围绕指数函数图像进行分析,并不断地进行比较和归纳,培养学生用比较思想分析问题的方法和钻研探究问题的兴趣,并延续到后面的学习当中。

3、教学重点与难点

指数函数对学生来说是一个全新的函数,学生对于一个抽象的函数形式往往缺乏最基本的感性认识,因此如何建立一个具体形象的“指数函数”概念是这节课的一个突破口。

(1)教学重点:指数函数图像及其性质的发现和总结。(2)教学难点:指数函数图像性质与底数的关系。

二、教法学法分析

1、教法:

(1)从具体直观的图形出发,引导学生抽象出其中的客观规律;(2)通过教师在教学过程中的点拨,启发学生通过动手操作、自主探究自行发现和总结问题;

(3)充分利用多媒体教学手段。

2、学法:

高一这个年龄段的学生思维活跃、求知欲强,但在思维习惯上还有待教师引导。因此本节课从学生原有知识和能力出发,以动手操作、观察分析、自主探究等多种形式相结合,由表及里、由感性到理性地认识事物及其规律,突破教学重难点。

三、教学基本流程和情境设计

1、引入:由两个应用问题引出指数函数定义。(1)两个问题:

①细胞分裂问题:某种细胞分裂时,由1个分裂成2个,由2个分裂成4个„„1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?

1②碳14半衰期问题:函数关系式P2t5730

思考:这是一个什么样的函数?(2)给出指数函数的定义:yaxa0且a1

思考:这个形式有什么特点?(回答:系数为1,底数为常数,指数为自变量x)

思考:为什么要对常数a有范围限制?(回答:没有研究意义)(3)指数函数概念辨析:

①指出下列函数中哪些是指数函数(指数函数的形式):

y4xyx4y4xy(4)xyxyxxy(2a1)x

②函数y(a23a3)ax是指数函数,求a的值。(指数函数对系数和底数范围的限制)

2、认识:用“列表﹣描点﹣连线”的作图方法,画出指数函数y2x的图像。

让学生自己动手,提醒学生注意,取x2,1,0,1,2五点即可。教师在黑板上规范作图,并要求学生修正自己的图像。

观察图像,思考:这个图像有什么特点?关注:过点、过象限、变化趋势、变化范围。(回答:过点(0,1),呈上升趋势,全部在x轴上方,当x0时0y1,当x0时y1)

11

3、探究:用同样方法作出函数y3,y,y的图像。

23xxx(1)分小组讨论下列三个问题,然后派代表总结:

①这三个图像有什么共同点,有什么不同点?(回答:共同点:过点(0,1),全部在x轴上方,只单纯上升或下降;不同点:变化趋势和范围)

②这些共同点说明了什么?(回答:无论a取什么值,当x0时都有y1;定义域为R,值域为0,;函数单调递增或递减。)

③变化趋势为什么会不同?(回答:因为a的取值不同,函数当a1时单调递增,当0a1时单调递减)

(2)利用指数函数单调性比较指数幂的大小:

1.71,①1.72.5与1.73:指数函数y1.7x单调递增,2.5<3,所以1.72.5<1.73;

343②与2:由y图像知0<1,又由y2x图像知231所以

43433<2。41321323x132练习:比较大小:①0.8-0.1与0.8-0.2;②1.70.3与0.93.1

(3)注意图像恒过点(0,1)的意义:无论a取何值,它的0次方一定等于1。

迁移应用:函数y2x33的图像恒过定点____________。

4、延伸:观察图像,思考指数函数图像怎样随底数a的变化而变化。(1)几何画板展示:指数函数图像随底数a从小到大变化的变化情况。(2)变化特征归纳:

①a从0到1再从1到+∞变化,曲线“逆时针旋转”;

②0a1时,图像呈下降趋势,即函数单调递减,a越小越靠近坐标轴;a1时,图像呈上升趋势,即函数单调递增,a越大图像越靠近坐标轴;总而言之,a离1越“远”则图像越靠近坐标轴;

③a1是转折点(当然在指数函数中规定a1,这里只提出来作参照)。

(3)练习:

①如图是指数函数(1)yax,(2)ybx,(3)ycx,(4)ydx的图像,则a,b,c,d与1的大小关系是________________。

11②思考题:已知实数a,b满足,则下列五个关

23系式中可能正确的是________________。

(1)0ba;(2)ab0;(3)0ab;(4)ba0;(5)ab

ab5、小结。

让学生自己思考总结:

(1)通过这节课的学习,我们学到了什么知识?(2)我们通过什么研究方法得到这些结论?(3)能不能将这节课所学内容与实际生活联系起来?

6、作业:巩固、反馈和延伸。

(1)《金牌作业本》本节作业。——巩固所学知识,反馈学习效果

(2)思考:今天所学的指数函数性质是由观察图像得到的,那么这些性质(如单调性)能否通过推理的方法得到呢?——问题延伸,激发学习兴趣

四、教学总结与反思

1、学生对于指数函数图像印象深刻,尤其是“指数函数图像随底数a从小到大变化的变化情况”,多媒体教学手段取得明显效果。

2、对于指数函数性质的相关结论,应引导他们在适当的练习中反复思考、熟悉并转化为自己的知识,而不是通过“死记硬背”来记忆。

3、在后面学习对数函数图像与性质一节时,可让学生按照本节的研究方法自行研究归纳,这样印象更加深刻,教学也因此事半功倍。

第二篇:2018年必修一 《指数函数及其性质》参考教案

指数函数及其性质

一、教学目标、知识目标1)了解指数函数模型的实际背景,从实际问题引出指数函数。1()理解指数函数的概念和意义,能画出具体指数函数的图象。2()通过指数函数的图象,归纳出指数函数的性质,并掌握其性质。3(4()能在实际环境中,根据不同的需要和条件,选择恰当的方法,运用指数函数的图象与 性质解决实际问题。、能力目标2)培养学生数学与实际问题相结合的能力。1()通过探究、思考,培养学生理性思维能力,观察能力以及分析问题的能力。2()在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数3(形结合的方法等。3、情感目标)通过将数学与实际问题结合,提高学生的学习兴趣。1(由特殊到一般地认识事培养学生由具体到抽象、学生与学生的相互交流,通过老师与学生,)2(物的意识。)通过现代信息技术的合理应用,转变学生对数学学习的态度,加强学生对数形结合,3(分类讨论等数学思想的进一步认识。

二、教学重点

理解指数函数的定义,图象与性质。

三、教学难点 用数形结合的方法从特殊到一般地探索、概括指数函数的性质。

四、教具准备 多媒体课件。

五、教学基本流程 6 / 1

六、教学过程

设计意图 学生活动 老师活动

教学内容 环节)用函数的1学生独立思)1)组织学生思考、分小组讨论1中时2在本节的问题)1引入 新课碳观点分析小组讨论,考、所提出的问题,注意引导学生 含量14和碳间的对含量模型14推举代表解释从函数的定义出发来解释两个

值增长GDP和这两个问题中 问题中变量之间的关系。和问应关系:变量间的关系引导学生从函数的定义出发)2模型中变量yx值GDP与中时间1题为什么构成函 列出函数关系式并提问。之间的对应 的对应关系 数。关系。能否构)从实际问2代表说出这)2列出题出发,一函数关系 成函数?函数关系式,式。一种放射性物质不断)2增加学生学变化成其他物质,每经习兴趣。过一年的残留量是原来这两问都是x,那么以时间84%的为引出指数y年为自变量,残留量 的函数关系式是什么?函数的概念.做准备 6 / 2

指数函数概指数函数概 指数函数概念: 指数函数概念:新课 念:教师注意引导学生把对应关)1以上函数关系式有什)1 探究 念:)抽象概括1)学生思考,1 么共同特征?

注意提的形式.系概括到出指数函数2讨论,概括共)给出函数的概念:的取值范围与自变量示底数 同特征。一般地,函数 的模 是哪一个。记住这一概)2x叫做

且)分析这一概念:2 型。念,注意老师 exponential(指数函数指数函数的定义是一个形式、A)给出函数2的分析,并进

定义,要引导学生辨析。是x),其中function 概念。

行消化。、指数函数的底数的取值范B自变量,函数的定义域

围,引导学生分析底数为什么。R为。1不能是负数、零和 指数函数不是特指某一个函、C 数,而是一族函数的总称。底 取不同a其实是参变量,a数 值,得到不同的指数函数。)独立思考,3)课堂巡视,个别辅导,针对3你能根据指数函数的)3)利用指数3尝试解决课本2定义解决课本练习.学生的共同问题集中解决3,函数的定义,并3,2练习

吗?求指数型函且小组讨论、数的定义域 交流;和写出指数函数模型的函数解析式,巩固指数函 数概念。/ 3

指数函数图指数函数图象 指数函数图象与性质 指数)会函数图象与性质新课 与性质)提示学生用描点法画图,课1 探究 象与性质x与函)画出函数12媒1x用描点1)独立画图,1堂巡视,个别辅导,再用多的图象。数2法画这两个同学间交流。体课件(几何画板)展示整个.函数的图象观看老师的画 画图过程。

图过程。

教师引导学生回顾需要研究)2你能类比前面讨论函)2学生独立思)2)给出研究2函数的哪些性质,讨论研究指数性质时的方法,指出考,提出研究指数函数性 数函数性质的方法。研究指数函数性质的方指数函数的基 质的思路。用多媒体展示所得结论(表格 法吗? 本思路。)。1 学生师生,)3)会根据某3)根据以上方法,师生共同探3根据图象研究上述两)3与学生间共同两个指数函讨,强调数形结合,强调函数 个指数函数的性质。讨论,数的图象研 图象研究性质中的作用。究这两个函 板书或投影讨论出来的结果。数的性质。)为方便起见,老师直接在几4)从特殊到一般,改变4一边认真观)4)注意从特4画,a任意改变底数何画板中,并观画出图象,a底数察一边思考,殊到一般的出不同的函数图象。察这些函数图象的的特 讨论。思想方法的一边画一边与学生讨论,提示 点与变化规律。请代表回答讨注意分应用,与学生注意分类,即图象的变化。

论的结果。类讨论的方 时函数渗透观察法,最后给出一个总的概括。(如分析能能力,)2下表格力与概括能.力的培养新课 函数xx

探究 6 / 4

1,0)过定点(1(性 图象 R R 定义域 值域

质,y=1 时x=0),即 上是增函数R)在2(上是减函数R)在2(, 00当(3)y>1, 时,x>0当(3),01.时x<0当)给出指数5)学生思考,5的取值不但a提示学生底数)5进一步研究指数函数)5新课的性质:函数递增或递 探究函数的另一 分组讨论。影响指数函数进一步性质,代表说出所得 减的速度。x的单调性,还

且,0

结再论。结论:一般地,对于指培养学生以影响函数递增或递减的速度。

上能力。x当,数函数一次用几何画板展示函数图

取值不同的变化过程。a象随底数越大,函数递增的 提示分类讨论。(图象)速度越快,如右图;对 于指数函数

x,当底

数越小时,函数递减的

速度越快。最后归纳结论。用多媒体展示这两个函数的)6从画出的图象中你能)6)总结出两6观察图象及)6图象与这两个函数的性质结论

的图象发现函数个指数函数表格,表述自)。1(表格y轴图象关于己的发现:两

对称时其解函数的自变量的图象和函数 6 / 5 析式的特点的取值互为相概括出根据对称性画指数函数有什么关系?可否利用并利用轴对反数,其函数.图象的方法

的图象画出称性画指数值相等,两图

函数的图象。轴对y象关于 的图象? 称。)给出一般7观察图象及)7用多媒体展示一些函数的图)7上述性质推广到一般)7的函数也具表格,表述自象与一般指数函数的性质结论ya

x

与的指数函数

。)有上述性质,己的发现:对)。2(表格1x(培养学生从指出对于一般函数来说,也有于一般函数来a

上述性质。特殊到一般说也有上述性

质。的归纳能力。认真看书,可先让学生看课本上解答,再评例,6页例68至66课本明确底数例题)1 是确定指数。8,例7 讲解 讨论。析。函数的要素 专心听评析。中指出确定一个指数函6例)1)给出函数2 数需要的条件。中指出利用函数单调性,7例)2单调性的一 通过自变量的大小关系可以判 些应用。断相应函数值的大小关系。)给出指数3

是指数函数的实际应用,8例)3函数的一个

课堂也对指数型函数有一个初步的指实际应用,小结 认识。数型函数的通过本节课的学习,你思考、小组讨根据学生回答的情况进行评价 概念。对指数函数有什么认论,推举代表.和补充对本节课的识?教科书是怎样研究叙述,其他同 知识进行归.纳概括? 指数函数的 学补充; 布置 题8)。练习:第2),(1题的(7题,第6题,第5组第A1 .2作业:习题 作业 6 / 6

第三篇:2.1 指数函数 教学设计 教案

教学准备

1.教学目标

1.知识与技能:

(1)理解分数指数幂和根式的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法:

通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情态与价值

(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.2.教学重点/难点

1.教学重点:

(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂及根式概念的理解

3.教学用具

投影仪等.4.标签

数学,初等基本函数(Ⅰ)

教学过程

一、复习提问:

什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢? 归纳:在初中的时候我们已经知道:若,则x叫做a的立方根.,则x叫做a的平方根.同理,若根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为,负数没有平方根,一个数的立方根只有一个,如-8的立方根为-2;零的平方根、立方根均为零.二、新课讲解

类比平方根、立方根的概念,归纳出n次方根的概念.n次方根:一般地,若,则x叫做a的n次方根(throot),其中n >1,表示,如果是负数,表示,其中且n∈N*,当n为偶数时,a的n次方根中,正数用用表示,叫做根式.n为奇数时,a的n次方根用符号n称为根指数,a为被开方数.类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?

零的n次方根为零,记为

小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.根据n次方根的意义,可得:

肯定成立,果不一定成立,那么

表示an的n次方根,等式等于什么?

一定成立吗?如让学生注意讨论,n为奇偶数和a的符号,充分让学生分组讨论.通过探究得到:n为奇数,n为偶数,小结:当n为偶数时,这样就避免出现错误: 例题:求下列各式的值

分析:当n为偶数时,应先写思考:,然后再去绝对值.化简得到结果先取绝对值,再在绝对值算具体的值,是否成立,举例说明.课堂练习:1.求出下列各式的值

2.若3.计算三.归纳小结:

1.根式的概念:若n>1且偶数时,;,则

n为

.2.掌握两个公式:

3.作业:P59习题2.1 A组

第1题

课堂小结

1.根式的概念:若n>1且,则

n为偶数时,2.掌握两个公式:

课后习题 作业:

P59习题2.1 A组

第1题

板书 略.

第四篇:高中数学《指数函数》教案1 新人教A版必修1

3.1.2指数函数

(二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程:

本节课为习题课,可分以下几个方面加以练习: 备选题如下:

1、关于定义域

x(1)求函数f(x)=11的定义域

9(2)求函数y=1x的定义域

51x1(3)函数f(x)=3-x-1的定义域、值域是……()

A.定义域是R,值域是R

B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1)

2、关于值域

(1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞)

B.(-∞,1) C.(0,1)

D.(1,+∞)

(5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像

用心 爱心 专心 1

(1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象()

A.向右平移3个单位

B.向左平移3个单位 C.向右平移8个单位

D.向左平移8个单位

(2)函数y=|2x-2|的图象是()

(3)当a≠0时,函数y=ax+b和y=bax的图象只可能是()

(4)当0

B.第二象限 C.第三象限

D.第四象限

(5)若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),则b=______.(6)已知函数y=(12)|x+2|.

①画出函数的图象;

②由图象指出函数的单调区间并利用定义证明.(7)设a、b均为大于零且不等于1的常数,下列命题不是真命题的是()

用心 爱心 专心

A.y=a的图象与y=a的图象关于y轴对称

B.若y=a的图象和y=b的图象关于y轴对称,则ab=1 C.若a2x-xxx>a22-1,则a>1 ,则a>b D.若a>b

24、关于单调性

(1)若-1

A.5-x<5x<0.5x C.5<5<0.5x-xx

B.5x<0.5x<5-x D.0.5<5<5

x-xx(2)下列各不等式中正确的是() A.()3()3()3

252C.()3()3()3 52212121211

B.()3()3()3

225

D.()3()3()3

***

1211(x+1)(3-x)(3).函数y=(2-1)的单调递增区间是()

A.(1,+∞)C.(1,3)

B.(-∞,1)

D.(-1,1)

(4).函数y=()2xxx2为增函数的区间是()

(5)函数f(x)=a-3a+2(a>0且a≠1)的最值为______.(6)已知y=(数.(7)比较52x12x12)xx22+1,求其单调区间并说明在每一单调区间上是增函数还是减函与5x22的大小

5、关于奇偶性

(1)已知函数f(x)= m21x2x为奇函数,则m的值等于_____ 11(1)如果82 x2x=4,则x=____

用心 爱心 专心 3

6阶段检测题: 可以作为课后作业: 1.如果函数y=ax(a>0,a≠1)的图象与函数y=bx(b>0,b≠1)的图象关于y轴对称,则有 A.a>b B.a

3(3x-1)(2x+1)

≥1},则集合M、N的关系是

B.MN D.MN

3.下列说法中,正确的是

①任取x∈R都有3x>2x ②当a>1时,任取x∈R都有ax>a-x ③y=(3)-x是增函数 ④y=2|x|的最小值为1 ⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴

A.①②④ C.②③④

B.④⑤ D.①⑤

4.下列函数中,值域是(0,+∞)的共有 ①y=31 ②y=(A.1个 x1)③y=1()④y=3x

B.2个 x11xC.3个

D.4个

5.已知函数f(x)=a1-x(a>0,a≠1),当x>1时恒有f(x)<1,则f(x)在R上是 A.增函数 B.减函数

C.非单调函数 D.以上答案均不对

二、填空题(每小题2分,共10分)6.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如下图,则a、b、c、d、1之间从小到大的顺序是__________.用心 爱心 专心 4

7.函数y=ax1的定义域是(-∞,0],则a的取值范围是__________.8.函数y=2x+k-1(a>0,a≠1)的图象不经过第四象限的充要条件是__________.9.若点(2,14)既在函数y=2ax+b的图象上,又在它的反函数的图象上,a=________,b=________.10.已知集合M={x|2x2+x≤(14)

x-

2,x∈R},则函数y=2x的值域是__________.三、解答题(共30分)11.(9分)设A=am+a-m,B=an+a-n(m>n>0,a>0且a≠1),判断A,B的大小.12.(10分)已知函数f(x)=a-

22x1(a∈R),求证:对任何a∈R,f(x)为增函数.x1213.(11分)设0≤x≤2,求函数y=42a2xa21的最大值和最小值.课堂练习:(略)小结: 课后作业:(略)

用心 爱心 专心 则

第五篇:2.1指数函数测试题2

绵阳市开元中学高2013级第一学期

必修1

2.1指数函数测试题2

(满分100分,60分钟完卷)

制卷:王小凤学生姓名

一.选择题(本大题共10小题,每小题6分,共60分.)1.5

1.设y0.9

14,y28

0.48,y132

,则()

A.y3y1y2B.y2y1y3C.y1y2y3D.y1y3y2

2a1

32a

2.若14

14,则实数a的取值范围是()

A.1

2B.(1,+∞)C.(-∞,1)D.1

-∞,2 3.已知3x

10,则这样的x()

A.存在且只有一个B.存在且不只一个 C.存在且x2D.根本不存在4.函数f(x)2

x

1,使f(x)0成立的的值的集合是()

A.xx0B. xx1C.xx0D.xx1

5.下列函数图象中,函数yax

(a0且a1),与函数y(1a)x的图象只能是()

yyyOxOABCD

6.设f(x)=(1x),x∈R,那么f(x)是()

A.偶函数且在(0,+∞)上是减函数B.偶函数且在(0,+∞)上是增函数 C.奇函数且在(0,+∞)上是减函数D.奇函数且在(0,+∞)上是增函数

7.函数y=ax

在[0,1]上的最大值与最小值和为3,则函数y=3a

2x1

在[0,1]上的最

大值是()

A.3B.1C.6D.

8.函数y2x在区间(k1,k1)内不单调,则k的取值范围是()

A.(1,)B.(,1)C.(1,1)D.(0,2)

9.函数f(x)23x在区间(,0)上的单调性是()

A. 增函数B. 减函数C.常数D.有时是增函数有时是减函数

10.Fx1

2x1)f(x)(x0)是偶函数,且fx不恒等于零,则fx()A.是奇函数B.可能是奇函数,也可能是偶函数 C.是偶函数D.不是奇函数,也不是偶函数

二.填空题(本大题共5小题,每小题6分,共30分.)

11.函数y

322x的定义域是_________。

12.已知函数f(x)=a-1

2+1fx为奇函数,则a=________.13.函数fxa

2x1

3的图象一定过定点P,则P点的坐标是____________.

14.若函数

y2xm的图像不经过第二象限,则m的取值范围是12x28x1

15.函数y

2

3x1的值域是.

三.解答题(本大题共10分.)

16.(1)已知f(x)2

3x1

m是奇函数,求常数m的值;

(2)画出函数y|3x

1|的图象,并利用图象回答:k为何值时,方程|3x

1|k无解?

有一解?有两解?

下载高中数学必修一教案2.1指数函数(推荐阅读)word格式文档
下载高中数学必修一教案2.1指数函数(推荐阅读).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学必修一 2

    高中数学必修一《函数的单调性》的教与学研究1、此节课的教学流程是从学生的实际生活和所学知识出发,引导学生通过自主探究、合作讨论等方式,探究函数的单调性的概念。在此基......

    2.1 指数函数 教学设计 教案(共五则)

    教学准备 1. 教学目标 1.知识与技能:(1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程与......

    高中数学二次函数教案人教版必修一

    二次函数 一、考纲要求 二、一、复习回顾 1、讲解上节课所留作业中典型试题的解题方法,重新记录,加深印 象 2回答上节课所讲相关知识点,找出遗漏部分二、课堂表现 1、课堂笔记......

    高中数学 2.1.2指数函数及其性质(二)教案 新人教A版必修1范文大全

    2.1.2指数函数及其性质 第2课时 教学过程: 1、复习指数函数的图象和性质 2、例题 例1:(P66例7)比较下列各题中的个值的大小 2.5 3 (1)1.7 与 1.7( 2 )0.80.1( 3 ) 1.70.3 与0.8 0.......

    高中数学必修一:教学目标(范文大全)

    课题: §1.1集合的含义与表示(一) 一. 教学目标: .1.知识与技能 通过实例,了解集合的含义,体会元素与集合的属于关系; 知道常用数集及其专用记号; 了解集合中元素的确定......

    高中数学必修一教学设计(大全)

    篇一:高一数学必修一教案课题: 1.1 集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一......

    知识点高中数学必修一[5篇材料]

    《高中数学必修1》是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。下面小编给大家分享一些知识点高中数学必修一,希......

    高中数学必修3经典教案全集(大全)

    新课标高中数学必修3教案 目 录 第一章 算法初步 ........................................................................................................................