第一篇:高中数学必修一 2
高中数学必修一《函数的单调性》的教与学研究
1、此节课的教学流程是从学生的实际生活和所学知识出发,引导学生通过自主探究、合作讨论等方式,探究函数的单调性的概念。在此基础上通过具体的函数图像结合函数的单调性的定义,解决简单函数单调性的问题,在教学中不断渗透数形结合的思想方法,培养学生观察、归纳、抽象类比的能力和语言表达的能力,通过对函数单调性的证明,提高数学的论证推理能力。
2、函数的单调性的概念是本节课教学的重点,教学难点是函数单调性概念的知识形成及利用函数图形、单调性的定义判断和证明函数的单调性。为实现教学目标,突出重点和难点的突破,教学中采用在概念的探索阶段,让学生经历从直观到抽象,特殊到一般,感性到理性的认识,完成对函数单调性定义的认识;在应用阶段通过对证明的分析,帮助学生掌握并证明函数单调性的方法和步骤,渗透算法思想。
3、本节课由于是函数单调性第一课时,教学中采用启发、引导,学生自主探究学习的教学方法。通过创设情境引导学生探究,师生交流,最终形成概念、方法,过程中借助于多媒体的几何画板来辅助教学,提高学生对所学习概念的理解和认识。
4、在学法上,让学生从问题中质疑、尝试、归纳总结、运用,培养学生发现问题,研究问题、解决问题的能力。让学生利用图形直观启迪思维并通过正反例的构造,来完成从感性到理性认识的一个飞跃。学生举出反例后的兴奋,增强了学生学习数学的自信心和兴趣,同时更加促进学生学习数学的主动性。在小结的环节中,从探究过程,证明方法与步骤,数学思想方法几个方面,学生亲自来总结。通过他们的主动参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再深化。
5、通过对本节课的教学设计,使我认识到数学教学中,能钻研教学大纲,深入挖掘教材,结合学生的实际,设计贴合教学实际的教学设计,必将达到事半功倍的效果。通过对本节课的教学,可以预见学生仍然对函数的单调性的证明与判断仍是一个难点,对于单调性的证明过程中,究竟要变形到什么样的程度,学生很难把握。另外学生主动参与学习数学的积极性也有待于进一步提高。
教学反思:
在本节课的教学中,通过大量的典型图形的分析,使学生在直观感知和自然描述的阶段能够很自然地接受“任意性”和“两个值”。在整个设计过程中,对于典型例题的选取及变数训练中,对单调性的概念进行了分层次的理解和应用。也就是说针对学生的不同情况设定例题、习题等。
当然学生在学习过程中容易出现的问题就是单调性的证明过程中,究竟要变形到什么样的程度,以及在写单调区间的时候用逗号还是用并,符合并集为什么是错误的等等。
第二篇:高中数学必修一教学设计
篇一:高一数学必修一教案
课题: 1.1 集合
教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方
面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所
反映的数学思想,在越来越广泛的领域种得到应用。
课 型:新授课
教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体
问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高
二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这
些东西,并且能判断一个给定的东西是否属于这个总体。2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简
称集。
3.关于集合的元素的特征
(1)确定性:设a是一个给定的集合,x是某一个具体对象,则或者是a的元素,或者不是a的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样 4.元素与集合的关系;
(1)如果a是集合a的元素,就说a属于(belong to)a,记作a∈a(2)如果a不是集合a的元素,就说a不属于(not belong to)a,记作a?a(或a a)? 5.常用数集及其记法
非负整数集(或自然数集),记作n 正整数集,记作n或n+;
整数集,记作z 有理数集,记作q 实数集,记作r
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{r}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。* 课题: 1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用venn图表达集合间的关系。
教学难点:弄清元素与子集、属于与包含之间的区别;
教学过程:
四、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 n;(2);(3)-1.5 r
2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣
布课题)
五、新课教学
(一)集合与集合之间的“包含”关系; a={1,2,3},b={1,2,3,4} 集合a是集合b的部分元素构成的集合,我们说集合b包含集合a;
如果集合a的任何一个元素都是集合b的元素,我们说这两个集合有包含关系,称集合a是集合b的子集(subset)。
记作:a?b(或b?a)读作:a包含于(is contained in)b,或b包含(contains)a 当集合a不包含于集合b时,记作 a b a?b(或b?a)用venn图表示两个集合间的“包含”关系
(二)集合与集合之间的 “相等”关系; a?b且b?a,则a?b中的元素是一样的,因此a?b ?a?ba?b?? b?a?即
结论:
任何一个集合是它本身的子集
(三)真子集的概念
若集合a?b,存在元素x?b且x?a,则称集合a是集合b的真子集(proper subset)。
记作:a b(或b a)
读作:a真包含于b(或b真包含a)
(四)空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:? 规定: 空集是任何集合的子集,是任何非空集合的真子集。
(五)结论:
1a?a ○2a?b,且b?c,则a?c ○
(六)例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合a={x|x-3>2},b={x|x?5},并表示a、b的关系;
(七)归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
已知集合a?{x|a?x?5},b?{x|x≥2},○且满足a?b,求实数a的取值范围。
设集合a?{四边形},b?{平行四边形},c?{矩形},○ enn图表示它们之间的关系。d?{正方形},试用v 课题:
1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
六、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(p9思考题),引入并集概念。
七、新课教学 1.并集 一般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集(union)
记作:a∪b读作:“a并b”
即: a∪b={x|x∈a,或x∈b} venn图表示:
篇二:新课标人教版高中数学必修1优秀教案全套
备课资料
[备选例题]
【例1】判断下列集合是有限集还是无限集,并用适当的方法表示:(1)被3除余1的自然数组成的集合;(2)由所有小于20的既是奇数又是质数的正整数组成的集合;(3)二次函数y=x2+2x-10的图象上的所有点组成的集合;(4)设a、b是非零实数,求y=abab的所有值组成的集合.??|a||b||ab| 思路分析:本题主要考查集合的表示法和集合的分类.用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.解:(1)被3除余1的自然数有无数个,这些自然数可以表示为3n+1(n∈n).用描述法表示为{x|x=3n+1,n∈n}.(2)由题意得满足条件的正整数有:3,5,7,11,13,17,19.则此集合中的元素有7个,用列举法表示为{3,5,7,11,13,17,19}.(3)满足条件的点有无数个,则此集合中有无数个元素,可用描述法来表示.通常用有序数对(x,y)表示点,那么满足条件的点组成的集合表示为{(x,y)|y=x2+2x-10}.(4)当ab<0时,y=abab=-1;当ab>0时,则a>0,b>0或a<0,b<0.??|a||b||ab| abababab=3;若a<0,b<0,则有y==-1.|a||b||ab||a||b||ab|若a>0,b>0,则有y= ∴y=abab的所有值组成的集合共有两个元素-1和3.则用列举法表示为{-1,3}.??|a||b||ab| 【例2】定义a-b={x|x∈a,x?b},若m={1,2,3,4,5},n={2,3,6},试用列举法表示集合n-m.分析:应用集合a-b={x|x∈a,x?b}与集合a、b的关系来解决.依据定义知n-m就是集合n中除去集合m和集合n的公共元素组成的集合.观察集合m、n,它们的公共元素是2,3.集合n中除去元素2,3还剩下元素6,则n-m={6}.答案:{6}.(设计者:张新军)设计方案
(二)教学过程
导入新课
思路1.在初中代数不等式的解法一节中提到:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.不等式解集的定义中涉及到“集合”,那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.今天我们开始学习集合,引出
课题.思路2.开场白:集合是现代数学的基本语言,它可以简洁、准确地表达数学内容.这个词听起来比较陌生,其实在初中我们已经有所接触,比如自然数集、有理数集,一元一次不等式x-3>5的解集,这些都是集合.还有,我们学过的圆的定义是什么?(提问学生)圆是到一个定点的距离等 于定长的点的集合.接着点出课题.推进新课
新知探究
提出问题
教师利用多媒体设备向学生投影出下面实例,这5个实例的共同特征是什么?(1)1~20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)北京大学2004年9月入学的全体学生.活动:教师组织学生分小组讨论,每个小组选出一位同学发表本组的讨论结果,在此基础上,师生共同概括出5个实例的特征,并给出集合的含义.引导过程: ①一般地,指定的某些对象的全体称为集合(简称为集),集合中的每个对象叫做这个集合的元素.②集合常用大写字母a,b,c,d,„表示,元素常用小写字母a,b,c,d,„表示.③集合的表示法:a.自然语言(5个实例);b.字母表示法.④集合元素的性质:a.确定性:即任给一个元素和一个集合,那么这个元素和这个集合的关系只有两种:这个元素要么属于这个集合,要么不属于这个集合;b.互异性:一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的;c.无序性:集合中的元素是没有顺序的.⑤集合相等:如果两个集合中的元素完全相同,那么这两个集合是相等的.⑥元素与集合的关系:“属于”和“不属于”分别用“∈”和“?”表示.元素确定性的符号语言表述为:对任意元素a和集合a,要么a∈a,要么a?a.⑦在初中我们学过了一些数的集合,国际标准化组织(iso)制定了常用数集的记法: 自然数集(包含零):n,正整数集:n*(n+),整数集:z,有理数集:q,实数集:r.因此字母n、z、q、r不能再表示其他的集合,否则会出现混乱的局面.提出问题
(1)请列举出“小于5的所有自然数组成的集合a”.(2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等式的解集?
活动:学生回答后,教师指出: ①在数学中,为书写规范,我们把封闭曲线简化为一个大括号,然后把元素一一列举出来,元素与元素之间用逗号隔开写在大括号内来表示这个集合.这种表示集合的方法称为列举法.如本例可表示为a={0,1,2,3,4}.②描述法:将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.其中x为元素的一般特征,p(x)为x满足的条件.如数集常用{x|p(x)}表示,点集常用{(x,y)|p(x,y)}表示.应用示例
思路1 1.课本第3页例1.思路分析:用相应的数学知识明确集合中的元素,再写在大括号内.点评:本题主要考查集合表示法中的列举法.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法;列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成a={„„}的形式.变式训练 请试一试用列举法表示下列集合:(1)a={x∈n|且9∈n};9?x(2)b={y|y=-x2+6,x∈n,y∈n};(3)c={(x,y)|y=-x2+6,x∈n,y∈n}.分析:本题考查列举法与描述法的相互转化.明确各个集合中的元素后再写在大括号内.(1)集合a中元素x满足9均为自然数;9?x(2)集合b中y值为函数y=-x2+6的函数值的集合;(3)集合c中元素为点,抛物线上横、纵坐标均为自然数的点.答案:(1)a={0,6,8};(2)b={2,5,6};(3)c={(0,6),(1,5),(2,2)}.2.课本第4页例2.思路分析:本题重点学习用描述法表示集合.用一个小写英文字母表示集合中的元素,作为集合中元素的代表符号,找到集合中元素的共同特征,并把共同特征用数学符号来表达,然后写在大括号“{}”内.点评:本题主要考查集合的表示方法,以及应用知识解决问题的能力;描述法表示集合的步骤:(1)用字母分别表示集合和元素,(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成a={„|„}的形式;描述法适合表示有无数个元素的集合,当集合中的元素个数较少时,通常用列举法表示.变式训练
课本p5练习2.思路2 1.下列所给对象不能构成集合的是()a.一个平面内的所有点 b.所有大于零的正数
c.某校高一(4)班的高个子学生 d.某一天到商场买过货物的顾客
答案:c 变式训练
下列各组对象中不能构成集合的是()a.高一(1)班全体女生 b.高一(1)班全体学生家长 c.高一(1)班开设的所有课程 d.高一(1)班身高较高的男同学
分析:判断所给对象能否构成集合的问题,只需根据构成集合的条件,即集合中元素的确定性便可以解决.因为a、b、c中所给对象都是确定的,从而可以构成集合;而d中所给对象不确 定,原因是找不到衡量学生身高较高的标准,故不能构成集合.若将d中“身高较高的男同学”改为“身高175 cm以上的男同学”,则能构成集合.答案:d 2.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈z};(5){(x,y)|x+y=6,x>0,y>0,x∈z,y∈z}.思路分析:用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.答案:(1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈z},也可表示为{-3,-2,-1,0,1,2,3}.(2){x|x=3n,n∈z}.(3)∵x=|x|,∴x≥0.又∵x∈z且x<5, ∴{x|x=|x|,x∈z且x<5}还可以表示为{0,1,2,3,4}.(4){-2}.(5){(1,5),(2,4),(3,3),(4,2),(5,1)}.变式训练
用适当的形式表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)所有被3整除的数组成的集合;(3)方程(3x-5)(x+2)(x2+3)=0实数解组成的集合;(4)一次函数y=x+6图象上所有点组成的集合.分析:元素较少的有限集宜采用列举法;对无限集或元素较多的有限集宜采用描述法.答案:(1){x||x|≤3,x∈z}或{-3,-2,-1,0,1,2,3};(2){x|x=3n,n∈z};(3){5,-2};3(4){(x,y)|y=x+6}.3.已知集合a={x|ax2-3x+2=0,a∈r},若a中至少有一个元素,求a的取值范围.思路分析:对于方程ax2-3x+2=0,a∈r的解,要看这个方程左边的x2的系数,a=0和a≠0方程的根的情况是不一样的,则集合a的元素也不相同,所以首先要分类讨论.解:当a=0时,原方程为-3x+2=0?x=2,符合题意;3 ?a?0,9解得a≠0且a≤.8?9?8a?0.当a≠0时,方程ax2-3x+2=0为一元二次方程,则? 综上所得a的取值范围是{a|a≤ 4.用适当的方法表示下列集合:(1)方程组?9}.8?2x-3y?14,的解集;?3x?2y?8(2)1000以内被3除余2的正整数所组成的集合;(3)直角坐标平面上在第二象限内的点所组成的集合;(4)所有正方形;(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.分析:本题考查集合的表示方法.所谓适当的表示方法,就是较简单、较明了的表示方法.由于方
?2x-3y?14,程组?的解为x=4,y=-2.故(1)宜用列举法;(2)中尽管是有限集,但由于它的元素个3x?2y?8? 数较多,所以用列举法表示是不明智的,故用描述法;(3)和(5)也宜用描述法;而(4)则宜用列举法为好.解:(1){(4,-2)};(2){x|x=3k+2,k∈n且x<1000};(3){(x,y)|x<0且y>0};(4){正方形};(5){(x,y)|x<-1或x>1}.知能训练
课本p5练习1、2.拓展提升
1.已知a={x∈r|x=|a||b||c||ab||ac||bc||abc|,abc≠0},用列举法表示集??abcabacbcabc 合a.分析:解决本题的关键是去掉绝对值符号,需分类讨论.解:题目中x的取值取决于a、b、c的正负情况,可分成以下几种情况讨论:(1)a、b、c全为正时,x=7;(2)a、b、c两正一负时,x=-1;(3)a、b、c一正两负时,x=-1;(4)a、b、c全为负时,x=-1.∴a={7,-1}.注意:(2)、(3)中又包括多种情况(a、b、c各自的正负情况),解题时应考虑全面.2.已知集合c={x|x=a+b,a∈a,b∈b}.(1)若a={0,1,2,3},b={6,7,8,9},求集合c中所有元素之和s;(2)若a={0,1,2,3,4,„,2 005},b={5,6,7,8,9},试用代数式表示出集合c中所有元素之和s;(3)联系高斯求s=1+2+3+4+„+99+100的方法,试求出(2)中的s.思路分析:先用列举法写出集合c,然后解决各个小题.答案:(1)列举法表示集合c={6,7,8,9,10,11,12},进而易求得s=6+7+8+9+10+11+12=63.(2)列举法表示集合c={5,6,7,„,2 013,2 014},由此可得s=5+6+7+„+2 013+2 014.(3)高斯求s=1+2+3+4+„+99+100时,利用1+100=2+99=3+98=„=50+51=101,进而得s=1+2+3+4+„+99+100=101×50=5 050.本题(2)中s=5+6+7+„+2 013+2 014=2 019×1 005=2 029 095.课堂小结
在师生互动中,让学生了解或体会下列问题:(1)本节课我们学习过哪些知识内容?(2)你认为学习集合有什么意义?
(3)选择集合的表示法时应注意些什么? 篇三:高中数学必修一教案
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示
课标三维定向
〖知识与技能〗
1、了解集合的含义,体会元素与集合的“属于”关系。
2、掌握集合中元素的特性。
3、能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
〖过程与方法〗通过实例,从集合中的元素入手,正确表示集合,结合集合中元素的特性,学会观察、比较、抽象、概括的思维方法,领悟分类讨论的数学思想。
〖情感、态度、价值观〗在运用集合语言解决问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学思维方法解决问题。
教学重、难点
〖重点〗集合的含义与表示方法。
〖难点〗集合表示方法的恰当选择及应用。
教学过程设计
一、阅读课本:p2—6(10分钟)(学生课前预习)
二、核心内容整合
1、为什么要学习集合——现代数学的基础(数学分支)
2、集合的含义:把研究对象称为元素,把一些元素组成的总体叫做集合。
3、集合的特性
(1)确定性。问题:“高个子”能不能构成集合?我国的小河流呢?
〖知识链接〗模糊数学(“模糊数学简介”、“浅谈模糊数学”)
(2)互异性:集合中的元素不重复出现。如{1,1,2}不能构成集合(3)无序性——相等集合,如{1,2} = {2,1}
4、元素与集合之间的“属于”关系:a?a,a?a
5、一些常用数集的记法:n(n*,n+),z,q,r。如:r+表示什么?
6、集合的表示法:
(1)列举法:把集合的元素一一列举出来,并用花括号“{}“括起来。例
1、用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;{0,1,2,3,4,5,6,7,8,9}(2)方程x?x的所有实数根组成的集合;(0,1)
(3)由1 ~ 20以内的所有质数组成的集合。(难点:质数的概念){2,3,5,7,11,13,17,19}(2)描述法:用集合所含元素的共同特征表示。{x|x?p} 例
2、试分别用列举法和描述法表示下列集合:
(1)方程x?2?0的所有实数根组成的集合;
列举法:;描述法:{x|x2?2?0}。
(2)由大于10小于20的所有整数组成的集合。
列举法:{11,12,13,14,15,16,17,18,19};描述法:{x|10?x?20,x?z}。〖知识链接〗代表元素:如{x|y?x2}(自变量的取值范围),{y|y?x2}(函数值的取值范围),{(x,y)|y?x2}(平面上在抛物线上的点)各代表的意义。
三、迁移应用
1、已知4?{1,a,(a?1)},求实数a的值。
2、已知m?{x|ax?2x?1?0}是单元素集合,求实数a的值。
思路探求:(1)对a讨论;(2)方程仅一根???0。
四、学习水平反馈:p6,练习;p13,习题11,a组,1、2。
五、三维体系构建 22222 ??元素与集合的关系集合的含义?? 集合的含义与表示??元素的特征:确定性、互异性、无序性
??集合的表示:列举法、描述法
六、课后作业:p13,习题11,a组,3、4。
22补充:已知a?{a?2,(a?1),a?3a?3},若1?a,求实数a的值。
七、教学反思:
1.1.2 集合间的基本关系 课标三维定向
〖知识与技能〗
1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情景中,了解空集的含义。
〖过程与方法〗从类比两个实数之间的关系入手,联想两个集合之间的关系,从中学会观察、类比、概括和思维方法。
〖情感、态度、价值观〗通过直观感知、类比联想和抽象概括,让学生体会数学上的规定要讲逻辑顺序,培养学生有条理地思考的习惯和积极探索创新的意识。
教学重、难点
〖重点〗理解子集、真子集、集合相等等。
〖难点〗子集、空集、集合间的关系及应用。
教学过程设计
一、问题情境设疑——类比引入
问题:实数有相等关系、大小关系,可否拓展到集合之间的关系?
引例:观察下面几个例子,你能发现两个集合之间的关系吗?
(1)a = {1,2,3},b = {1,2,3,4,5};
(2)设a为新华中学高一(2)班全体女生组成的集合,b为这个班全体学生组成的集合;
(3)设c = {x | x是两条边相等的三角形},d = {x | x是等腰三角形}。
二、核心内容整合
1、子集的概念
集合a中任意一个元素都是集合b的元素,记作a?b或b?a。图示如下 符号语言:任意x?a,都有x?b。
2、集合相等
类比:实数:a?b且a?b?a?b 集合:a?b且b?a?a?b
3、真子集的概念
集合a?b,但存在元素x?b,且x?a,记作a?b或b?a。(a ≠ b)说明:从自然语言、符号语言、图形语言三个方面加以描述。
4、空集的概念:
不含任何元素的集合,记作? 规定:空集是任何集合的子集:??a 〖知识链接〗比较计算机“我的文档”的“文件夹”与子集的关系。如何体现“集合相等”?
5、包含关系{a}?a与属于关系a?a有什么区别?
如0,{0},?。注意区分元素与集合,集合与集合之间的符号表示。
6、集合的性质
(1)反身性:a?a,??a(2)传递性:a?b,b?c?a?c 课堂练习:判断集合a是否为集合b的子集,若是打“√”,若不是打“×”。
(1)a = {1,3,5},b = {1,2,3,4,5,6}(√)
(2)a = {1,3,5},b = {1,3,6,9}(×)
(3)a = {0},b = {x|x2?1?0}(×)
(4)a = {a,b,c,d},b = {d,b,c,a}(√)
三、例题分析示例
例
1、写出集合{a , b}的所有子集,并指出哪些是它的真子集。?,{a},{b},{a,b}。〖探究拓展〗练习:p8,练习1。
探究:集合a中有n个元素,请总结出它的子集、真子集的个数与n的关系。子集的个数:2 n,真子集的个数:2 n – 1。与杨辉三角形比较。
例
2、设a?{x,x,xy},b?{1,x,y},且a = b,求实数x,y的值。
例
3、若a?{x|?3?x?4},b?{x|2m?1?x?m?1},当b?a时,求实数m的取值范围。2
四、学习水平反馈:p8,练习2,3;p14,1,2。
五、三维体系构建
集合间的基本关系:子集,集合相等,真子集,空集。
六、课后作业
1、已知a , x∈r,集合a = {2 , 4 , x 2 – 5x + 9} , b = {3 , x 2 + ax + a},(1)若a = {2 , 3 , 4},求x的值;
(2)若2?b,b?a,求a , x的值。
2、已知a = {x | x < – 1或x > 2} , b = {x | 4x + p < 0},且a?b,求实数p的取值范围。
第三篇:知识点高中数学必修一
《高中数学必修1》是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。下面小编给大家分享一些知识点高中数学必修一,希望能够帮助大家,欢迎阅读!
知识高中数学必修一1
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N-或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分类:
1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-11}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A?BB?C那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A
A∪φ=AA∪B=B∪A.4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
知识高中数学必修一2
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修1函数的知识点篇四:一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
知识高中数学必修一3
反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
知识高中数学必修一4
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
知识高中数学必修一5
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
⑤一般式:(A,B不全为0)
注意:○1各式的适用范围
○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(4)直线系方程:即具有某一共同性质的直线
知识点高中数学必修一
第四篇:高中数学必修2教学设计案例
篇一:高中数学必修2教案
第一章:空间几何体
1.1.1柱、锥、台、球的结构特征
一、教学目标 1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本p8,习题1.1 a组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本p7 练习1、2(1)(2)
课本p8习题1.1 第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本p8 练习题1.1 b组第1题
课外练习课本p8习题1.1 b组第2题 1.2.1 空间几何体的三视图(1课时)
一、教学目标 1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力 2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比 2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本p10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本p12 练习1、2 p18习题1.2 a组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习 1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
1.2.2 空间几何体的直观图(1课时)
一、教学目标 1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱 把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。4.平行投影与中心投影
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本p16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本p17 练习第5题 2.课外思考 课本p16,探究(1)(2)1.3.1柱体、锥体、台体的表面积与体积
一、教学目标
1、知识与技能
(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法
篇二:新课标高中数学必修二全册教案必修2教案
讲义1: 空 间 几 何 体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并
能运用这些特征描述现实生活中简单物体的结
构.二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.三、教学难点:柱、锥、台、球的结构特征的概括.四、教学过程:
(一)、新课导入:
1.导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、讲授新课:
1.教学棱柱、棱锥的结构特征:
①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?
②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成
的几何体叫棱柱.→ 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱abcde-a’b’c’d’e’
④、讨论:埃及金字塔具有什么几何特征?
⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高.→ 讨论:棱锥如何分类及表示?
⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质? ★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都
是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形
★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2.教学圆柱、圆锥的结构特征:
① 讨论:圆柱、圆锥如何形成?
② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→结合图形认识:底面、轴、侧面、母线、高.→ 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.④ 观察书p2若干图形,找出相应几何体;
三、巩固练习:
1.已知圆锥的轴截面等腰三角形的腰长为 5cm,面积为12cm,求圆锥的底面半径.2.已知圆柱的底面半径为3cm,轴截面面积为24cm,求圆柱的母线长.3.正四棱锥的底面积为46cm2,侧面等腰三角形面积为6cm2,求正四棱锥侧棱.(四)、教学棱台与圆台的结构特征:
① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?
② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得?
③ 讨论:棱台、圆台分别具有一些什么几何性质?
★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任 意两条母线的延长线交于一点;母线长都相等.④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:
① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→ 球的表示.② 讨论:球有一些什么几何性质?
③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)
3.教学简单组合体的结构特征:
① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?
② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.4.练习:圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长.(补充平行线分线段成比例定理)
(五)、巩固练习: 1.已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少? 2.棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高 3.若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。
●解:考查其截面图,利用平行线的成比例,可得所求为9厘米。
★ 例题2:已知三棱台abc—a′b′c′ 的上、下两底均为正三角形,边长分别为3和6,平行于底面的截面将侧棱分为1:2两部分,求截面的面积。(43)
★ 圆台的上、下度面半径分别为6和12,平行于底面的截面分 高为2:1两部分,求截面的面积。(100π)
▲ 解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。
讲义
2、空间几何体的三视图和直视图
一、教学要求:能画出简单几何体的三视图;能识别三视图所表
示的空间几何体.掌握斜二测画法;能用斜二测
画法画空间几何体的直观图.二、教学重点:画出三视图、识别三视图.三、教学难点:识别三视图所表示的空间几何体.四、教学过程:(一)、新课导入:
1.讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸? 2.引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远
近高低各不同。不识庐山真面目,只缘身在此山中。” 对于我们所学几何体,常用三视图和直观图来画在纸上.三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、机械制造、日常生活.(二)、讲授新课:
1.教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上
产生影子。人们将这种自然现象加以的抽象,总结其
中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随
物体与投影中心间距离的变化而变化,所以其投影不
能反映物体的实形.③平行投影:在一束平行光线照射下形成的投影.分正投影、斜投影.→讨论:点、线、三角形在平行投影后的结果.2.教学柱、锥、台、球的三视图:
① 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图
② 讨论:三视图与平面图形的关系? → 画出长方体的三视图,并讨论所反应的长、宽、高
③ 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果.→ 正视图、侧视图、俯视图.③ 试画出:棱柱、棱锥、棱台、圆台的三视图.(④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.(试变化以上的三视图,说出相应几何
体的摆放)
3.教学简单组合体的三视图:
① 画出教材p16 图(2)、(3)、(4)的三视图.② 从教材p16思考中三视图,说出几何体.4.练习:
① 画出正四棱锥的三视图.④ 画出右图所示几何体的三视图.③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.(三)复习巩固、篇三:人教版高中数学必修2-全册教案
第一章 空间几何体 重难点解析
人教版数学必修二 第一章 课文目录
1.1 空间几何体的结构
1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积
重难点:
1、让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
2、画出简单组合体的三视图。
3、用斜二测画法画空间几何值的直观图。
4、柱体、锥体、台体的表面积和体积计算,台体体积公式的推导。
5、了解推导球的体积和面积公式所运用的基本思想方法。
知识结构:
一、空间几何体的结构、三视图和直观图 1.柱、锥、台、球的结构特征
(1)柱
棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形??的棱柱分别叫做三棱柱、四棱柱、五棱柱?? 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
棱柱与圆柱统称为柱体;(2)锥
棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
底面是三角锥、四边锥、五边锥??的棱柱分别叫做三棱锥、四棱锥、五棱锥?? 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。
棱锥与圆锥统称为锥体。(3)台
棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。
圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。
圆台和棱台统称为台体。(4)球
以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
(5)组合体
由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。几种常凸多面体间的关系
一些特殊棱柱、棱锥、棱台的概念和主要性质:
几种特殊四棱柱的特殊性质: 2.空间几何体的三视图
三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。他具体包括:
(1)正视图:物体前后方向投影所得到的投影图; 它能反映物体的高度和长度;(2)侧视图:物体左右方向投影所得到的投影图; 它能反映物体的高度和宽度;
(3)俯视图:物体上下方向投影所得到的投影图; 它能反映物体的长度和宽度; 三视图画法规则:
高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等 3.空间几何体的直观图
(1)斜二测画法
①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的ox,oy,建立直角坐标系;
②画出斜坐标系,在画直观图的纸上(平面上)画出对应的ox,oy,使?xoy=45(或135),它们确定的平面表示水平平面;
‘
③画对应图形,在已知图形平行于x轴的线段,在直观图中画成平行于x轴,且长度
‘
保持不变;在已知图形平行于y轴的线段,在直观图中画成平行于y轴,且长度变为原来的一半;
④擦去辅助线,图画好后,要擦去x轴、y轴及为画图添加的辅助线(虚线)。(2)平行投影与中心投影
平行投影的投影线是互相平行的,中心投影的投影线相交于一点。注意:画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
例题讲解:
’’
’’
[例1]将正三棱柱截去三个角(如图1所示a,b,c分别是△ghi三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()a g 侧视 d 图1 e 图2 b e a. b. e d e c. e d.
[例2]在正方体abcd?a1b1c1d1中,e,f分别为棱aa1,cc1的中点,则在空间中与三条直线a1d1,ef,cd都相交的直线()a.不存在
b.有且只有两条 c.有且只有三条 d.有无数条
[例3]正方体abcd_a1b1c1d1的棱长为2,点m是bc的中点,点p 是平面abcd内的一 个动点,且满足pm=2,p到直线a1d1p的轨迹是()a.圆 b.双曲线 c.两个点 d.直线
解析: 点p到a1d1p到ad的距离为1,满足此条件的p的轨迹是到直线ad的距离为1的两条平行直线,又?pm?2,?满足此条件的p的轨迹是以m为圆心,半径为2的圆,这两种轨迹只有两个交点.故点p的轨迹是两个点。选项为c。
点评:该题考察空间内平面轨迹的形成过程,考察了空间想象能力。
[例4]两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱
锥的底面abcd与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何...体体积的可能值有()
a.1个 b.2个 c.3个 d.无穷多个
解析:由于两个正四棱锥相同,所以所求几何体的中心在正四棱锥底面正方形abcd中心,有对称性知正四棱锥的高为正方体棱长的一半,影响几何体体积的只能是正四棱锥底面正方形abcd的面积,问题转化为边长为1的正方形的内接正方形有多少种,所以选d。
点评:本题主要考查空间想象能力,以及正四棱锥的体积。正方体是大家熟悉的几何体,它的一些内接或外接图形需要一定的空间想象能力,要学会将空间问题向平面问题转化。题型2:空间几何体的定义
[例5]长方体abcd?a1bc11d1的8个顶点在同一个球面上,且ab=2,ad=,aa1?1,则顶点a、b间的球面距离是()a. 1 22 b. c.2? d.22? 42 解析:?bd1?ac1?2r??r? 设
bd1?ac1?o,则oa ?ob?r? ??aob? ? 2 ,?l?r??? 2 ,故选
b.点评:抓住本质的东西来进行判断,对于信息要进行加工再利用。
第五篇:新课标高中数学必修2目录
新课标高中数学必修2
目录
第一章:空间几何体.....................错误!未定义书签。
1.2.1空间几何体的三视图(1课时)...............错误!未定义书签。
1.2.2空间几何体的直观图(1课时)...............错误!未定义书签。
1.3.1柱体、锥体、台体的表面积与体积....................错误!未定义书签。§1.3.2球的体积和表面积......................错误!未定义书签。
第二章 直线与平面的位置关系........错误!未定义书签。§2.1.1平面...........................错误!未定义书签。§2.1.2 空间中直线与直线之间的位置关系.................错误!未定义书签。§2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系.....错误!未定义书签。§2.2.1 直线与平面平行的判定................错误!未定义书签。§2.2.2平面与平面平行的判定................错误!未定义书签。§2.2.3 — 2.2.4直线与平面、平面与平面平行的性质..............错误!未定义书签。§2.3.1直线与平面垂直的判定.................错误!未定义书签。§2.3.2平面与平面垂直的判定.................错误!未定义书签。§
2、3.3直线与平面垂直的性质 §
2、3.4平面与平面垂直的性质.......错误!未定义书签。本章小结........................错误!未定义书签。
第三章直线与方程............错误!未定义书签。
3.1.1直线的倾斜角和斜率.......................错误!未定义书签。
3.1.2两条直线的平行与垂直()................错误!未定义书签。
3.2.1直线的点斜式方程........................错误!未定义书签。
3.2.2直线的两点式方程........................错误!未定义书签。
3.2.3直线的一般式方程........................错误!未定义书签。
3.3-1两直线的交点坐标...................错误!未定义书签。
3.3.2直线与直线之间的位置关系-两点间距离...........错误!未定义书签。
3.3.3两条直线的位置关系 ―点到直线的距离公式..........错误!未定义书签。
第四章 圆与方程...........错误!未定义书签。
4.1.1 圆的标准方程....................错误!未定义书签。
4.1.2圆的一般方程.....................错误!未定义书签。
4.2.1直线与圆的位置关系....................错误!未定义书签。
4.2.2圆与圆的位置关系........................错误!未定义书签。
4.2.3直线与圆的方程的应用................错误!未定义书签。