第一篇:高中数学 必修1 集合教案
学习周报专业辅导学习
集合(第1课时)
一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特
征等集合的基础知识。
②重点:集合的基本概念及集合元素的特征
③难点:元素与集合的关系
④注意点:注意元素与集合的关系的理解与判断;注意集合中元
素的基本属性的理解与把握。
二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;
②由集合的学习感受数学的简洁美与和谐统一美。
三、教学过程:
Ⅰ)情景设置:
军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。
Ⅱ)探求与研究:
① 一般地,某些指定的对象集在一起就成为一个集合,也简称集。
问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子)
② 为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个
整体来看待,就用大括号{ }将这些指定的对象括起来,以示它作为一个
整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母A、B、C„„来表示不同的集合,如同学们刚才所举的各例就可分别记
为„„(板书)
另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字
母a、b、c„„(或x1、x2、x3„„)表示
同学口答课本P5练习中的第1大题
③ 分析刚才同学们所举出的集合例子,引出:
对某具体对象a与集合A,如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作
aA
④ 再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论:
集合中的元素具有确定性、互异性和无序性。
然后请同学们分别阅读课本P5和P40上相关的内容。
⑤ 在数学里使用最多的集合当然是数集,请同学们阅读课本P4上与数集有
关的内容,并思考:常用的数集有哪些?各用什么专用字母来表示?你
能分别说出各数集中的几个元素吗?(板书N、Z、Q、R、N*(或N+))
注意:数0是自然数集中的元素。这与同学们脑子里原来的自然数就是1、2、3、4„„的概念有所不同
同学们完成课本P5练习第2大题。
http://.cn
学习周报专业辅导学习
注意:符号“∈”、“”的书写规范化
练习:
(一)下列指定的对象,能构成一个集合的是
① 很小的数
② 不超过30的非负实数
③ 直角坐标平面内横坐标与纵坐标相等的点
④ π的近似值
⑤ 高一年级优秀的学生
⑥ 所有无理数
⑦ 大于2的整数
⑧ 正三角形全体
A、②③④⑥⑦⑧B、②③⑥⑦⑧C、②③⑥⑦
D、②③⑤⑥⑦⑧
(二)给出下列说法:
① 较小的自然数组成一个集合② 集合{1,-2,π}与集合{π,-2,1}是同一个集合③ 某同学的数学书和物理书组成一个集合④ 若a∈R,则aQ
⑤ 已知集合{x,y,z}与集合{1,2,3}是同一个集合,则x=1,y=2,z=3
其中正确说法个数是()
A、1个B、2个C、3个D、4个
(三)已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值
Ⅲ)回顾与总结:
1. 集合的概念
2. 元素的性质
3.几个常用的集合符号
Ⅳ)作业:①P7习题1.1第1大题
②阅读课本并理解概念
课后反思:这节课由于开学典礼的影响,没有来得及全部上完。等待明天继续上
然后与老教师产生一节课的差距。总体来看,比昨天稍微好一点,语气上连贯了
些,但是还没有理清自己上课的思路,到了课堂上原本的准备有些忘记了。
http://.cn
第二篇:高中数学《集合的含义及其表示》教案1 北师大必修1[模版]
1.1.1集合的含义及其表示
(一)教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,“ ”的使用 教学难点:集合概念的理解; 课 型:新授课 教学手段: 教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学
“物以类聚,人以群分”数学中也有类似的分类。如:自然数的集合 0,1,2,3,„„
如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,„ 集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,„
2、元素与集合的关系
a是集合A的元素,就说a属于集合A,记作 a∈A,a不是集合A的元素,就说a不属于集合A,记作 aA
思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?(1)小于10的质数(2)著名数学家(3)中国的直辖市(4)maths中的字母
(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数(9)方程x2x10的实数解
评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
3、集合的中元素的三个特性:
1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合
3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
4、数的集简称数集,下面是一些常用数集及其记法:
非负整数集(即自然数集)记作:N 有理数集Q 正整数集 N*或 N+ 实数集R 整数集Z
5、集合的分类 原则:集合中所含元素的多少
①有限集 含有限个元素,如A={-2,3} ②无限集 含无限个元素,如自然数集N,有理数
③空 集 不含任何元素,如方程x+1=0实数解集。专用标记:Φ
三、课堂练习
1、用符合“∈”或“”填空:课本P15练习惯1
2、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”(1)所有在N中的元素都在N*中()(2)所有在N中的元素都在Z中()(3)所有不在N*中的数都不在Z中()(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N*中的数组成的集合中一定包含数0()(6)不在N中的数不能使方程4x=8成立()
四、回顾反思
1、集合的概念
2、集合元素的三个特征
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3、常见数集的专用符号.五、作业布置
1.下列各组对象能确定一个集合吗?(1)所有很大的实数(2)好心的人(3)1,2,2,3,4,5. 2.设a,b是非零实数,那么
aabb32
可能取的值组成集合的元素是 33.由实数x,-x,|x|,x,x所组成的集合,最多含()(A)2个元素(B)3个元素(C)4个元素(D)5个元素 4.下列结论不正确的是()A.O∈N B.2Q C.OQ D.-1∈Z 5.下列结论中,不正确的是()
2A.若a∈N,则-aN B.若a∈Z,则a∈Z C.若a∈Q,则|a|∈Q D.若a∈R,则3aR 6.求数集{1,x,x-x}中的元素x应满足的条件; 2
板书设计(略)
第三篇:高中数学必修1教学大纲
高中数学必修1 教学大纲
1.集合
(约4课时)(1)集合的含义与表示①通过实例,了解集合的含义,体会元素与集合的“属于”关系。②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2.函数概念与基本初等函数I
(约32课时)(1)函数①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。③了解简单的分段函数,并能简单应用。④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。③知道指数函数与对数函数互为反函数(a>0,a≠1)。(4)幂函数通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
(5)函数与方程①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(7)实习作业根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
第四篇:高中数学 第一章 集合 1.2.1 子集、真子集教案 苏教版必修1
第一章 集 合
§1.2.1 子集、真子集(预习部分)教学目标
⒈了解集合之间包含关系的意义
⒉ 理解子集、真子集的概念
教学重点
子集含义,学会使用Venn图来表示集合之间的关系,由集合之间的包含关系求参数的取值范围。
教学难点
子集与真子集的含义
四、教学过程
(一)、创设情境,引入新课
观察以下几个例子,看看两集合间有什么关系 ⑴A={1,2,3},B={1,2,3,4,5}
⑵设A为某校高一(6)班男生全体组成的集合,B是这个班学生全体组成的集合 ⑶E={2,4,6},F={6,4,2}
(二)、推进新课
⑴子集:,记为
⑵子集的性质
1.;2.思考:AB与BA能否同时成立?
(3)真子集:,记为
⑷真子集性质
1.;2.⑸区分元素与集合,集合与集合的关系、预习巩固
见必修一教材第9页练习1,第10页练习4
第一章 集 合
§1.2.1 子集、真子集(课堂强化)、典型例题
题型一 子集的有关概念
1.⑴写出集合a,b的所有子集及其真子集;
⑵写出集合a,b,c的所有子集及其真子集。
2.若集合{1,2}⊆M⊆{1,2,3,4},试写出满足条件的所有的集合M.例2 用适当的符号填空 ⑴00 0 0 ⑵ x|x210,xR 0x|x210,xR
题型 二 由集合间的关系求参数问题
例3 Ax|x1,Bx|x3,则A与B有什么关系?
变题1:Ax|x1,Bx|xa,若BA,求a的取值范围。变题2:Ax|x1,Bx|xa0,若AB,求a的取值范围。
例 4 设集合A=x|x24x0,xR,B=x|x22a1xa210,xR,若BA,求a的取值范围。
(五)、随堂练习判断下列说法是否正确
⑴表示空集()⑵是任何集合的真子集()1,2,3不是3,1,2()⑶,1,0,1()⑷0,1的所有子集是0⑸如果且那么A必是B的真子集()⑹与不能同时成立()
22已知集合Ax|x10,Bx|x2axb0,BA,求a,b的取值范围
1,2,3,4,5,6,7,8,9,集合P满足PM,若aP,且10aP,3.已知M 问:这样的集合P有多少个?
(六)、课堂小结
(七)、课后作业
第五篇:高中数学必修3经典教案全集
新课标高中数学必修3教案
目
录
第一章 算法初步...............................................................................................................................1 1.1.1算法的概念.......................................................................................................................3 1.1.2 程序框图(第二、三课时)................................................................................................9 1.2.1输入、输出语句和赋值语句(第一课时).......................................................................15 1.2.2-1.2.3条件语句和循环语句(第二、三课时)..................................................................21 1.3算法案例 第1、2课时 辗转相除法与更相减损术.............................................................27 第3、4课时 秦九韶算法与排序.........................................................................31 第5课时 进位制...................................................................................................35 算法初步 复习课...........................................................................................................................39 第二章 统计初步.............................................................................................................................45 2.1.1 简单随机抽样.......................................................................................................................45 2.1.2 系统抽样...............................................................................................................................49 2.1.3 分层抽样...............................................................................................................................53 2.2.1用样本的频率分布估计总体分布(2课时).......................................................................57 2.2.2用样本的数字特征估计总体的数字特征(2课时)...........................................................61 第三章 概率......................................................................................................................................65 3.1 随机事件的概率 3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)...............65 3.1.3 概率的基本性质(第三课时)...........................................................................................69 3.2 古典概型(第四、五课时)3.2.1 —3.2.2古典概型及随机数的产生..............................73 3.3 几何概型 3.3.1—3.3.2几何概型及均匀随机数的产生.......................................................79
I