第一篇:高中数学 1.1 集合的概念与运算教案 新人教版必修1
安徽省合肥市第三十二中学2014年高中数学 1.1 集合的概念与运
算教案 新人教版必修1 【考点透视】
1.理解集合、子集、补集、交集、并集的概念.2.了解空集和全集的意义.3.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
4.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题.5.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论.【例题解析】
题型1. 正确理解和运用集合概念
理解集合的概念,正确应用集合的性质是解此类题目的关键.例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1}
思路启迪:集合M、N是用描述法表示的,元素是实数y而不是实数对(x,y),因此M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集. 解:M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}. ∴M∩N={y|y≥1}∩{y|y∈R}={y|y≥1},∴应选D.
yx21,x0,x1,或得点评:①本题求M∩N,经常发生解方程组yx1.y1, y2.从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.
例2.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.Q C. D.不知道
思路启迪:类似上题知P集合是y=x2(x∈R)的值域集合,同样Q集合是y= x2+1(x∈R)的值域集合,这样P∩Q意义就明确了. 解:事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B.
例3.若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()A.P∩Q= B.P Q C.P=Q D.P
Q 22例4若A{x|x1},B{x|x2x30},则AB=()
A.{3} B.{1} C. 思路启迪:
D.{-1}
A{x|x1,x1},B{x|x1,x3},AB1.解:应选D.
点评:解此类题应先确定已知集合. 题型2.集合元素的互异性
集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.
1例5.若A={2,4, a3-2a2-a+7},B={1, a+1, a2-2a+2,-2(a2-3a-8), a3+a2+3a+7},且A∩B={2,5},则实数a的值是________.
解答启迪:∵A∩B={2,5},∴a3-2a2-a+7=5,由此求得a=2或a=±1. A={2,4,5},集合B中的元素是什么,它是否满足元素的互异性,有待于进一步考查. 当a=1时,a2-2a+2=1,与元素的互异性相违背,故应舍去a=1.
当a=-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去a=-1. 当a=2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设. 故a=2为所求.
例6.已知集合A={a,a+b, a+2b},B={a,ac, ac2}.若A=B,则c的值是______. 思路启迪:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式. 解:分两种情况进行讨论.
(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0. ∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,1∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-2.
点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验和修正. 例7.已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},且A∪B=A,则a的值为______. 思路启迪:由A∪B=ABA而推出B有四种可能,进而求出a的值. 解: ∵ A∪B=A,BA,∵ A={1,2},∴ B=或B={1}或B={2}或B={1,2}. 若B=,则令△<0得a∈;
若B={1},则令△=0得a=2,此时1是方程的根;
若B={2},则令△=0得a=2,此时2不是方程的根,∴a∈;
若B={1,2}则令△>0得a∈R且a≠2,把x=1代入方程得a∈R,把x=2代入方程得a=3. 综上a的值为2或3.
点评:本题不能直接写出B={1,a-1},因为a-1可能等于1,与集合元素的互异性矛盾,另外还要考虑到集合B有可能是空集,还有可能是单元素集的情况. 题型3.要注意掌握好证明、判断两集合关系的方法
集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.
例8.设集合A={a|a=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________.
解:任设a∈A,则a=3n+2=3(n+1)-1(n∈Z),∴ n∈Z,∴n+1∈Z.∴ a∈B,故AB.
① 又任设 b∈B,则 b=3k-1=3(k-1)+2(k∈Z), ∵ k∈Z,∴k-1∈Z.∴ b∈A,故BA
② 由①、②知A=B.
点评:这里说明a∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理. 例9若A、B、C为三个集合,ABBC,则一定有()A.AC
B.CA
C.AC
D.A [考查目的]本题主要考查集合间关系的运算.解:由ABBC知,ABB,ABCABC,故选A.例10.设集合A{1,2},则满足AB{1,2,3}的集合B的个数是()
A.1 B.3 C.4 D.8 [考查目的] 本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想.解:A{1,2},AB{1,2,3},则集合B中必含有元素3,即此题可转化为求集合A{1,2}的2子集个数问题,所以满足题目条件的集合B共有24个.故选C.xa0x1≤1xx1例11. 记关于的不等式的解集为P,不等式的解集为Q.
(错误!未找到引用源。)若a3,求P;
(错误!未找到引用源。)若QP,求正数a的取值范围. 思路启迪:先解不等式求得集合P和Q.
x30Px1x3x1解:(错误!未找到引用源。)由,得.
(错误!未找到引用源。)由a0,得
Qxx1≤1x0≤x≤2.
Px1xa,又QP,所以a0,). 即a的取值范围是(2,题型4.要注意空集的特殊性和特殊作用
空集是一个特殊的重要集合,它不含任何元素,是任何集合的子集,是任何非空集合的真子集.显然,空集与任何集合的交集为空集,与任何集合的并集仍等于这个集合.当题设中隐含有空集参与的集合关系时,其特殊性很容易被忽视的,从而引发解题失误.
例12.已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,则实数a组成的集合C是________.
解:由x2-3x+2=0得x=1或2.当x=1时,a=2,当x=2时,a=1.
这个结果是不完整的,上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A,当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}. 例13.已知集合Ax|xa≤1,Bxx25x4≥0.若AB,则实数a的取值范围是
.
思路启迪:先确定已知集合A和B. 解:
2Ax|xa≤1xa1x≤a+1,Bxx5x4≥0xx≥4,x1.
3). a14,a11.2x3.故实数a的取值范围是(2,例14.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R=,则实数m的取值范围是_________.
思路启迪:从方程观点看,集合A是关于x的实系数一元二次方程x2+(m+2)x+1=0的解
集,而x=0不是方程的解,所以由A∩R=可知该方程只有两个负根或无实数根,从而分别由判别式转化为关于m的不等式,并解出m的范围.
解:由A∩R=又方程x2+(m+2)x+1=0无零根,所以该方程只有两个负根或无实数根,2m240,m20,或△=(m+2)2-4<0.解得m≥0或-4
点评:此题容易发生的错误是由A∩R=只片面地推出方程只有两个负根(因为两根之积为1,因为方程无零根),而把A=漏掉,因此要全面准确理解和识别集合语言.
例15.已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,则实数p的取值范围是________.
解:由x2-3x-10≤0得-2≤x≤5.
欲使B2p13p3.2p15A,只须∴ p的取值范围是-3≤p≤3.
上述解答忽略了“空集是任何集合的子集”这一结论,即B=时,符合题设.
应有:①当B≠时,即p+1≤2p-1p≥2.
由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴ 2≤p≤3.②当B=时,即p+1>2p-1p<2. 由①、②得:p≤3.
点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题. 题型5.要注意利用数形结合解集合问题 集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.
例16.设全集U={x|0 思路启迪:本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出. 解:A={1,3,5,7},B={2,3,4,6,8}. 例17.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B. 解:∵ A={x|x2-5x-6≤0}={x|-6≤x≤1},B={x|x2+3x>0}={x|x<-3,或x>0}. 如图所示,∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R. A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0 点评:本题采用数轴表示法,根据数轴表示的范围,可直观、准确的写出问题的结果. 例18.设A={x|-2 思路启迪:可在数轴上画出图形,利用图形分析解答. 解:如图所示,设想集合B所表示的范围在数轴上移动,显然当且仅当B覆盖住集合{x|-1 点评:类似本题多个集合问题,借助于数轴上的区间图形表示进行处理,采用数形结合的方法,会得到直观、明了的解题效果. 1.2.2集合的运算 (一)教学目标: 理解两个集合的交集的含义,会求两个集合的交集 教学重、难点: 会求两个集合的交集 教学过程: (一)复习集合的概念、子集的概念、集合相等的概念。 (二)讲述新课 一、1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系? A B 2、考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.二、一般地,由所有属于A又属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}. 如:{1,2,3,6}∩{1,2,5,10}={1,2}. 又如:A={a,b,c,d,e},B={c,d,e,f}.则A∩B={c,d,e} 三、基本性质 A∩B= B∩A;A∩A=A;A∩Ф=Ф;A∩B=AAB 注:是否给出证明应根据学生的基础而定.四、补充例子 例1.设A={x|x>-2},B={x|x<3},求A∩B.解:A∩B={x|x>-2}∩{x|x<3}={x|-2 3、已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1) C.{3,-1} D.{(3,-1)} 分析: 由已知得M∩N={(x,y)|x+y=2,且x-y=4}={(3,-1)}. 也可采用筛选法.首先,易知A、B不正确,因为它们都不是集合符号.又集合M,N的元素都是数组(x,y),所以C也不正确. 注: 求两集合的交集即求同时满足两集合中元素性质的元素组成的集合.本题中就是xy2求方程组的解组成的集合.另外要弄清集合中元素的一般形式.xy4课堂练习:第18页练习A、B 小结:本节课我们学习了交集的概念、和基本性质 课后作业:(略) 3.1.2指数函数 (二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程: 本节课为习题课,可分以下几个方面加以练习: 备选题如下: 1、关于定义域 x(1)求函数f(x)=11的定义域 9(2)求函数y=1x的定义域 51x1(3)函数f(x)=3-x-1的定义域、值域是……() A.定义域是R,值域是R B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1) 2、关于值域 (1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞) B.(-∞,1) C.(0,1) D.(1,+∞) (5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像 用心 爱心 专心 1 (1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象() A.向右平移3个单位 B.向左平移3个单位 C.向右平移8个单位 D.向左平移8个单位 (2)函数y=|2x-2|的图象是() (3)当a≠0时,函数y=ax+b和y=bax的图象只可能是() (4)当0 B.第二象限 C.第三象限 D.第四象限 (5)若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),则b=______.(6)已知函数y=(12)|x+2|. ①画出函数的图象; ②由图象指出函数的单调区间并利用定义证明.(7)设a、b均为大于零且不等于1的常数,下列命题不是真命题的是() 用心 爱心 专心 A.y=a的图象与y=a的图象关于y轴对称 B.若y=a的图象和y=b的图象关于y轴对称,则ab=1 C.若a2x-xxx>a22-1,则a>1 ,则a>b D.若a>b 24、关于单调性 (1)若-1 A.5-x<5x<0.5x C.5<5<0.5x-xx B.5x<0.5x<5-x D.0.5<5<5 x-xx(2)下列各不等式中正确的是() A.()3()3()3 252C.()3()3()3 52212121211 B.()3()3()3 225 D.()3()3()3 *** 1211(x+1)(3-x)(3).函数y=(2-1)的单调递增区间是() A.(1,+∞)C.(1,3) B.(-∞,1) D.(-1,1) (4).函数y=()2xxx2为增函数的区间是() (5)函数f(x)=a-3a+2(a>0且a≠1)的最值为______.(6)已知y=(数.(7)比较52x12x12)xx22+1,求其单调区间并说明在每一单调区间上是增函数还是减函与5x22的大小 5、关于奇偶性 (1)已知函数f(x)= m21x2x为奇函数,则m的值等于_____ 11(1)如果82 x2x=4,则x=____ 用心 爱心 专心 3 6阶段检测题: 可以作为课后作业: 1.如果函数y=ax(a>0,a≠1)的图象与函数y=bx(b>0,b≠1)的图象关于y轴对称,则有 A.a>b B.a 3(3x-1)(2x+1) ≥1},则集合M、N的关系是 B.MN D.MN 3.下列说法中,正确的是 ①任取x∈R都有3x>2x ②当a>1时,任取x∈R都有ax>a-x ③y=(3)-x是增函数 ④y=2|x|的最小值为1 ⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴 A.①②④ C.②③④ B.④⑤ D.①⑤ 4.下列函数中,值域是(0,+∞)的共有 ①y=31 ②y=(A.1个 x1)③y=1()④y=3x B.2个 x11xC.3个 D.4个 5.已知函数f(x)=a1-x(a>0,a≠1),当x>1时恒有f(x)<1,则f(x)在R上是 A.增函数 B.减函数 C.非单调函数 D.以上答案均不对 二、填空题(每小题2分,共10分)6.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如下图,则a、b、c、d、1之间从小到大的顺序是__________.用心 爱心 专心 4 7.函数y=ax1的定义域是(-∞,0],则a的取值范围是__________.8.函数y=2x+k-1(a>0,a≠1)的图象不经过第四象限的充要条件是__________.9.若点(2,14)既在函数y=2ax+b的图象上,又在它的反函数的图象上,a=________,b=________.10.已知集合M={x|2x2+x≤(14) x- 2,x∈R},则函数y=2x的值域是__________.三、解答题(共30分)11.(9分)设A=am+a-m,B=an+a-n(m>n>0,a>0且a≠1),判断A,B的大小.12.(10分)已知函数f(x)=a- 22x1(a∈R),求证:对任何a∈R,f(x)为增函数.x1213.(11分)设0≤x≤2,求函数y=42a2xa21的最大值和最小值.课堂练习:(略)小结: 课后作业:(略) 用心 爱心 专心 则 3.2.1对数及其运算 (三)教学目标:掌握对数的换底公式 教学重点:掌握对数的换底公式 教学过程: 1、首先可以通过实例研究当一个对数式的底数改变时,整个对数式会发生什么变化? 如求 设,写成指数式是,取以 为底的对数得 即在这个等式中,底数3变成 . 后对数式将变成等式右边的式子. 一般地 关于对数换底公式的证明方法有很多,这里可以仿照刚才具体的例子计算过程证明对数换底公式,证明的基本思路就是借助指数式. 换底公式的意义是把一个对数式的底数改变可将不同底问题化为同底,便于使用运算法则. 由换底公式可得: (1) . (2) 2、例题: .(1、证明: 证明:设,,,则:,∴,从而 ;∵,∴,即:。(获证) 2、已知: 求证: 证明:由换底公式,由等比定理得:,∴,∴。 3、设,且,求证:;比较的大小。证明:设,∵,∴,取对数得:,,∴ ; 2,又,∴,∴,∴。 小结:本节课学习了对数的换底公式 课后作业:习题2.2A组第11、12题. 课题:1.1集合教学目的:知识目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法 .(2)使学生初步了解“属于”关系的意义 .(3)使学生初步了解有限集、无限集、空集的意义 能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养; (2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题; (3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力; 教学重点:集合的基本概念及表示方法 教学难点 :运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程 : 一、复习导入: 1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2.教材中的章头引言; 3.集合论的创始人——康托尔(德国数学家); 4.“物以类聚”,“人以群分”; 5.教材中例子(P4)。 二、新课讲解: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念(例题见课本): 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合。 (2)元素:集合中每个对象叫做这个集合的元素。 2、常用数集及其表示方法 (1)非负整数集(自然数集):全体非负整数的集合。记作N (2)正整数集:非负整数集内排除0的集。记作N*或N+ (3)整数集:全体整数的集合。记作Z (4)有理数集:全体有理数的集合。记作Q (5)实数集:全体实数的集合。记作R 注意:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N*或N+。Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。 (2)互异性:集合中的元素没有重复。 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 注: 1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… 2、“∈”的开口方向,不能把a∈A颠倒过来写。 练习题 1、教材P5练习 2、下列各组对象能确定一个集合吗? (1)所有很大的实数。(不确定) (2)好心的人。(不确定) (3)1,2,2,3,4,5.(有重复) 阅读教材第二部分,问题如下: 1.集合的表示方法有几种?分别是如何定义的? 2.有限集、无限集、空集的概念是什么?试各举一例。 (二)集合的表示方法 1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。 例如,由方程 的所有解组成的集合,可以表示为{-1,1} 注:(1)有些集合亦可如下表示: 从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…} (2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只 有一个元素。 描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法。 格式:{x∈A| P(x)} 含义:在集合A中满足条件P(x)的x的集合。 例如,不等式 的解集可以表示为: 或 所有直角三角形的集合可以表示为: 注:(1)在不致混淆的情况下,可以省去竖线及左边部分。 如:{直角三角形};{大于104的实数} (2)错误表示法:{实数集};{全体实数} 3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。 注:何时用列举法?何时用描述法? (1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。 如:集合(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。如:集合 ;集合{1000以内的质数} 注:集合 与集合 是同一个集合吗? 答:不是。 集合 是点集,集合 =是数集。 (三)有限集与无限集 1、有限集:含有有限个元素的集合。 2、无限集:含有无限个元素的集合。 3、空集:不含任何元素的集合。记作Φ,如: 练习题: 1、P6练习 2、用描述法表示下列集合①{1,4,7,10,13} ②{-2,-4,-6,-8,-10} 3、用列举法表示下列集合①{x∈N|x是15的约数}{1,3,5,15} ②{(x,y)|x∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)} 注:防止把{(1,2)}写成{1,2}或{x=1,y=2} ③ ④{-1,1} ⑤{(0,8)(2,5),(4,2)} ⑥ {(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(三、小结:本节课学习了以下内容: 1.集合的有关概念 (集合、元素、属于、不属于、有限集、无限集、空集) 2.集合的表示方法 (列举法、描述法、文氏图共3种) 3.常用数集的定义及记法 四、课后作业 :教材P7习题1.1 4,4)}第二篇:11-12学年高中数学 1.2.2 集合的运算教案 新人教B版必修1
第三篇:高中数学《指数函数》教案1 新人教A版必修1
第四篇:高中数学 2.2.1对数与对数运算(三)教案 新人教A版必修1
第五篇:1.1高中数学集合教案