高中数学全套教学案数学必修1:2.1.2-1指数函数的概念

时间:2019-05-13 03:26:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学全套教学案数学必修1:2.1.2-1指数函数的概念》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学全套教学案数学必修1:2.1.2-1指数函数的概念》。

第一篇:高中数学全套教学案数学必修1:2.1.2-1指数函数的概念

2.1.2-1指数函数的概念教案

【教学目标】

1.2.3.4.理解指数函数的概念,能画出具体指数函数的图像; 在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题; 通过类比,回顾归纳从图象和解析式两个角度研究函数性质的方法; 感受数学思想方法之美,体会数学思想方法只重要

【教学重难点】

教学重点:指数函数概念、图象和性质

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质

【教学过程】

1、创设情境、提出问题

师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,……,按这样的规律,50号同学该准备多少粒米?

学生:回答粒数

师:如果改成1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,……,按这样的规律,51号同学该准备多少粒米?

师:大家能否估计一下50好同学准备的米有多重吗?

教师公布事先估算的数据:51号同学准备的大米约有1.2亿吨

师:1.2亿吨是什么概念?相当于2007~2008年度我国全年的大米产量!

以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?

学生很容易得出y=2x和y =2x(xN)学生可能漏掉x的范围,教师要引导学生思考具体问题中x的取值范围。

2、新知探究

(1)指数函数的定义

x*师:在本章开头的问题中,也有一个与y =2x类似的关系式y1.073(xN且x 20)*

请思考以下问题①y =2x(xN)和y1.073*x*(xN且x 20)这两个解析式有什么共同特征?②他们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名

什么角度研究?

目的:①让学生知道图象法不是研究函数的唯一方法,由此引导学生从图象和解析式两个角度对函数进行 研究;②对学生进行数学思想方法的有机渗透。(2)分组活动,合作学习师:下面我们就从图象和解析式这两个角度对指数函数进行研究.让学生分成两大组,每组再分小组,最后汇集结论写下来以便讨论(3)交流总结形成共识

0 < a <1

a >1

图象

[来源:高考学习网 XK]

图象略

图象略

定义域

R

值域

(0, +∞)

过定点(0,1)非奇非偶
[来源:高考学习网 XK][来源:学*科*网][来源:高考学习网 XK]

性质

在 R 上是减函数

在 R 上是增函数

4、典例示范、巩固练习、典例示范、例

1、已知指数函数 值.解: 因为

f(x)= a x(a > 0, a ≠ 1)的图像经过点(3,π),求 f(0), f(1),f(−3)的

f(x)= a(a > 0, a ≠ 1)的图像经过点(3,)所以 f(3)= π,a = π 解得 a = π,π,即
x 3

1 3

于是 f(x)= π 3,所以

x

f(0)= 1, f(1)= 3 π , f(−3)=

1

π
1 3
x

变式:(1)在同一直角坐标系中画出 y = 3x 和 y =()的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:① y = 2

5、课堂小结、师:通过本节课的学习,你对指数函数有什么认识?你有什么收获? 生:总结指数函数的性质,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数 【板书设计】 板书设计】

一、对数函数概念

二、例题 例1 变式 1
x −2

;② y =()x

1 2

1

【作业布置】课本练习2.1A 组 5.业布置】

2.1.2-1 指数函数的概念学案
课前预习学案 一. 预习目标 1.2.通过预习理解指数函数的概念 简单掌握指数函数的性质

二. 预习内容

1.一般地,函数 2.指数函数的定义域是 3.指数函数 y = 4. 指数函数 y =

叫做指数函数.,值域 . . 时,在

a
x

x

(a > 0, a ≠ 1)的图像必过特殊点

a

(a > 0, a ≠ 1),当

时,(−∞,+∞)上是增函数; 在 当

(−∞,+∞)上是减函数.
三.提出疑惑 通过以上自我预习你还有什么疑惑请写在下面的横线上 课内探究学案 一. 学习目标 1.2.理解指数函数的概念能画出具体的指数函数图象 在理解指数函数概念、性质的基础上,能运用所学知识解决简单的数学问题

学习重点:指数函数概念、图象和性质 学习难点:对底数的分类,如何由图象、解析式归纳指数函数的性质 二. 学习过程 探究一 1.函数 y =(

a

2

− 3a + 3)⋅ a 是指数函数,则有(
x



A.a=1或a=2 B.a=1 C.a=2 D.a>0且 a ≠ 1

1 2.关于指数函数 y = 2 和 y =()2
x

x

的图像,下列说法不正确的是(



A.它们的图

图像都过(0,1)点,并且都在x轴的上方. B.它们的图像关于y轴对称,因此它们是偶函数. C.它们的定义域都是R,值域都是(0,+ ∞).

1 D.自左向右看 y = 2 的图像是上升的,y =()2
x

x

的图像是下降的.

3.函数 f(x)= a 2 − 1 在 R 上是减函数,则 a 的取值范围是(

(

)

x



A、a > 1

B、a < 2

C、a < 2
1),则f(2)= 8

D、1 < a < 2


4.指数函数f(x)的图像恒过点(-3,5.函数 y = 3
2 −3 x 2

的单调递增区间是



探究二

例1:指出下列函数那些是指数函数:(1)y =(7)y =

4

x

(2)y =

x

4

(3)y = −
x

4

x

(4)y =(

− 4)(5)y =π
x

x

(6)y = 4

x

2

x

x

(8)y =(

2a −1)(a > 2 , a ≠ 1)
1

例2:求下列函数的定义域与值域:
1 x−4

(1)y =

2

2(2)y =()3

−x

(3)y =

4 +2
x

x +1

+1

(4)y = 10

2x −1 x +1

例3:将下列各数从小到大排列起来:

(

2 , 3 , ,(2 , 3 ,(5 , 5)()3)())(−2),()3 5 5 2 6 3
2 3 3



1 3

1 2

1 2

2 3

0



1 3

三.当堂检测 1.下列关系式中正确的是()

A.(

1)2

2 3



2

−1..5

<(

1)2 1)2

1 3

B.(

1)2

1 3

<(

1)2

2 3



2

−1..5

C.

2

−1..5

<(

1)2

2 3

1 3

<(

D.

2

−1..5

<(

1)2

1 3

<(

1)2

2 3

2.若-1<x<0,则下列不等式中正确的是(



A. C.

5

−x



5 < 0.5
−x

x

x

B. D.

5 < 0.5 < 5 0.5 < 5
x −x

x

x

−x

5 <5
1 x

x



0.5

x



5

x

3.下列函数中值域是(0,+ ∞)的函数是(A. y =



2

B. y =

2

x

−1

C. y =

2

x

+1

1 D. y =()2

2− x

4.函数 y =

1 的值域是(2 −1
x

)C、(−1, +∞)D、(−∞, −1)∪(0, +∞)

A、(−∞,1)

B、(−∞, 0)∪(0, +∞)
课后练习与提高 课后练习与提高

1.函数 y =

a

x

+ m − 1(a > 0, a ≠ 1)图像在不在第二象限且不过原点,则m的取值范围是(



A.a>1 b.a>1且m<0 C.0<a<1且m<0 D.0<a<1 2.设0<a<b<1,则下列不等式中正确的是(A.)

a

a



b

b

B.

b <b

a

b

C.

a

a



b

a

D.

b <a

b

a

3.已知 x>0,函数 y=(a2-8)x 的值恒大于 1,则实数 a 的取值范围是________. 4.若 f(52 x −1)= x − 2,则 f(125)= 5.已知函数 y =(



1

2

x

1 3 +)x −1 2

(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;


第二篇:高中数学《指数函数》教案1 新人教A版必修1

3.1.2指数函数

(二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程:

本节课为习题课,可分以下几个方面加以练习: 备选题如下:

1、关于定义域

x(1)求函数f(x)=11的定义域

9(2)求函数y=1x的定义域

51x1(3)函数f(x)=3-x-1的定义域、值域是……()

A.定义域是R,值域是R

B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1)

2、关于值域

(1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞)

B.(-∞,1) C.(0,1)

D.(1,+∞)

(5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像

用心 爱心 专心 1

(1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象()

A.向右平移3个单位

B.向左平移3个单位 C.向右平移8个单位

D.向左平移8个单位

(2)函数y=|2x-2|的图象是()

(3)当a≠0时,函数y=ax+b和y=bax的图象只可能是()

(4)当0

B.第二象限 C.第三象限

D.第四象限

(5)若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),则b=______.(6)已知函数y=(12)|x+2|.

①画出函数的图象;

②由图象指出函数的单调区间并利用定义证明.(7)设a、b均为大于零且不等于1的常数,下列命题不是真命题的是()

用心 爱心 专心

A.y=a的图象与y=a的图象关于y轴对称

B.若y=a的图象和y=b的图象关于y轴对称,则ab=1 C.若a2x-xxx>a22-1,则a>1 ,则a>b D.若a>b

24、关于单调性

(1)若-1

A.5-x<5x<0.5x C.5<5<0.5x-xx

B.5x<0.5x<5-x D.0.5<5<5

x-xx(2)下列各不等式中正确的是() A.()3()3()3

252C.()3()3()3 52212121211

B.()3()3()3

225

D.()3()3()3

***

1211(x+1)(3-x)(3).函数y=(2-1)的单调递增区间是()

A.(1,+∞)C.(1,3)

B.(-∞,1)

D.(-1,1)

(4).函数y=()2xxx2为增函数的区间是()

(5)函数f(x)=a-3a+2(a>0且a≠1)的最值为______.(6)已知y=(数.(7)比较52x12x12)xx22+1,求其单调区间并说明在每一单调区间上是增函数还是减函与5x22的大小

5、关于奇偶性

(1)已知函数f(x)= m21x2x为奇函数,则m的值等于_____ 11(1)如果82 x2x=4,则x=____

用心 爱心 专心 3

6阶段检测题: 可以作为课后作业: 1.如果函数y=ax(a>0,a≠1)的图象与函数y=bx(b>0,b≠1)的图象关于y轴对称,则有 A.a>b B.a

3(3x-1)(2x+1)

≥1},则集合M、N的关系是

B.MN D.MN

3.下列说法中,正确的是

①任取x∈R都有3x>2x ②当a>1时,任取x∈R都有ax>a-x ③y=(3)-x是增函数 ④y=2|x|的最小值为1 ⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴

A.①②④ C.②③④

B.④⑤ D.①⑤

4.下列函数中,值域是(0,+∞)的共有 ①y=31 ②y=(A.1个 x1)③y=1()④y=3x

B.2个 x11xC.3个

D.4个

5.已知函数f(x)=a1-x(a>0,a≠1),当x>1时恒有f(x)<1,则f(x)在R上是 A.增函数 B.减函数

C.非单调函数 D.以上答案均不对

二、填空题(每小题2分,共10分)6.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如下图,则a、b、c、d、1之间从小到大的顺序是__________.用心 爱心 专心 4

7.函数y=ax1的定义域是(-∞,0],则a的取值范围是__________.8.函数y=2x+k-1(a>0,a≠1)的图象不经过第四象限的充要条件是__________.9.若点(2,14)既在函数y=2ax+b的图象上,又在它的反函数的图象上,a=________,b=________.10.已知集合M={x|2x2+x≤(14)

x-

2,x∈R},则函数y=2x的值域是__________.三、解答题(共30分)11.(9分)设A=am+a-m,B=an+a-n(m>n>0,a>0且a≠1),判断A,B的大小.12.(10分)已知函数f(x)=a-

22x1(a∈R),求证:对任何a∈R,f(x)为增函数.x1213.(11分)设0≤x≤2,求函数y=42a2xa21的最大值和最小值.课堂练习:(略)小结: 课后作业:(略)

用心 爱心 专心 则

第三篇:高中数学 23圆的概念1教学案 苏教版必修2(写写帮推荐)

[课题] 圆的方程(1)

[学习要求] 1.认识圆的标准方程并掌握推导圆的方程的思想方法;

2.掌握圆的标准方程,并能根据方程写出圆心的坐标和圆的半径; 3.能根据所给条件,通过求半径和圆心的方法求圆的标准方程. [知识梳理] 1.以(a,b)为圆心,r为半径的圆的标准方程:.2.圆心在原点(0,0),半径为r时,圆的方程则为: ; 3.单位圆: ;其方程为: . [例题解析] 例1:(1)写出圆心为A(2,3),半径长为5的圆的方程,并判断点M(5,7),N(5,1)是否在这个圆上;(2)求圆心是C(2,3),且经过原点的圆的方程. 分析:通过圆心,半径可以写出圆的标准方程.

例2:(1)求以点A(1,2)为圆心,并且和x轴相切的圆的方程;(2)已知两点P(4,9),Q(6,3),求以线段PQ为直径的圆的方程.

例3:已知隧道的截面是半径为4m的圆的半圆,车辆只能在道路中心线的一侧行驶,车辆宽度为2.7m,高为3m的货车能不能驶入这个隧道?

分析:建立直角坐标系,由图象可以分析,关键在于写出半圆的方程,对应求出当x3时的值,比较得出结论.

[随堂练习]圆的方程:(1)圆心在原点,半径为6;(2)经过点P(6,3),圆心为C(2,2). [课外作业] 1.C:(x4)2(y2)29的圆心坐标与半径分别为 222.圆(x3)(y2)13的周长和面积分别为 3.若点(1,2)在圆(x2)2(y1)2m 的内部,则实数m的取值范围是 4.若C过点(1,2)和(2,3),则下列直线中一定经过该圆圆心的是 5.圆心为(3,4)且与直线3x4y50相切的圆的方程为 6.已知圆的方程为

(xa)2(yb)2r2(r0),确定下述情况下a,b,r应满足的条件:

(1)圆心在y轴上: ;(2)圆与x轴相切: ;(3)圆心在直线x3y10上:_________.

7.圆的内接正方形相对的两个顶点为A(5,6),C(3,4),求该圆的方程.

8.求过两点A(0,4),B(4,6),且圆心在直线x2y20上的圆的标准方程.

第四篇:高中数学 2.1.2指数函数及其性质(二)教案 新人教A版必修1

2.1.2指数函数及其性质 第2课时

教学过程:

1、复习指数函数的图象和性质

2、例题

例1:(P66例7)比较下列各题中的个值的大小

2.5 3(1)1.7 与 1.7(2)0.80.1(3)1.70.3 与0.8

0.2

与 0.9

3.1 解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y1.7x的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5864y1.7x5102-10-50-2-4-6-8的点的上方,所以 1.72.51.73.2.5解法2:用计算器直接计算:1.7所以,1.72.53.77 1.734.91

1.73

解法3:由函数的单调性考虑

因为指数函数y1.7在R上是增函数,且2.5<3,所以,1.7x2.51.73

仿照以上方法可以解决第(2)小题.注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合.0.33.1 由于1.7=0.9不能直接看成某个函数的两个值,因此,在这两个数值间找到1,0.33.1把这两数值分别与1比较大小,进而比较1.7与0.9的大小.思考:

1、已知a0.8,b0.8,c1.2,按大小顺序排列a,b,c.2.比较a与a的大小(a>0且a≠0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.例2(P67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?

分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题: 1999年底 人口约为13亿

经过1年 人口约为13(1+1%)亿

第五篇:【人教A版】高中数学必修1同步教学案必修1第二章《指数函数的图象及其性质》练习题(含答案)

第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质 第1课时 指数函数的图象及其性质 A级 基础巩固

一、选择题 1.以x为自变量的四个函数中,是指数函数的为()xxA.y=(e-1)B.y=(1-e)x12+C.y=3

D.y=x

x2.函数y=2-8的定义域为()A.(-∞,3)B.(-∞,3] C.(3,+∞)D.[3,+∞)x3.函数y=a+1(a>0且a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(2,1)D.(0,2)x4.函数y=16-4的值域是()A.[0,+∞)

B.[0,4] C.[0,4)

D.(0,4)x5.函数y=a,y=x+a在同一坐标系中的图象可能是()

二、填空题 x6.已知集合A={x|1≤2<16},B={x|0≤x<3,x∈N},则A∩B=________. 1

f(x+2),x<0,.7已知函数f(x)满足f(x)=则f(-7.5)的值为x2,x≥0,________. x8.函数y=a(-2≤x≤3)的最大值为2,则a=________.

三、解答题 4x52x1+-9.求不等式a>a(a>0,且a≠1)中x的取值范围. 1x10.若0≤x≤2,求函数y=4x--3·2+5的最大值和最小值. 2

B级 能力提升 21x-1.若f(x)=-x+2ax与g(x)=(a+1)在区间[1,2]上都是减函数,则a的取值范围是()11,10,A.B. 22.[0C,1]

D.(0,1] x2.已知f(x)=a+b的图象如图所示,则f(3)=________. 3.已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时,1a函数的解析式为f(x)=-(a∈R).

xx42(1)试求a的值;(2)写出f(x)在[0,1]上的解析式;(3)求f(x)在[0,1]上的最大值. 3

参考答案 第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质 第1课时

指数函数的图象及其性质 A级 基础巩固

一、选择题 1.以x为自变量的四个函数中,是指数函数的为()xxA.y=(e-1)B.y=(1-e)x12+C.y=3

D.y=x

解析:由指数函数的定义可知选A.答案:A x2.函数y=2-8的定义域为()A.(-∞,3)B.(-∞,3] C.(3,+∞)D.[3,+∞)-8≥0,所以2,解得x≥3,所以函数yxx3解析:由题意得2≥=2-8的定义域为[3,+∞). x答案:D x3.函数y=a+1(a>0且a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(2,1)D.(0,2)的图象一定经过点(0,1),将y=a的图象向上xx解析:因为y=a平移1个单位得到函数y=a+1的图象,所以,函数y=a+1的图xx象经过点(0,2). 答案:D

x4.函数y=16-4的值域是()4

A.[0,+∞)B.[0,4] C.[0,4)D.(0,4)x解析:由题意知0≤16-4<16,所以0≤16-4x<4.16-4的值域为[0,4). 所以函数y=x答案:C x5.函数y=a,y=x+a在同一坐标系中的图象可能是()解析:函数y=x+a单调递增. 由题意知a>0且a≠1.当01时,y=a单调递增,直线y=x+a在y轴上的截距大于x1.故选D.答案:D

二、填空题 x6.已知集合A={x|1≤2<16},B={x|0≤x<3,x∈N},则A∩B=________. 5

x解析:由1≤2<16得0≤x<4,即A={x|0≤x<4},又B={x|0≤x<3,x∈N},所以A∩B={0,1,2}. 答案:{0,1,2} f(x+2),x<0,.已知函数7f(x)满足f(x)=则f(-7.5)的值为x2,x≥0,________. 解析:由题意,得f(-7.5)=f(-5.5)=f(-3.5)=f(-1.5)=f(0.5)=2=2.0.5 答案:2 x8.函数y=a(-2≤x≤3)的最大值为2,则a=________. 在[-2,3]上是减函数,x解析:当0

2所以y=a=2,得a=; 2-max2当a>1时,y=a在[-2,3]上是增函数,x 233所以y=a=2,解得a=或3 2.综上知a=2.max2答案:或2 2

三、解答题 4x52x1+-9.求不等式a>a(a>0,且a≠1)中x的取值范围. 4x52x1+-解:对于a>a(a>0,且a≠1),当a>1时,有4x+5>2x-1,解得x>-3; 当0

下载高中数学全套教学案数学必修1:2.1.2-1指数函数的概念word格式文档
下载高中数学全套教学案数学必修1:2.1.2-1指数函数的概念.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐