第一篇:高中数学必修5新教学案:1.1.2余弦定理(第1课时)
【知识要点】
1.三角形的边角关系;2.余弦定理;3.余弦定理与勾股定理之间的关系.2.余弦定理;3.余弦定理与勾股定理之间的关系.3.余弦定理与勾股定理之间的关系.【学习要求】
1.通过对任意三角形边长和角度关系的探索,掌握余弦定理;
2.会运用余弦定理解决一些简单的三角形度量问题.【预习提纲】
(根据以下提纲,预习教材第 5 页~第6 页)
1.如果已知一个三角形的两边及其所夹的角,那么这个三角形的大小、形状是否完全确定?
2.如何用已知的两条边及其所夹的角来表示第三条边.3.教材中给出了用向量法证明余弦定理的方法,体现了向量在解决三角形度量问题中的作用.另外思考用坐标法和三角法如何证明余弦定理.4.讨论余弦定理和勾股定理之间的联系.5.应用余弦定理解三角形(阅读例3).【基础练习】
1.在ABC中,已知下列条件,解三角形(角度精确到0.10,边长精确到0.1cm):
0(1)a=2.7cm, b=3.6cm, C=82.2;
(2)b=12.9cm, c=15.4cm, A=42.30.【典型例题】
例1 在ABC中, a=2, b=4, C=1200,求c边的长.例2 在ABC中,已知b=5, c
A=300求a、B、C及面积S.变式: 在ABC中,已知a=8,c=
41),面积s,解此三角形.必修51.1.2余弦定理(学案)(第1课时)
11.在ABC中,若C为钝角,下列结论成立的是().(A)a2+b2> c2(B)a2+b2 2-2根,2cos(A+B)=1.(1)求角C的度数;(2)求AB的长.x+2=0的两 1.已知a,b, c是ABC中∠A, ∠B,∠C的对边, S是ABC的面积,若a=4,b=5,S =5,求c的长度.必修51.1.2 余弦定理(教案) 【教学目标】 1.通过对三角形边角关系的探索, 能证明余弦定理, 了解可以从向量、解析法和三角法等多种途径证明余弦定理.2.了解余弦定理与勾股定理之间的联系.3.能够应用余弦定理解三角形.【重点】: 通过对三角形边角关系的探索, 证明余弦定理, 并能应用它解三角形.【难点】: 余弦定理的证明.【预习提纲】 (根据以下提纲,预习教材第 5页~第6页) 1.如果已知一个三角形的两边及其所夹的角,那么这个三角形的大小、形状是否完全确定?(完全确定) 2.如何用已知的两条边及其所夹的角来表示第三条边(a2=b2+c2-2bccosA,22222 2b=a+c-2accosB,c=a+b-2abcosC.) 3.教材中给出了用向量法证明余弦定理的方法,体现了向量在解决三角形度量问题中的作用.另外思考用坐标法和三角法如何证明余弦定理.证法1(向量法):见教材.证法2(解析法):如图,以A点为原点,以ABC的边AB,所在直线为x轴,以过A与AB垂直的直线为y轴,建立平面直角坐标系,则A(0,0),C(bcosA,bsinA),B(c,0),由连点间的距离公式得:BC2(bcosAc)2(bsinA0)2,即 abcosA2bccosAcbsinA 所以 abc2bccosA,同理可证b2a2c22accosB ,c2a2b22abcosC 证法3(三角法):提示:先分锐角,钝角两种情况。过C作CDAB(或其延长线)于D,则CD=bsinA,然后求出BD,在RtABC中,用勾股定理得 222 BCCDBD,化简即可.4.讨论余弦定理和勾股定理之间的联系.余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. 5.应用余弦定理解三角形(阅读例3).【基础练习】 1.在ABC中,已知下列条件,解三角形(角度精确到0.10,边长精确到0.1cm):(1)a=2.7cm, b=3.6cm, C=82.20; (2)b=12.9cm, c=15.4cm, A=42.3.解:(1)A≈43.50, B≈58.20,c≈4.2cm;(2)a≈10.5cm, B≈55.80, C≈0 81.9.【典型例题】 例1 在ABC中, a=2, b=4, C=1200,求c边的长.【审题要津】 由条件知可直接用余弦定理求解.解:由余弦定理,得 22222)=28, c=a+b-2abcosC=2+4-2ⅹ2ⅹ4ⅹ(-12 ∴c =2【方法总结】已知三角形的两边及其夹角可直接用余弦定理求解 例2在ABC中,已知b=5, c,A=30求a、B、C及面积s.【审题要津】根据已知条件,可用余弦定理求a,然后可用正弦定理求角B和C,面积用 S= cbsinA求解.解:由余弦定理,得a2=b2+c2-2bccosA=25, ∴a=5.由正弦定理,得sinB bsinAa 12,∴B=300, C=1800-A-B=1200 .Sabc absinC【方法总结】(1)解三角形时往往同时用到正弦定理与余弦定理.(2)一般地,使用正弦定理求角时,有时要讨论解的个数问题.变式: 在ABC中,已知a=8,c=4 1),面积S .解:由正弦定理,得S acsinB,即B=60,或B120(舍),由余弦定理,得 00 b=a+c-2accosB =84 1284 1 96,∴b,cosA bca 2bc 222 ,A45.C180AB180456075.0000 1.在ABC中,若C为钝角,下列结论成立的是(B).222222 (A)a+b> c(B)a+b 解: 由余弦定理,得c=a+b-2abcosC=1+1-2ⅹ1ⅹ1ⅹ(-1)=3, 2 ∴c =3.在ABC中, a=3, b=4, c,求最大角.解: 显然C最大,由cab2abcosC,得cosC abc 2ab 222 3437234 1 2,∴C=1200.4.在ABC中, BC=a,AC=b,且a,b是方程x-2 x+2=0的两 根,2cos(A+B)=1.(1)求角C的度数;(2)求AB的长.由根与系数关系知abab2, ,C120, 又2cosab1,cosC12 222 c=a+b-2abcosC=ab2ab2abcosC=12-4-4× =10,C 1.已知a,b, c是ABC中∠A, ∠B,∠C的对边, S是ABC的面积,若a=4,b=5,S =5求c的长度.12 解:由SabsinC,得 = 45sinC,所以sinC ,∵C为三角形的内 角,∴C60或C120,当C60时,cab2abcosC45245cos60 21,∴C 00 当C120时,222220 cab2abcosC45245cos120 61,∴C 1.1.2余弦定理蕲春三中刘芳 1.1.2余弦定理 蕲春三中刘芳 (一)教学目标 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。 2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。 (二)教学重、难点 重点:余弦定理的发现和证明过程及其基本应用; 难点:勾股定理在余弦定理的发现和证明过程中的作用。 (三)学法与教学用具 学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角 教学用具:投影仪、计算器 (四)教学设想 [复习回顾] 1、正弦定理;abc2RsinAsinBsinC2、可以解决两类有关三角形的问题: (1)已知两角和任一边。 (2)已知两边和一边的对角。 [提出问题] 联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A、B均未知,所以较难求边c。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。A 如图1.1-5,设CBa,CAb,ABc,那么cab,则bc ccabababb2abCa2a2ab2ab2 从而c2a2b22abcosC(图1.1-5) 同理可证a2b2c22bccosA b2a2c22accosB 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角 7的余弦的积的两倍。即a2b2c22bccosA b2a2c22accosB c2a2b22abcosC 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? (由学生推出)从余弦定理,又可得到以下推论: b2c2a 2cosA2bca2c2b2 cosBb2a2c2 cosC[理解定理] 从而知余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? (由学生总结)若ABC中,C=900,则cosC0,这时c2a2b2 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 [例题分析] 题型一 已知两边及夹角解三角形 例1.在ABC 中,已知a cB600,求b及A ⑴解:∵b2a2c22accosB =222cos450 =1221) =8 ∴b 求A可以利用余弦定理,也可以利用正弦定理: b2c2a22221⑵解法一:∵ cosA,∴A600.asin450,解法二:∵ sinAsinB2.41.4 3.8,21.83.6,∴a<c,即00<A<900,∴A600.评述:解法二应注意确定A的取值范围。 题型二 已知三边解三角形 例2.在ABC中,已知a134.6cm,b87.8cm,c161.7cm,解三角形 (见课本第8页例4,可由学生通过阅读进行理解) 解:由余弦定理的推论得: b2c2a2 cosA 87.82161.72134.62 0.5543,A56020; c2a2b2 cosB 134.62161.7287.82 2134.6161.70.8398,B32053; C1800(AB)1800(5602032053) 90047.题型三 正、余弦定理的应用比较 例3.在△ABC中,已知 b=3,3。B=300,求角A,角C和边a。 思考:求某角时,可以利用余弦定理,也可以利用正弦定理,两种方法 有什么利弊呢? [补充练习] 1、在ABC中,若a2b2c2bc,求角A(答案:A=1200) 2、在△ABC中,已知(b+c):(c+a):(a+b)=4:5:6,求△ABC的最大内角。(答案:A=1200) [课堂小结] (1)利用余弦定理解三角形 ①.已知三边求三角; ②.已知两边及它们的夹角,求第三边。 (2)余弦定理与三角形的形状 (五)作业设计 ①课后阅读:课本第9页[探究与发现] ②课时作业:第10页[习题1.1]A组第3,4题。 ③《名师一号》相关题目。 1.1.2《余弦定理》导学案 1.掌握余弦定理的两种表示形式; 2.证明余弦定理的向量方法; 本的解三角形问题. 【重点难点】 1.重点:余弦定理的发现和证明过程及其基本应用.2.难点:勾股定理在余弦定理的发现和证明过程中的作用.【知识链接】 复习1:在一个三角形中,各和它所对角的的相等,即==. 复习2:在△ABC中,已知c10,A=45,C=30,解此三角形. 思考:已知两边及夹角,如何解此三角形呢? 【学习过程】 ※ 探究新知 问题:在ABC中,AB、BC、CA的长分别为c、a、b. ∵AC,∴ACAC 同理可得:a2b2c22bccosA,c2a2b22abcosC. 新知:余弦定理:三角形中任何一边的等于其他两边的的和减去这两边与它们的夹角的的积的两倍. 思考:这个式子中有几个量? 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论: b2c2a 2,. cosA2bc [理解定理] (1)若C=90,则cosC,这时c2 a2b2 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角. 试试: (1)△ABC 中,a,c2,B150,求b. (2)△ABC中,a 2,b,c1,求A. ※ 典型例题 例1.在△ABC 中,已知a bB45,求A,C和c. 变式:在△ABC中,若AB,AC=5,且cosC=9 10,则BC=________. 例2.在△ABC中,已知三边长a3,b 4,c,求三角形的最大内角. 变式:在ABC中,若a2b2c2bc,求角A. 【学习反思】 ※ 学习小结 1.余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例; 2.余弦定理的应用范围: ① 已知三边,求三角; ② 已知两边及它们的夹角,求第三边. ※ 知识拓展 在△ABC中,若a2b2c2,则角C是直角; 若a2b2c2,则角C是钝角; 222).A.很好B.较好C.一般D.较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1.已知a c=2,B=150°,则边b的长为().2.已知三角形的三边长分别为3、5、7,则最大角为().A.60B.75C.120D.150 3.已知锐角三角形的边长分别为2、3、x,则x的取值范围是().A x <x< 5C. 2<x D <x<5 4.在△ABC中,|AB|=3,|AC|=2,AB与AC的夹角为60°,则|AB-AC|=________. 5.在△ABC中,已知三边a、b、c满足 b2a2c2ab,则∠C等于. 1.在△ABC中,已知a=7,b=8,cosC=13 14,求最大角的余弦值. 2.在△ABC中,AB=5,BC=7,AC=8,求ABBC的值. 必修5 2.2等差数列(学案) (第2课时) 【知识要点】 1.等差中项的概念; 2.等差数列的性质;3.等差数列的判定方法; 4.等差数列的常用设法.【学习要求】 1.理解等差中项的概念; 2.探索并掌握等差数列的性质,并会运用等差中项和等差数列的性质解题; 3.体会等差数列和一次函数的关系.【预习提纲】 (根据以下提纲,预习教材第 36 页~第39页) 1.等差中项 (1)如果a、A、b成等差数列,那么A叫做a与b的.(2)如果an1anan2对任意正整数n都成立,则数列an是.22.等差数列的性质 *(1)若an是等差数列且mnpq,(m,n,p,qN)则有_____________.(2)若an是等差数列且mn2k,(m,n,kN)则有______________.**(3)思考:若an是等差数列且mpq,(m,p,qN)则有amapaq吗? 3.等差数列的设项技巧 (1)若三个数成等差数列,则这三个数一般可设为_________________,若四个数成等差数列,则这四个数一般可设为_____________________.【基础练习】 1.已知数列an的通项公式为anpnq,其中p,q为常数,那么这个数列一定是等差数列吗? 2.已知数列an是等差数列.(1)2a5a3a7是否成立?2a5a1a9呢?为什么?(2)2anan1an1(n>1)是否成立?据此你能得出什么结论? 2anankank(n>k>0)是否成立?据此你又能得出什么结论? 【典型例题】 例1 等差数列an是递增数列,a2a416,a1a528,试求an.变式1:等差数列an中,已知a2a3a10a1136,求a5a8.例2 已知:111yzzxxy,成等差数列,求证,也成等差数列.xyzxyz 变式2:若m和2n的等差中项为4,2m和n的等差中项为5,则m与n的等差中项是.例3 在等差数列an中,已知a2a5a89,a3a5a721,求数列的通项公式.变式3:已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.1.在等差数列an中,a510,a1a2a33,则().(A)a12,d3(B)a12,d3(C)a13,d2(D)a13,d2.2.若ab,两个等差数列a,x1,x2,b与a,y1,y2,y3,b的公差分别是d1,d2,则().(A) d1 d23243(B)(C)(D)2334则m32,若am8,3.已知等差数列an的公差为dd0,且a3a6aa0131().(A)8(B)4(C)6(D)12 4.数列an中,a12,a21,211n2,则an=.anan1an15.48,a,b,c,-12是等差数列中的连续五项,则a,b,c的值依次为______________.6.已知等差数列an中,a3和a15是方程x6x10的两根,则 2=_________________.a7a8a9a10a 7.在等差数列an中,已知a2a3a4a534,a2a552,求公差d.8.三个数成等差数列,其和为9,前两项之积为后一项的6倍,求此三个数.21.数列an满足a11,an1nnann1,2,,是常数.(1)当a21时,求及a3的值; (2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.必修5 2.2 等差数列(教案) (第2课时) 【教学目标】 1.理解等差中项的概念.2.探索并掌握等差数列的性质,并会运用等差中项和等差数列的性质解题.3.体会等差数列与一次函数的联系.【重点】理解等差中项的概念,探索并掌握等差数列的性质,会用等差中项和性质解决一些简单的问题.【难点】正确运用等差数列的性质解题.【预习提纲】 (根据以下提纲,预习教材第 36 页~第39页) 1.等差中项 (1)如果a、A、b成等差数列,那么A叫做a与b的等差中项.(2)如果an1anan2对任意正整数n都成立,则数列an是等差数列.2N*)则有amanapaq.*2.等差数列的性质 ,,(1)若an是等差数列且mnpq,(mnpq(2)若an是等差数列且mn2k,(m,n,kN)则有aman2ak.*(3)思考:若an是等差数列且mpq,(m,p,qN)则有amapaq吗? 分析:设等差数列an的首项为a1,公差为d,则ama1d,1mapaqa1a1pq1ddama1d.所以当首项和公差相等时成立,否则不成立.3.等差数列的设项技巧 (1)若三个数成等差数列,则这三个数一般可设为ad,a,ad,若四个数成等差数列,则这四个数一般可设为a3d,ad,ad,a3d.【基础练习】 1.已知数列an的通项公式为anpnq,其中p,q为常数,那么这个数列一定是等差数列吗? 解:a1pq,an1anpn1qpnqp.所以数列一定是等差数列.2.已知数列an是等差数列.(1)2a5a3a7是否成立?2a5a1a9呢?为什么?(2)2anan1an1(n>1)是否成立?据此你能得出什么结论? 2anankank(n>k>0)是否成立?据此你又能得出什么结论? 解:(1)因为a5a3a7a5,所以2a5a3a7.同理有2a5a1a9也成立.(2)2anan1an1(n>1),此结论说明,在等差数列中,从第二项起,每一项(有限数列末项除外)都是它前后两项的等差中项;同样有2anankank(n>k>0)成立,结论说明在等差数列中,任取数列中的某项都是与它前后等距离两项的等差中项(保证前后两项存在).【典型例题】 例1 等差数列an是递增数列,a2a416,a1a528,试求an.【审题要津】以性质mnpq知a2a4a1a5,运用方程思想求得a1和a5,则公差可求;也可都用a1和d表示,求解a1和d.解:a1a5a2a416,又a1a528,且数列为递增数列,a12,a514.由a514a14d24d,d3.an2n133n1.【方法总结】解题过程中运用性质进行了过度,而能用性质求解的题目只是一部分,使用基本量a1与d列方程的方法适用于任何与等差数列通项有关的题目,是通法.变式1:变式1:等差数列an中,已知a2a3a10a1136,求a5a8.解:a2a11a3a10a5a8.又a2a3a10a1136,2a5a836,a5a818.例2 已知:111yzzxxy,成等差数列,求证,也成等差数列.xyzxyz【审题要津】由于所求证的是三个数成等差数列,可用等差中项.证明:111211,成等差数列, xyzyxz2zxzxyzxyyzxy11zxy=y2.yxzxzxzxxzzxzxz 5 而2zxzxyzxyzx11.zx2.2yxzxzyxzyzzxxy成等差数列.,xyz【方法总结】对于证三数a,b,c成等差数列,常用等差中项法,即证2bac即可.变式2 若m和2n的等差中项为4,2m和n的等差中项为5,则m与n的等差中项是3.解:m和2n的等差中项为4,m2n8.又2m和n的等差中项为5,2mn10,两式相加,得mn6.m与n的等差中项为 mn63.22例3 在等差数列an中,已知a2a5a89,a3a5a721,求数列的通项公式.【审题要津】要求通项公式,需要求出首项a1及公差d,由直接求解很困难,这样促使我们转换思路.如果考虑到等差数a2a5a89,a3a5a172列的性质,注意到a2a82a5a3a7问题就好解了.解:a2a5a89,a3a5a721,又a2a8a3a72a5, a3a72a56,a3a77,解得:a31,a77或a37,a71,a31,d2或a37,d2.由ana3n3d,得an2n7或an2n13.【方法总结】等差数列的性质应牢记,在解题中应用非常广泛.变式3 已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设成等差数列的这四个数依次为a3d,ad,ad,a3d.a3dadada3d26,由题设知 adad40.1313a,a,22解之得或这个数列为2,5,8,11或11,8,5,2.33d,d.22 1.在等差数列an中,a510,a1a2a33,则(A).(A)a12,d3(B)a12,d3(C)a13,d2(D)a13,d2.2.若ab,两个等差数列a,x1,x2,b与a,y1,y2,y3,b的公差分别是d1,d2,则(C).(A) d1 d23243(B)(C)(D)2334则m32,若am8,3.已知等差数列an的公差为dd0,且a3a6aa0131(A).(A)8(B)4(C)6(D)12 4.数列an中,a12,a21,2211n2,则an=.nanan1an15.48,a,b,c,-12是等差数列中的连续五项,则a,b,c的值依次为33,18,3.6.已知等差数列an中,a3和a15是方程x6x10的两根,则 2=15.a7a8a9a10a 7.在等差数列an中,已知a2a3a4a534,a2a552,求公差d.解:由a2a3a4a534,知a2a517,又a2a552.a24,a513或a213,a54.所以d3或d3.8.三个数成等差数列,其和为9,前两项之积为后一项的6倍,求此三个数.解:设三个数分别为ad,a,ad,由题意有adaad9,aad6ad.解得:a3,d1.所以这三个数为4,3,2.21.数列an满足a11,an1nnann1,2,,是常数.(1)当a21时,求及a3的值; (2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.2解:(1)由于an1nnann1,2,,且a11,所以当a21时,得 12,故3.从而a3222313.(2)数列an不可能为等差数列.证明如下: 2由a11,an1nnan得 a22,a362,a41262.若存在,使an为等差数列,则a3a2a2a1,即521,解得=3.于是a2a112,a4a3116224.这与an为等差数列矛盾.所以,对任意,an都不可能是等差数列. 1.1.2余弦定理 教材分析 三维目标 知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。 过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。 教学重点 余弦定理的发现和证明过程及其基本应用; 教学难点 勾股定理在余弦定理的发现和证明过程中的作用。 教学建议 课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力. 在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的 启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系.导入一 提问1:上节课,我们学习了正弦定理,解决了有关三角形的两类问题:已知两角和任意一边;②已知两边和其中一边的对角.三角形中还有怎样的问题没有解决? 已知两边和夹角;已知三边.首先分析最特殊的三角形——直角.如图1.已知两边a,b及夹角C90,能否求第三边? 勾股定理c2a2b 2提问2:在斜三角形中边和角有怎样的关系? 在△ABC中,当C90时,有c2a2b2. 实验:若a,b边的长短不变,C的大小变化,c2与a2b2有怎样的大小关系呢? 如图2,若C90时,由于b边与a边的长度不变,所以c边的长度变短,即c2a2b2.如图3,若C90时,由于b边与a边的长度不变,所以c边的长度变长,即c2a2b2.当C90时,c2a2b2,那么c2与a2b2到底相差多少呢?与怎样的角有关呢?显然应与∠C的大小有关.图1 图2 图 3导入新课二 师 上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题 在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示 A 师 由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解 解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得 A2=CD2+BD ∵在Rt△ADC中,CD2=B2-AD 又∵BD2=(C-AD)2=C2-2C·AD+AD ∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD.又∵在Rt△ADC中,AD=B·COs A ∴a2=b2+c2-2abcosA .类似地可以证明b2=c2+a2-2cacosB c2=a2+b2-2abcos C 另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.第二篇:高中数学必修五1.1.2余弦定理
第三篇:高中数学 1.1.2 《余弦定理》导学案 新人教A版必修5
第四篇:高中数学必修5新教学案:2.2等差数列(第2课时)(推荐)
第五篇:2014年高中数学 1.1.2余弦定理教案 新人教A版必修5