高中数学 第2章 数列 课时12 数列的求和教案 苏教版必修5

时间:2019-05-12 18:59:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 第2章 数列 课时12 数列的求和教案 苏教版必修5》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 第2章 数列 课时12 数列的求和教案 苏教版必修5》。

第一篇:高中数学 第2章 数列 课时12 数列的求和教案 苏教版必修5

课时12 数列的求和

1.倒序相加法:将一个数列倒过来排列(倒序),当它与原数列相加时,若有公因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。如等差数列的求和公式Sna1ann2的推导。

2.错位相减法:这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an,bn分别是等差数列和等比数列。例1求数列n

23.分组求和法:将一个数列中的项拆成几项,转化成特殊数列求和 n的前n项和Sn

1例2 ann2

n1,求数列an的前n项和Sn

4.公式法:利用已知的求和公式来求积,如等差数列与等比数列的求和公式。再如下面几个重要公式

nn12;(2)135...2n1n 212222(3)246...2nnn1;(4)123...nnn12n1

6(1)123...nnn1(5)132333...n3 22例3求数列1n,2n1,3n2,...n1的和

5.拆项(裂项)相消法 例4 an

例5 an

1,求数列an的前n项和Sn

nn114n21,求数列an的前n项和Sn

常用技巧:(1)

111111(2);nnkknnknknknkn

(3)

1111 nn1n22nn1n1n2111,...,的前n项和Sn 12123123...n6.通项化归法 例6.求数列1,练习:求数列5,55,555,5555,…前n项和Sn

7.奇偶分析项:当数列中的项有符号限制时,应分n为奇数、偶数进行讨论,一般地,先求S2n,再求S2n1,且S2n1S2na2n1 例6若an1

8.利用n14n3,求数列an的前n项和Sn

20n1符号求和:

ai1nia1a2a3an

例7(1)

12n

(2)32 kk110

第二篇:数列求和教案

数列求和

数列求和常见的几种方法:(1)公式法:①等差(比)数列的前n项和公式;

1n(n1)21222n2nn(

123......6② 自然数的乘方和公式:123......n(2)拆项重组:适用于数列

1n)(2 1)an的通项公式anbncn,其中bn、cn为等差数列或者等比数列或者自然数的乘方;

(3)错位相减:适用于数列an的通项公式anbncn,其中bn为等差数列,cn为等比数列;

(4)裂项相消:适用于数列a的通项公式:aknnn(n1),a1nn(nk)(其中k为常数)型;

(5)倒序相加:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的.(6)

分段求和:数列an的通项公式为分段形式

二、例题讲解

1、(拆项重组)求和:311254718......[(2n1)12n]

练习1:求和Sn122334......n(n1)

2、(裂项相消)求数列11113,35,57,179,...,1(2n1)(2n1)的前n项和

练习2:求S11n11212311234...1123...n

3、(错位相减)求和:1473n222223...2n

练习3:求Sn12x3x24x3...nxn1(x0)

4、(倒序相加)设f(x)4x4x2,利用课本中推导等差数列前n项和的方法,求:f(11001)f(21001)f(31001)...f(10001001)的值

a3n2(n4)例

5、已知数列n的通项公式为an2n3(n5)(nN*)求数列an的前n项和Sn

检测题

1.设f(n)22427210...23n10(nN),则f(n)等于()

2n222n4(81)

B.(8n11)

C.(8n31)

D.(81)777712.数列{an}的前n项和为Sn,若an,则S5等于()

n(n1)511A.1

B.

C.

D.

66303.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S37,且a13,3a2,a34构成等差数列. A.(1)求数列{an}的通项公式.(2)令banln3n1,n1,2...,求数列{bn}的前n项和Tn。

4.设数列a2nn满足a13a23a3…3n1a

3,aN*n.(Ⅰ)求数列an的通项;

(Ⅱ)设bnna,求数列bn的前n项和Sn n

5.求数列22,462n22,23,,2n,前n项的和.6:求数列112,123,,1nn1,的前n项和.7:数列{an}的前n项和Sn2an1,数列{bn}满b13,bn1anbn(nN).(Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n项和Tn。

8:

求数列21,41,6114816,2n2n1,...的前n项和Sn.

9、已知数列an的前n项和Sn123456...1n1n,求S100.10:在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.11:求数列的前n项和:11,1a4,11a27,,an13n2,…

12:求S12223242...(1)n1n2(nN)

13:已知函数fx2x2x2(1)证明:fxf1x1;

(2)求f1f10210f810f910的值。.

第三篇:数列求和教案

课题:数列求和

教学目标

(一)知识与技能目标

数列求和方法.

(二)过程与能力目标

数列求和方法及其获取思路.

教学重点:数列求和方法及其获取思路. 教学难点:数列求和方法及其获取思路.

教学过程

1.倒序相加法:等差数列前n项和公式的推导方法:(1)Sna1a2an2Snn(a1an)

Snanan1a112223210222 例1.求和:2110222923282101分析:数列的第k项与倒数第k项和为1,故宜采用倒序相加法.

小结: 对某些前后具有对称性的数列,可运用倒序相加法求其前n项和.2.错位相减法:等比数列前n项和公式的推导方法:

(2)Sna1a2a3an(1q)Sna1an1 qSaaaa23nn1n23n例2.求和:x3x5x(2n1)x(x0)

3.分组法求和

1的前n项和; 161例4.设正项等比数列an的首项a1,前n项和为Sn,且210S30(2101)S20S100

2例3求数列1,2,3,4(Ⅰ)求an的通项;(Ⅱ)求nSn的前n项和Tn。例5.求数列 1, 1a, 1aa,,1aaa121418,的前n项和Sn.n(n1)解:若a1,则an111n, 于是Sn12n;2 n1a1 若a1,则an1aan1 (1an)1a1a1a1a21an11a(1an)2n于是Sn [n(aaa)][n]

1a1a1a1a1a1a111 1212312n22n14.裂项法求和 例6.求和:12112(),n(n1)nn11111112n Sna1a2an2[(1)()()]2(1)223nn1n1n1解:设数列的通项为an,则an例7.求数列112,1231,,1nn1,的前n项和.解:设annn11n1n

(裂项)

1nn1则 Sn12312

(裂项求和)

=(21)(32)(n1n)

=n11

三、课堂小结:

1.常用数列求和方法有:

(1)公式法: 直接运用等差数列、等比数列求和公式;(2)化归法: 将已知数列的求和问题化为等差数列、等比数列求和问题;(3)倒序相加法: 对前后项有对称性的数列求和;

(4)错位相减法: 对等比数列与等差数列组合数列求和;(5)并项求和法: 将相邻n项合并为一项求和;(6)分部求和法:将一个数列分成n部分求和;

(7)裂项相消法:将数列的通项分解成两项之差,从而在求和时产生相消为零的项的求和方法.四、课外作业: 1.《学案》P62面《单元检测题》 2.思考题

11146前n项的和.481612n2(2).在数列{an}中,an,又bn,求数列{bn}的前n项的和.n1n1n1anan12(1).求数列:(3).在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.解:设Snlog3a1log3a2log3a10

由等比数列的性质 mnpqamanapaq

(找特殊性质项)和对数的运算性质 logaMlogaNlogaMN

Sn(log3a1log3a10)(log3a2log3a9)(log3a5log3a6)

(合并求和)

=(log3a1a10)(log3a2a9)(log3a5a6)

=log39log39log39

=10

第四篇:存瑞中学高中数学《数列求和》教学案

河北省存瑞中学2013-2014学年高中数学《数列求和》精品教学

案 北师大版必修1

两项之和(或等于首末两项“系数” 之和),那么就可以把正着写的和与倒着写的和的两个和式相加,从而可求出数列的前n项和。例1 已知函数f(x)1123af(),af(),af(),„,数列中,a123n4x2nnnkn1nakf(),„,an1f(),anf(),求数列{an}的前n项和Sn

nnn

nn1n22n练习1:已知lgxlgya且Snlgxlgxylgxylgy.求Sn



(六)、裂项相消法求和:这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。例2 求数列{1}的前n项和Snn1n练习2:求和:

111(n2)2222131n1

(七)、通项分析法:通过对数列的通项进行分析、整理,从中发现数列求和的方法,这也是求数列前n项和的一种基本方法. 例

3、已知数列{an}中,a11,a2121,a3122221,a41222232221,.

求数列{an}的前n项和Sn.

作业:已知数列{an}的前n项和Sn满足:SnSnn2n0,求数列

1的前n项和Tn.

anan1

第五篇:高一数学 数列求和教案

湖南师范大学附属中学高一数学教案:数列求和

教材:数列求和

目的:小结数列求和的常用方法,尤其是要求学生初步掌握用拆项法、裂项法和错位法求一些特殊的数列。

过程:

一、提出课题:数列求和——特殊数列求和

常用数列的前n项和:123nn(n1)2135(2n1)n2

n(n1)(2n1)

6n(n1)2132333n3[]

2122232n2

二、拆项法:

一、(《教学与测试》P91 例二)

11114,27,310,,n1(3n2),的前n项和。aaaa1 解:设数列的通项为an,前n项和为Sn,则 ann1(3n2)

a111Sn(12n1)[147(3n2)]

aaa求数列11,(13n2)n3n2n当a1时,Snn

221n(13n2)nan1(3n1)na

当a1时,Sn nn1122aa1a1

三、裂项法:

二、求数列6666,,,前n项和 122334n(n1)116()

n(n1)nn1解:设数列的通项为bn,则bn

11111Snb1b2bn6[(1)()()]223nn16(116n)n1n1 例

三、求数列111,,前n项和 1212312(n1)12112()

12(n1)(n1)(n2)n1n211111111n)()()]2() 2334n1n22n2n2 解:an Sn2[(四、错位法:

1}前n项和 n21111 解:Sn123nn ①

2482111111Sn123(n1)nnn1 ② 248162211(1n)1111112n 两式相减:Snnnn1212248222n1121n1nSn2(1nn1)2n1n

2222例

四、求数列{n例

五、设等差数列{an}的前n项和为Sn,且Sn(求数列{an}的前n项和

解:取n =1,则a1(an12)(nN*),2a112)a11 2又: Snn(a1an)n(a1an)a12(n)

可得:222an1(nN*)an2n1

Sn135(2n1)n2

五、作业:《教学与测试》P91—92 第44课 练习3,4,5,6,7 补充:1.求数列1,4,7,10,,(1)(3n2),前n项和

n3n1n为奇数2(Sn)

3nn为偶数22n32n1 2.求数列{n3}前n项和(8n3)3.求和:(1002992)(982972)(2212)(5050)4.求和:1×4 + 2×5 + 3×6 + ……+ n×(n + 1)(5.求数列1,(1+a),(1+a+a),……,(1+a+a+……+a

22n(n1)(n5))

3n

1),……前n项和

a0时,Snn a1时,Snn(n1)2

n(n1)aan1a1、0时,Sn(1a)2

下载高中数学 第2章 数列 课时12 数列的求和教案 苏教版必修5word格式文档
下载高中数学 第2章 数列 课时12 数列的求和教案 苏教版必修5.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列教案第三课时(范文大全)

    第三教时 教材:等差数列(一) 目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。 过程: 一、引导观察数列:4,5,6,7,8,9,10,„„ 3,0,3,6,„„......

    数列求和优秀教案[5篇范例]

    题组教学:“探索—研究—综合运用”模式 ——“数列的裂差消项求和法解题课”教学设计 【课例解析】 1 教材的地位和作用 本节课是人教A版《数学(必修5)》第2章 数列学完基础知......

    《数列概念》(第一课时)教案

    数列概念学案 学习目标:设计人:李九根 了解数列的概念和数列几种常见表示方法(列表、图像、通项公式)并能根据一定条件求数列的通项公式。 学习重点:数列概念 学习难点:根据条件求......

    高三一轮复习:数列求和教案及练习

    数列求和 特殊数列求和 1.可化为等差数列等比数列自然数列的求和 1)2n1的前100项和为_____________, 2) 1aa2an__________ 3) 求9,99,999,9999,….的前100项和 4)求2nn1的前2m的和......

    高中数学难点解析教案13 数列的通项与求和

    高中数学辅导网 http://www.xiexiebang.com 高中数学难点解析 难点13 数列的通项与求和 数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是......

    高中数学难点解析教案13 数列的通项与求和

    高中数学辅导网 http://www.xiexiebang.com 难点13 数列的通项与求和 数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的......

    常规数列求和之错位相减法教案

    常规数列求和之错位相减法 例1、已知数列{an}前n项和为Sn,且a1=1,an+1=2Sn. (1)证明数列{Sn}是等比数列;(2)求数列{an}的通项公式;(3)求数列{n·an}的前n项和Tn.例2、已知数列{an}满......

    第5课时数列的综合应用

    课题:数列的综合应用教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力.教学重点:等差(比)数列的性质的应用.(一) 主......