第一篇:高中数学 第一章 数列在生活中的应用拓展资料素材 北师大版必修5
数列在生活中的应用
在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。与此同时,数列在艺术创作上也有突出的作用!数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。
首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a,......an+1=an(1+p)-a,.........................(*)将(*)变形,得(an+1-a/p)/(an-a/p)=1+p.由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。
(二)有关数列的其他经济应用问题
数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。
(三)数列在艺术中的广泛应用 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618(1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144„..这个数列的名字叫做“菲波那契数列”,这些数被称为“菲波那契数”。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618„。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
不仅这个由1,1,2,3,5....开始的“菲波那契数”是这样,随便选两个整数,然后按照菲波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。
其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。
接下来讲体系黄金律形式美法则的应用。(黄金律两点重要内容:
1、典型的美的比例;
2、由多次分割同一比值造成的重复的节奏。有比例的重复,这是对艺术形式规律最本质的概况。)
“根号2矩形”,纸的长宽比例,如果宽边为1,则长边为根号2,这个矩形使得整开纸以任何对开裁法,都能保持同一比例,大大方便了作为文化载体的纸的利用。相似的还有三合板600乘以900cm的比例,以及相关家具、建筑材料、构件具有的相似的比例。
书法中一笔三转、一波三折等要诀,三横三点、三竖的互相联系——形状、距离、长短、方向角度等的处理。书法中“二”字一长一短,“十”字竖笔被分为2∶3的两段,“口”、“田”则上宽下窄,“吕”、“炎”、“林”、“羽”则将本身是等大的两半部分分成一大一小,“品”、“森”则将本是等大的三部分写成三种大小,以上规律在行书中更为清晰。中国书法美学的规律是与黄金比原则一致的。
西文中“S”、“B”等字母及阿拉伯“3”、“8”的上下两半比例适度。拉丁文26个字母中,下行的是5个,上行8个,中行13个,所以连写数行,参差错落,比例适中,再加上大小写的比例差别,在视觉上也具有书法艺术的整体美感。
油画中的“三色法”,在一个有固定主调的色彩背景中配置三色(或三个笔触),一色是相对暖色,一色相对冷,第三色则是中性色,这个中性色绝不该是绝对值的“中间”色。中性色稍有偏向,就拉近了或拉大了对两色的色距,对两个色距比例的选择,就是色彩的优选法。
素描的虚实、明暗程度、色块面积、复线排列的交叉穿插角度等,都可发现数的比值规律的运用,不详细讲。
中国画,画面都是“自一至万,自万法以治一”(石涛《画语录》),由“一条线”开始,以后的许多线都是这第一条线的相反相成的铺陈,以至完成全画。“一笔”中的粗细、曲直、方圆、浓淡、干湿、虚实„„ 美的线条:“蛇形曲线或称波状曲线”、“S形线”。
第二篇:北师大版高中数学必修5余弦定理
北师大版高中数学必修
52.1.2《余弦定理》教学设计
一、教学目标
认知目标:引导学生发现余弦定理,掌握余弦定理的证明,会运用余弦定解三角形中的两类
基本问题。
能力目标:创设情境,构筑问题串,在引导学生发现并探究余弦定理过程中,培养学生观察、类比、联想、迁移、归纳等能力;在证明定理过程中,体会向量的思想方法;在解决实际问题过程中,逐步培养学生的创新意识和实践能力。
情感目标:通过自主探究、合作交流,使学生体会到“发现”和“创造”的乐趣,培养学生
学习数学兴趣和热爱科学、勇于创新的精神。
二、教学重难点
重点:探究和证明余弦定理;初步掌握余弦定理的应用。
难点:探究余弦定理,利用向量法证明余弦定理。
三、学情分析和教法设计:
本节课的重点和难点是余弦定理的发现和证明,教学中,我采取“情境—问题”教学法,从情境中提出数学问题,以“问题”为主线组织教学,从特殊到一般,引导学生在解决问题串的过程中,既归纳出余弦定理,又完成了用几何法对余弦定理的证明,以分散难点;用向量证明余弦定理时,我首先引导学生利用向量证明勾股定,让学生体会向量解题基本思路、感受到向量方法的便捷,然后鼓励学生证明余弦定理,最后通过二组例题加深学生对余弦定理的理解,体会余弦定理的实际应用。
四、教学过程
环节一 【创设情境】
1、复习引入
让学生回答正弦定理的内容和能用这个定理解决哪些类型的问题。
2、情景引入
浙江杭州淳安千岛湖(图片来自于http://image.baidu.com),A、B、C三岛位置如图所示,根据图中所给的数据,你能求出A、B两岛之间的距离吗?
启发学生积极思考,尝试转化为直角三角形,利用已学知识解决问题解决问题。在三角形ABC中,作AD⊥BC,交BC延长线于D,由∠ACB=120o,则∠ACD=60o,在RtΔADC中,∠CAD=30o,AC=6则CD=3,AD=3.在RtΔADB中,由勾股定理得:
AB2=AD2+BD2,AB2=67.96AB≈8.24km
答:岛屿A与岛屿B的距离为8.24 km
探究2:若把上面这个问题变为:
在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为钝角)求 c.在探究1的解法基础上,把具体数字用字母替换,结合三角函数知识,不难得出 c2= a2+b2-2abcosC.
探究3:若把上面这个问题变为:
在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为锐角)求 c.如右图,当∠C为锐角时,作AD⊥BC于D,BD把△ABC分成两个直角三角形: A 在Rt△ABD中,AB2=AD2+BD2;
在Rt△ADC中,AD=AC·sinC=bsinC,DC=AC·cosC=bcosC.
容易求得:c2=a2+b2-2abcosC.
探究4: :若把上面这个问题变为: C
B
在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为直角)求 c.结合前面的探究,你有新的发现吗?
222此时,△ABC为直角三角形,由勾股定理得c=a+b;也可以写成c2=a2+b2-2abcos900
环节三【总结规律,发现新知】
探究1:总结规律。
结合前面的探究,我们容易发现,在△ABC中,无论∠C是锐角、直角还是钝角,都有
c2=a2+b2-2abcosC
同理可以得到a2=b2+c2-2bccosA.
b2=c2+a2-2accosB.
这就是余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余
弦的积的两倍。
探究2:余弦定理的证明:
余弦定理是三角学中一个重要的定理,上一环节中的探究2—探究4是该定理的一种传统的方法——几何证法,历史上有很多人对余弦定理的证明方法进行研究,建议同学们登陆,在百度文库中查阅有关三角学的历史,了解余弦定理证明的一些经典方法,如爱因斯坦的证法、坐标法、用物理的方法以及张景中的《绕来绕去的向量法》和《仁者无敌面积法》等等。其中向量法是最简洁、最明了的方法之一。
问题①:用向量的方法能证明勾股定理吗?
222在△ABC中已知∠A=900,BC=a,AB=c,CA=b, 求证:a=b+c B 证明:如右图,在△ABC中,设ACb,ABc,CBa.由向量的减法运算法则可得,ABACCB,即cba
A
222 等式两边平方得,cb2cba,2202222由向量的运算性质得cb2cbCos90a即cba
所以a2=b2+c
2问题②:如何用向量的方法证明余弦定理?
0把问题①的证明中Cos90换为CosA即可。
教师点评:利用向量来证明勾股定理,让学生体会向量解题基本思路、感受到向量方法的便捷,激发学生兴趣,在此基础上,可以很简单的证明余弦定理,让学生切身体会到向量作为一种工具在证明一些数学问题中的作用。
探究3:余弦定理的分析
问题①:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长度不变,变换∠C的大小时,c2与a2+b2有什么大小关系呢?请同学们思考。
首先,可借助于多媒体动画演示,让学生直观感受,a,b边的长度不变时,∠C越小,AB的长度越短,∠C越大,AB的长度越长
222其后,引导学生,由余弦定理分析: c=a+b-2abcosC。
当∠C=90°时,cosC=0,则有c2=a2+b2,这是勾股定理,它是余弦定理的特例。当∠C为锐角时,cosC>0,则有c2 2当∠C为钝角时,cosC<0,则有c2>a2+b2 问题②余弦定理作用? 从以上的公式中解出cosA,cosB,cosC,则可以得到余弦定理的另外一种形式: b2c2a2 cosA2bca2c2b2cosB2aca2b2c2cosC2ab 即已知三角形的两边和它们的夹角,可求另一边; 知三求一已知三角形的三条边,求角。 已知三角形的两边和其中一边的对角,可求另一边;(方程的思想)环节四【及时练习,巩固提高】 下面,请同学们根据余弦定理的这两种应用,来解决以下例题。O例1①在△ABC中,已知a=5,b=4,∠C=120,求c.②在△ABC中,已知a=3,b=2,c=,求此三角形三个内角的大小及其 面积。Q 环节五【应用拓展,提高能力】 例2:如图所示,有两条直线AB和CD相交成800角,交点是O,甲、乙两人同是从点O分别沿OA,OC方向出发,速度分别是4km/h、4.5km/h,B O P 3小时后两个相距多远(结果精确到0.1km)? 分析:经过3时,甲到达点P,OP=43=12(12km)乙到达点Q,OQ=4.53=13.5(km).问题转化为在△OPQ,已知OP=12km.,OQ=13.5km,∠POQ=800,求PQ的长。 例3 下图是公元前约400 ┅的图形(可登陆http://math.100xuexi.com 查阅详细资料),试计算图中线 段BD的长度及∠DAB的大小.1B A 环节六 【课堂反思总结】 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此 有何体会?(先由学生回答总结,教师适时的补充完善) 1、余弦定理的发现从直角三角形入手,分别讨论了锐角三角形和钝角的三角形情况,体现了由特殊到一般的认识过程,运用了分类讨 论的数学思想; D C2、用向量证明了余弦定理,体现了数学知识的应用以及数形结合数 学思想的应用; 3、余弦定理表述了三角形的边与对角的关系,勾股定理是它的一种特例。用这个定理可以解决已知三角形的两边及夹角求第三边和已知三角形的三边求内角的两类问题。环节七 【布置课后作业】 1、若三角形ABC的三条边长分别为a2,b3,c4,则2bccosA2cacosB2abcosC。 2、在△ABC中,若a=7,b=8,cosC13,则最大内角的余弦值为 143、已知△ABC中,acosB=bcos A,请判断三角形的形状(用两种不同的方法)。 4、p52教材习题2-1第6,7题。 五、教学反思 1、余弦定理是解三角形的重要依据。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用。 2、当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性。但是这个问题在本节课讲给学生,学生不易理解,可以放在第二课时处理。 3、本节课的重点首先是定理的发现和证明,教学中,我采取“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—总结规律---应用规律”这条主线,从情境中提出数学问题,以“问题”为主线组织教学,形成以提出问题与解决问题携手并进的“情境—问题”学习链,目的使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识,发展能力,体验数学的过程.5、合理的应用多媒体教学,起到画龙点睛。 6、在实际的教学中,发现学生对于所学的知识(例如向量)不能很好的应用,学生的数学思想(如分类讨论、数形结合)也不能灵活的应用,这在以后的教学中还应该加强。 1.1~1.2正弦定理、余弦定理要点解读 一、正弦定理 1.正弦定理及其证明 abc. sinAsinBsinC 课本利用三角形中的正弦函数的定义和向量的数量积两种方法证明了正弦定理,同学们可以思考一下有没有别的方法呢?答案是肯定的.证明如下: 当△ABC为锐角三角形时(如图所示),过点A作单位向量i垂直于AB,因为ACABBC,所以·iAC·i(ABBC)·iAB·iBC,bcos(90°A)0acos(90°B),在一个三角形中,各边和它所对角的正弦的比相等,即 ab. sinAsinB 当△ABC为钝角或直角三角形时也可类似证明. 2.正弦定理常见变形公式 即bsinAasinB,得 bsinAcsinAcsinBasinBasinCbsinC,b,c; sinBsinCsinCsinAsinAsinB (2)a:b:csinA:sinB:sinC; (3)a2RsinA,b2RsinB,c2RsinC(R为△ABC外接圆的半径);(1)a (4)sinA(5)abc,sinB,sinC; 2R2R2Rabcabc. sinAsinBsinCsinAsinBsinC 注:这些常见的变形公式应熟练掌握,在具体解题时,可根据不同的题设条件选择不同的变形公式. 3.正弦定理的运用 利用正弦定理,可以解决以下两类有关解三角形的问题: ①已知两角和任意一边,求其他两边和另一角; ②已知两边和其中一边的对角,求另一边的对角. 二、余弦定理 1.余弦定理及表达式 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍. a2b2c22b2c2a22bcco;s Acao;s Bc2a2b22acbo.s C注:余弦定理反映了a,b,c,A,B,C元素间的动态结构,揭示了任意三角形的边、角关系. 2.余弦定理的另一种表达形式 b2c2coAs2bc c2a2coBs2aca2; b2; 用心爱心专心 a2b2c2 coC; s2ab 注:若已知三边求角时,应用余弦定理的此表达形式简单易行. 3.余弦定理的运用 利用余弦定理,可以解决以下两类有关解三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 注:这两类问题在有解时都只有一个解. 4.勾股定理和余弦定理的区别与联系 勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系.由余弦定理及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.因此,勾股定理可以看作是余弦定理的特殊情况,余弦定理可以看作是勾股定理的推广. 用心爱心专心 江苏省邳州市第二中学高二数学 1.2《余弦定理(2)》教案 【三维目标】: 一、知识与技能 1.学会利用余弦定理解决有关平几问题及判断三角形的形状,掌握转化与化归的数学思想; 2.能熟练地运用余弦定理解斜三角形; 二、过程与方法 通过对余弦定理的运用,培养学生解三角形的能力及运算的灵活性 三、情感、态度与价值观 培养学生在方程思想指导下处理解三角形问题的运算能力; 【教学重点与难点】: 重点:利用余弦定理判断三角形的形状以及进行三角恒等变形; 难点:利用余弦定理判断三角形的形状以及进行三角恒等变形 【学法与教学用具】: 1.学法: 2.教学用具:多媒体、实物投影仪.【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 1.余弦定理的内容? 2.如何利用余弦定理判断锐角、直角、钝角? 2.利用余弦定理可解决哪几类斜三角形的问题? 二、研探新知,质疑答辩,排难解惑,发展思维 例1(教材P在ABC中,AM是BC边上的中线,求证:AM16例6) 12(AB2AC2)BC2 2例2(教材P15例5)在ABC中,已知sinA2sinBcosC,试判断三角形的形状 a2b2sin(AB)例3 在ABC中,证明: sinCc2例4 已知三角形一个内角为60,周长为20,面积为103,求三角形的三边长。 例5三角形有一个角是60,夹这个角的两边之比是8:5,内切圆的面积是12,求这个三角形的面积。 四、巩固深化,反馈矫正 1.在ABC中,设CBa,ACb,且|a|2,|b|3,a•b3,则AB_____ ab02.在ABC中,已知C60,a、b、c分别为角A、B、C所对的边,则的值等于bcca00________ 五、归纳整理,整体认识 让学生总结本节课所学的内容及方法(1)知识总结:(2)方法总结: 六、承上启下,留下悬念 1.书面作业 七、板书设计(略) 八、课后记: 1.2解三角形应用举例 第一课时 一、教学目标 1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 二、教学重点、难点 教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图 三、教学设想 1、复习旧知 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、设置情境 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 3、新课讲授 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 (2)例 1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=51,ACB=75。求A、B两点的距离(精确到0.1m) 提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当? 提问2:运用该定理解题还需要那些边和角呢?请学生回答。 分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。解:根据正弦定理,得 AB = AC sinACBsinABCsinABC55sin75 = 55sin75 ≈ 65.7(m) sin(1805175)sin54 AB = ACsinACB= 55sinACB= sinABC答:A、B两点间的距离为65.7米 变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少? 老师指导学生画图,建立数学模型。解略:2a km 例 2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法。 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C、D两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离。 解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=, ACD=,CDB=,BDA =,在ADC和BDC中,应用正弦定理得 AC = BC = asin()= asin()sin[180()]sin()asinasin = sin[180()]sin()计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离 AB = AC2BC22ACBCcos 分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。 变式训练:若在河岸选取相距40米的C、D两点,测得BCA=60,=60 ACD=30,CDB=45,BDA 略解:将题中各已知量代入例2推出的公式,得AB=206 评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。 4、学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。 5、课堂练习:课本第14页练习第1、2题 6、归纳总结 解斜三角形应用题的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图 (2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型 (3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 四、课后作业 1、课本第22页第1、2、3题 2、思考题:某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。公路的走向是M站的北偏东40。开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。问汽车还需行驶多远,才能到达M汽车站? 解:由题设,画出示意图,设汽车前进20千米后到达B处。在ABC中,AC=31,BC=20,AB=21,由余弦定理得 AC2BC2AB223cosC==,2ACBC31432则sin2C =1-cos2C =2,31sinC = 123, 31353 62所以 sinMAC = sin(120-C)= sin120cosC-cos120sinC =在MAC中,由正弦定理得 MC =ACsinMAC31353==35 62sinAMC32从而有MB= MC-BC=15 答:汽车还需要行驶15千米才能到达M汽车站。 作业:《习案》作业三第三篇:高中数学《余弦定理》素材1 苏教版必修5
第四篇:高中数学 1.2《余弦定理》教案 北师大版必修5
第五篇:高中数学必修5高中数学必修5《1.2应用举例(一)》教案