高中数学 2.1.1《正弦定理》学案 北师大版必修5(范文)

时间:2019-05-13 18:34:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 2.1.1《正弦定理》学案 北师大版必修5(范文)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 2.1.1《正弦定理》学案 北师大版必修5(范文)》。

第一篇:高中数学 2.1.1《正弦定理》学案 北师大版必修5(范文)

正弦定理 学案

【预习达标】

在ΔABC中,角A、B、C的对边为a、b、c,a=。sinA

a2.在锐角ΔABC中,过C做CD⊥AB于D,则|CD|==,即,同sinA1.在RtΔABC中,∠C=90, csinA=,csinB=,即0理得,故有a。sinA

3.在钝角ΔABC中,∠B为钝角,过C做CD⊥AB交AB的延长线D,则|CD|==,即aa,故有 sinAsinA

【典例解析】

例1 已知ΔABC,根据下列条件,求相应的三角形中其他边和角的大小:

00000(1)A=60,B=45,a=10;(2)a=3,b=4,A=30;(3)a=5,b=2,B=120;(4)

b=.例2 如图,在ΔABC中,∠A的平分线AD与边BC相交于点D,求证:

B D C BDABDCAC

【达标练习】

1.已知ΔABC,根据下列条件,解三角形:

(1)A=60,B=30,a=3;(2)A=45,B=75,b=8;(3)a=3,A=60; 00000

用心爱心专心

2.求证:在ΔABC中,sinAsinBab sinCc

3.应用正弦定理证明:在ΔABC中,大角对大边,大边对大角.4.在ΔABC中,sinA+sinB=sinC,求证:ΔABC是直角三角形。

222

参考答案

【预习达标】

bcbcbca1.a,b,.2.bsinAasinB , ,=.sinBsinCsinBsinAsinCsinBsinC

bbc3..bsinAasinB , =.sinBsinBsinC

【典例解析】

例1(1)C=750,000(2)B≈41.80,C≈108.8,c≈5.7或B≈138.2,C

00≈11.8,c≈1.2(3)无解(4)C=45,A=15,a≈2.2

例2证明:如图在ΔABD和ΔCAD中,由正弦定理,得BDABDCACAC,sinsinsinsin(1800)sinβB 0 D BDAB两式相除得 DCAC【双基达标】

1.(1)C=90,,c=00

(3)B=60,C=902.证明:设00

abck,则aksinA,bksinB,cksinC sinAsinBsinC

abksinAksinBsinAsinB cksinCsinC

00

00003.(1)设A>B,若A≤90,由正弦函数的单调性得sinA≥sinB,又由正弦定理得a≥b;若A>90,有A+B<180,即90>180-A>B, 由正弦函数的单调性得sin(180-A)>sinB,即sinA>sinB, 又

由正弦定理得a>b.(2)设a>b, 由正弦定理得sinA>sinB,若B≥90,则在ΔABC中A<90, 有sinA>sin(180-B)由正弦函数的单调性得A>180-B,即A+B>180,与三角形的内角和为180相矛盾;若A≥90,则A>B;若A<90,B<90, 由正弦函数的单调性得A>B.综上得,在ΔABC中,大角对大边,大边对大角.4.略

000000000

第二篇:高中数学必修5第一章正弦定理

1.1.1正弦定理

(一)教学目标

1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

2.过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

(二)教学重、难点

重点:正弦定理的探索和证明及其基本应用。

难点:已知两边和其中一边的对角解三角形时判断解的个数。

(三)学法与教学用具 学法:引导学生首先从直角三角形中揭示边角关系:a

sinAb

sinBc

sinC,接着就一般斜

三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。

教学用具:直尺、投影仪、计算器

(四)教学设想

[创设情景]

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来?

[探索研究](图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数

abcsinA,sinB,又sinC1,A cabc则csinsinsinabc从而在直角三角形ABC中,CaB sinAsinBsinC的定义,有

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

3如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinBbsinA,则同理可得从而

a

sin

b

sin,c

sinC

b

sinB,a

sinA

b

sinB

c

sinC

AcB

(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作jAC,C 由向量的加法可得ABACCB







则jABj(ACCB)∴jABjACjCBj

0

jABcos90A0jCBcos900C

∴csinAasinC,即

ac

bc

同理,过点C作jBC,可得

从而

a

sinA

b

sinB

c

sin

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

a

sinA

b

sinB

c

sin

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;(2)

a

sinA

b

sinB

c

sin等价于

a

sinA

b

sinB,c

sinC

b

sinB,a

sinA

c

sinC

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如a

bsinA

; sinB

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinAsinB。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

ab

[例题分析]

例1.在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。解:根据三角形内角和定理,C1800(AB)

1800(32.0081.80)

66.20;

根据正弦定理,asinB42.9sin81.80b80.1(cm);

sin32.00

根据正弦定理,asinC42.9sin66.20c74.1(cm).sin32.00

评述:对于解三角形中的复杂运算可使用计算器。

例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角度精确到10,边

长精确到1cm)。

解:根据正弦定理,bsinA28sin400

sinB0.8999.因为00<B<1800,所以B640,或B1160.⑴ 当B640时,C1800(AB)1800(400640)760,asinC20sin760c30(cm).sin400

⑵ 当B1160时,C1800(AB)1800(4001160)240,asinC20sin240c13(cm).sin400

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

[随堂练习]第5页练习第1(1)、2(1)题。

abc

sinAsinBsinC

abc

分析:可通过设一参数k(k>0)使k,sinAsinBsinC

abcabc

证明出 

sinAsinBsinCsinAsinBsinC

abc

解:设k(k>o)

sinAsinBsinC

则有aksinA,bksinB,cksinC

abcksinAksinBksinC

从而==k

sinAsinBsinCsinAsinBsinC

例3.已知ABC中,A

600,a求

a

sinA

abc

2k,所以=2 sinAsinBsinC评述:在ABC中,等式

a

sinA

b

sinB

c

sinC

abc

kk0

sinAsinBsinC

恒成立。

[补充练习]已知ABC中,sinA:sinB:sinC1:2:3,求a:b:c

(答案:1:2:3)

[课堂小结](由学生归纳总结)(1)定理的表示形式:

a

sinAsinBsinC

或aksinA,bksinB,cksinC(k0)

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

(五)评价设计

①课后思考题:(见例3)在ABC中,

b

c

abc

kk0;

sinAsinBsinC

a

sinA

b

sinB

c

sinC

k(k>o),这个k与ABC有

什么关系?

②课时作业:第10页[习题1.1]A组第1(1)、2(1)题。

第三篇:正弦定理必修5

课题: §1.1.1正弦定理

授课类型:新授课

一、教学目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

二、教学重点

正弦定理的探索和证明及其基本应用。

三、教学难点

已知两边和其中一边的对角解三角形时判断解的个数。

四、教学过程

Ⅰ.课题导入

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来?Ⅱ.讲授新课

[探索研究](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,abcsinA,sinB,又sinC1,A ccc

abc则csinsinsinabc从而在直角三角形ABC中,CaB sinsinsin有

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinBbsinA,则

同理可得

从而asinAbsinB,csinCbsinB,a

sinAbsinBcsinCAcB

(图1.1-3)

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作jAC,C

由向量的加法可得ABACCB

则jABj(AC

CB)∴jABjACjCBj

jABcos900A0jCBcos900C

∴csinAasinC,即

同理,过点C作jBC,可得

从而ac bc a

sinAb

sinBc

sinC

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

a

sinAb

sinBc

sinC

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;

(2)a

sinAb

sinBc

sinC等价于a

sinAb

sinB,c

sinCb

sinB,a

sinAc

sinC

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如absinA; sinB

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinAsinB。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]

例1.在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。

解:根据三角形内角和定理,ab

C1800(AB)

1800(32.0081.80)

66.20;

根据正弦定理,asinB42.9sin81.80

b80.1(cm); sin32.0根据正弦定理,asinC42.9sin66.20

c74.1(cm).sin32.0评述:对于解三角形中的复杂运算可使用计算器。

例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角度精确到10,边长精确到1cm)。

解:根据正弦定理,bsinA28sin400

sinB0.8999.因为00<B<1800,所以B640,或B1160.⑴ 当B640时,C1800(AB)1800(400640)760,asinC20sin760

c30(cm).sin40

⑵ 当B1160时,C1800(AB)1800(4001160)240,asinC20sin240

c13(cm).sin40评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。Ⅲ.课堂练习

第5页练习第1(1)、2(1)题。

[补充练习]已知ABC中,sinA:sinB:sinC1:2:3,求a:b:c

(答案:1:2:3)

Ⅳ.课时小结(由学生归纳总结)

(1)定理的表示形式:a

sinAsinBsinC

或aksinA,bksinB,cksinC(k0)

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角;

②已知两边和其中一边对角,求另一边的对角。

Ⅴ.课后作业

第10页[习题1.1]A组第1(1)、2(1)题。

bcabckk0; sinAsinBsinC

第四篇:高中数学:8.1《正弦定理》学案(湘教版必修4)

正弦定理学案

一、预习问题:

1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。那么斜三角形怎么办?确定一个直角三角形或斜三角形需要几个条件?

2、正弦定理:在一个三角形中,各边和它所对角的的比相等,即。

3、一般地,把三角形的三个角A,B,C和它们所对的边a,b,c叫做三角形的,已知三角形的几个元素求其它元素的过程叫做。

4、用正弦定理可解决下列那种问题

已知三角形三边;②已知三角形两边与其中一边的对角;③已知三角形两边与第三边的对角;④已知三角形三个内角;⑤已知三角形两角与任一边;⑥已知三角形一个内角与它所对边之外的两边。

5、上题中运用正弦定理可求解的问题的解题思路是怎样的?

二、实战操作:

例

1、已知:在ABC中,A45,C30,c10,解此三角形。

例

2、已知:在ABC中,A45,AB6,BC2,解此三角形。

用心爱心专心

第五篇:高中数学 《正弦定理》教案1 苏教版必修5

第 1 课时:§1.1正弦定理(1)

【三维目标】:

一、知识与技能

1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程;

2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题;

3.通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一.4.在问题解决中,培养学生的自主学习和自主探索能力.

二、过程与方法

让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

三、情感、态度与价值观

1.培养学生在方程思想指导下处理解三角形问题的运算能力;

2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

【教学重点与难点】:

重点:正弦定理的探索和证明及其基本应用。

难点:已知两边和其中一边的对角解三角形时判断解的个数。

【学法与教学用具】:

1.学法:引导学生首先从直角三角形中揭示边角关系:abc,接着就一般斜三角形sinAsinBsinC

进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。

2.教学用具:多媒体、实物投影仪、直尺、计算器

【授课类型】:新授课

【课时安排】:1课时

【教学思路】:

一、创设情景,揭示课题

1.在直角三角形中的边角关系是怎样的?

2.这种关系在任意三角形中也成立吗?

3.介绍其它的证明方法

二、研探新知

1.正弦定理的推导

aB,sinB,sinC1,cC

abcabc 即 c,c,c∴== sinAsinBsinCsinAsinBsinC(1)在直角三角形中:sinA

能否推广到斜三角形?

(2)斜三角形中

证明一:(等积法,利用三角形的面积转换)在任意斜△ABC中,先作出三边上的高AD、BE、CF,则ADcsinB,BEasinC,CFbsinA.所以SABC111absinCacsinB

bcsinA,每项22

21abc

同除以abc即得:.

2sinAsinBsinC

证明二:(外接圆法)如图所示,∠A=∠D

bcaa2R,2R CD2R同理 ∴

sinAsinDsinBsinC



证明三:(向量法)过A作单位向量j垂直于AC,由AC+CBAB,两边同乘以单位向量j得j



•(AC+CB)j•AB,则j•AC+j•CBj•AB





∴|j|•|AC|cos90+|j|•|CB|cos(90C)=| j|•|AB|cos(90A)

ac

∴asinCcsinA∴=

sinAsinCcbabc

同理,若过C作j垂直于CB得:=∴ sinAsinBsinCsinCsinB

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

a

sinA

2.理解定理

b

sinB

c

sin

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;

(2)

abcabbcac

==等价于=,=,=,即可得正弦定理的sinAsinBsinCsinAsinBsinBsinCsinAsinC

变形形式:

1)a2RsinA,b2RsinB,c2RsinC;

abc,sinB,sinC; 2R2R2R

3)sinA:sinB:sinCa:b:c.

2)sinA

(3)利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题:1)两角和任意一边,求其它两边和一角;如a

bsinA

; sinB

a

sinB。b

2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.如sinA一般地,已知两边和其中一边的对角解斜三角形,有两解或一解(见图示).

absinAbsinAababab

一解两解一解一解

abc

注意:(1)正弦定理的叙述:在一个三角形中。各边和它所对角的正弦比相等,==

sinAsinBsinC

它适合于任何三角形。(2)可以证明

abc

2R(R为△ABC外接圆半径)==

sinAsinBsinC

(3)每个等式可视为一个方程:知三求一

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

三、质疑答辩,排难解惑,发展思维

例1 已知在ABC中,c10,A450,C300,求a,b和B 解:c10,A45,C30∴B180(AC)105由

ac

得sinAsinC

csinA10sin450bc

2 a由得 sinBsinCsinCsin300

csinB10sin105020

b20sin75205652 0

sinC4sin30

例2 在ABC中,b,B600,c1,求a和A,C

bccsinB1sin6001解:∵,sinC,bc,B600,CB,C为锐角,sinBsinCb2

3C300,B900∴ab2c2

2例3 ABC中,c6,A450,a2,求b和B,C

accsinA6sin450300

,sinC解: csinAac,C60或120 sinAsinCa22csinB6sin750

当C60时,B75,b31,0

sinCsin60

csinB6sin150

当C120时,B15,b

1sinCsin600

b1,B750,C600或b31,B150,C1200

例4 试判断下列三角形解的情况:(1)已知b11,c12,B600

(2)已知a7,b3,A1100(3)已知b6,c9,B450

四、巩固深化,反馈矫正

1.在ABC中,三个内角之比A:B:C1:2:3,那么a:b:c等于____ 2.在ABC中,B1350,C150,A5,则此三角形的最大边长为_____

3.在ABC中,已知axcm,b2cm,B450,如果利用正弦定理解三角形有两解,则的取值范围是_____ 4.在ABC中,已知b2csinB,求C的度数

五、归纳整理,整体认识

1.用三种方法证明了正弦定理:

(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.(3)外接圆法 2.理论上正弦定理可解决两类问题:

(1)两角和任意一边,求其它两边和一角;

(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.

3.(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角?

(2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.

六、承上启下,留下悬念

七、板书设计(略)

八、课后记:

下载高中数学 2.1.1《正弦定理》学案 北师大版必修5(范文)word格式文档
下载高中数学 2.1.1《正弦定理》学案 北师大版必修5(范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学《正弦定理》教案3 苏教版必修5

    第3课时正弦定理知识网络判断三角形状正弦定理的应用平面几何中某些问题解的个数的判定学习要求1.掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; 2.熟记正弦定......

    必修5 正弦定理1

    必修51.1.1正弦定理(学案)【学习要求】1.发现并掌握正弦定理及证明方法。2.会初步应用正弦定理解斜三角形.3.三角形的面积公式【学习过程】1. 正弦定理证明方法:(1)定义法(2)向量法(3法......

    高中数学 §1 正弦定理与余弦定理(1.2)教案 北师大版必修5

    §1正弦定理、余弦定理教学目的:⑴使学生掌握正弦定理 教学重点:正弦定理教学难点:正弦定理的正确理解和熟练运用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:......

    高中数学 第一章 第1课时—— 正弦定理学案(教师版) 苏教版必修5

    第1章解三角形【知识结构】听课随笔正弦定理解三角形正、余弦定理的应用余弦定理【重点难点】一些简单的三角形度量问题。难点:能够运用正弦定理、际问题1.1正弦定理第1课时......

    郑州一中 高中数学 01正弦定理学案 新人教A版必修5

    正弦定理 余弦定理 1.已知:在ABC中,A45,C30,c10,解此三角形。2. 已知:在ABC中,A45,AB3. 在ABC中,若B30,AB23,AC2,求ABC的面积。4.已知△ABC中,a=4,b=4,∠A=30°,则∠B等于5.在ABC中,若a2bsinA,则B......

    高中数学必修4平面向量复习5正弦定理余弦定理

    5.5正弦定理、余弦定理要点透视:1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.(1)a=2RsinA,b=2RsinB,c=2RsinC;abc(2)sinA=,sinB=,sinC=: 2R2R2R(3)sinA:sinB:sinC=a:b:c.可以用来判断三角形的形......

    高中数学《1.1.1 正弦定理》教案 新人教A版必修5 (大全)

    1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。......

    1正弦定理学案

    1.1.1正弦定理学案 学习目标 通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。用具:计算器......