第一篇:高中数学 2.3.4解三角形应用举例(第四课时)教案 北师大版必修5
2.3.4解三角形应用举例(第四课时)教学目标:
(a)知识和技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用
(b)过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。
(c)情感与价值:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验 教学重点:推导三角形的面积公式并解决简单的相关题目 教学难点:利用正弦定理、余弦定理来求证简单的证明题
学法:正弦定理和余弦定理的运用除了记住正确的公式之外,贵在活用,体会公式变形的技巧以及公式的常规变形方向,并进一步推出新的三角形面积公式。同时解有关三角形的题目还要注意讨论最终解是否符合规律,防止丢解或增解,养成检验的习惯。直角板、投影仪
教学设想:设置情境:师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在ABC中,边BC、CA、AB上的高分别记为ha、hb、hc,那么它们如何用已知边和角表示?
生:ha=bsinC=csinB hb=csinA=asinC hc=asinB=bsinaA 师:根据以前学过的三角形面积公式S=以推导出下面的三角形面积公式,S=同理可得,S=
1ah,应用以上求出的高的公式如ha=bsinC代入,可21absinC,大家能推出其它的几个公式吗? 生:211bcsinA, S=acsinB 22师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?
生:如能知道三角形的任意两边以及它们夹角的正弦即可求解
1、新课讲授 例
1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)
(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm 分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。解:(1)应用S=11acsinB,得 S=14.823.5sin148.5≈90.9(cm2)22用心
爱心
专心
又因为BDC=45,所以DAC=180-(75+ 45+ 30)=30,所以AD=DC=3。在BCD中,CBD=180-(75+ 45)=60,623sin75BDDC所以 =,BD = =
2sin75sin60sin60在ABD中,AB2=AD2+ BD2-2ADBDcos75= 5, 所以得AB=5 1)S1ABD=2 ADBDsin75=3234 同理,所以四边形ABCD的面积S=6334
用心
爱心
专心 33BCD= 4(S
第二篇:高中数学 2.3.2解三角形应用举例(第二课时) 教案 北师大版必修5
1.3.2解三角形应用举例(第二课时)教学目标: 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题
过程与方法:本节课是解三角形应用举例的延伸。采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。作业设计思考题,提供学生更广阔的思考空间
情感与价值:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力
教学重点:结合实际测量工具,解决生活中的测量高度问题 教学难点:能观察较复杂的图形,从中找到解决问题的关键条件
学法:画出示意图是解应用题的关键,也是本节要体现的技能之一,需在反复的练习和动手操作中加强这方面能力。日常生活中的实例体现了数学知识的生动运用,除了能运用定理解题之外,特别要注重数学表达需清晰且富有逻辑,可通过合作学习和相互提问补充的方法来让学生多感受问题的演变过程。(4)教学设想:
1、设置情境:提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题
2、新课讲授 例
1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。
分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。
解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD = a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得AC = asin
sin()AB = AE + h = ACsin+ h = asinsin + h
sin()例
2、如图,在山顶铁塔上B处测得地面上一点A的俯角=5440,在塔底C处测得A处的俯角=50
1。已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在ABD中求CD,则关键需要求出哪条边呢?
用心
爱心
专心
2答案:20+ 203(m)3
第三篇:解三角形应用举例教案(推荐)
解三角形应用举例教案
●教学目标
知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语
过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正
情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点
实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点
根据题意建立数学模型,画出示意图 ●教学过程 Ⅰ.课题导入
1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?
2、[设置情境]
请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。Ⅱ.讲授新课
(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解
[例题讲解]
(2)例
1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=51,ACB=75。求A、B两点的距离(精确到0.1m)
启发提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?
启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。解:根据正弦定理,得
ABsinACB =
ACsinABC
AB = ACsinACB
sinABC = 55sinACB
sinABC =
55sin75 sin(1805175)= 55sin75
sin54 ≈ 65.7(m)答:A、B两点间的距离为65.7米
变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?
老师指导学生画图,建立数学模型。解略:2a km 例
2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法。
分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C、D两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离。
解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=, ACD=,CDB=,BDA =,在ADC和BDC中,应用正弦定理得
AC = BC =
asin()= asin()
sin[180()]sin()asin = asin sin[180()]sin()计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离 AB =
AC2BC22ACBCcos
分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
变式训练:若在河岸选取相距40米的C、D两点,测得BCA=60,ACD=30,CDB=45,BDA =60
略解:将题中各已知量代入例2推出的公式,得AB=20
评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。Ⅲ.课堂练习
课本第13页练习第1、2题 Ⅳ.课时小结
解斜三角形应用题的一般步骤:
(1)分析:理解题意,分清已知与未知,画出示意图
(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解
(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅴ.课后作业
课本第19页第1、2、3题
第四篇:高中数学 5.1.2解三角形应用举例教案2 文 新人教版必修5
课题: §2.2解三角形应用举例
第二课时
授课类型:新授课
●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题
过程与方法:本节课是解三角形应用举例的延伸。采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。作业设计思考题,提供学生更广阔的思考空间
情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力
●教学重点
结合实际测量工具,解决生活中的测量高度问题 ●教学难点
能观察较复杂的图形,从中找到解决问题的关键条件 ●教学过程 Ⅰ.课题导入
提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题 Ⅱ.讲授新课 [范例讲解] 例
1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。
分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。
例
2、如图,在山顶铁塔上B处测得地面上一点A的俯角
=5440,在塔底C处测得A处的俯角=501。已知铁
塔BC部分的高为27.3 m,求出山高CD(精确到1 m)
例
3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.Ⅲ.课堂练习
课本第17页练习第1、2、3题 Ⅳ.课时小结
利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。Ⅴ.课后作业
1、课本第23页练习第6、7、8题
2、为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30,测得塔基B的俯角为45,则塔AB的高度为多少m?(答案:20+
●板书设计 ●教学后记
203(m))3
第五篇:高中数学必修五解三角形教案
高中数学必修五解三角形教案
高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习
解三角形
一、知识点:
1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外接圆的半径,则有abc???2R.(两类正弦定理解三角形的问题:
1、已知sin?sin?sinC 两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.)
2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC; ②sin??等式中)
③a:b:c?sin?:sin?:sinC; abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2R a?b?cabc???. sin??sin??sinCsin?sin?sinC 1113、三角形面积公式:S???C?bcsin??absinC?acsin? 222④ ?a2?b2?c2?2bccosA?2224.余弦定理: ?b?a?c?2accos(本文来自:www.xiexiebang.com 教师 联 盟 网:高中数学必修五解三角形教案)B 或
?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac??b2?a2?c2 ?cosC?2ab?(两类余弦定理解三角形的问题:
1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.)
2225、设a、b、c是???C的角?、?、C的对边,则:①若a?b?c,则C?90?为
222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为
钝角三角形.
6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三
角
变
换的运
算,如
:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sin
A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222
二、知识演练
1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于()A.60°B.60°或120° C.30°或150°D.120°
2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()
A.直角三角形B.等边三角形C.等腰三角形 D.等腰直角三角形
3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为(). A.90°
B.120° C.130° D.150° 2224.在△ABC 中,a?b?c?bc,则A等于()A.60°B.45°C.120° D.30°
5.在△ABC中,A为锐角,lgb-lgc=lgsinA=-lg2, 则△ABC为()
A.等腰三角形
B.等边三角形 C.直角三角形
D.等腰直角三角形 b
6、锐角?ABC中,B=2A,则a的取值范围是()A(-2,2)B(0,2)C(2,2)
D2,)
7.在?ABC中.sinA?sinB?sinC?sinBsinC.则A的取值范围是
222 ? ???A.(0,6]B.[ 6,?)C.(0,3]D.[ 3,?)
?8.在△ABC中,a=x,b=2,B=45,若△ABC有两解,则x的取值范围是_______________ 9.? ABC中,B?60?,AC,则AB+2BC的最大值为_________. 10.a,b,c为△ABC的三边,其面积S△ABC=123,bc=48,b-c=2,求a 11.在?ABC中,角A,B,C所对的边分别为a,b,c,且满
足cosA?2,AB?AC?3.(I)求?ABC的面积;(II)若b?c?6,求a的值.
12、在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC 的面积,满足S?2a?b2?c2)。
(Ⅰ)求角C的大小;
(Ⅱ)求sinA?sinB的最大值。
cosA-2cosC2c-a=cosBb. ?
13、在ABC中,内角A,B,C的对边分别为a,b,c.已知 sinC(I)求sinA的值; 1(II)若cosB=4,b=2,?ABC的面积S。
高中数学必修五解三角形教案篇二:高中数学必修5:第一章《解三角形应用举例》教案1 金太阳新课标资源网
课题:
2.2解三角形应用举例
第一课时
授课类型:新授课
●教学目标
知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语
过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力
●教学重点
实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点
根据题意建立数学模型,画出示意图
●教学过程
Ⅰ.课题导入
1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?
2、[设置情境] 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
Ⅱ.讲授新课[来源
(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题讲解](2)例
1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,?BAC=51?,?ACB=75?。求A、B两点的距离(精确到0.1m)金太阳新课标资源网
启发提问1:?ABC中,根据已知的边和对应角,运用哪个定理比较适当?
启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。
解:根据正弦定理,得 ACAB sin?ACB=sin?ABC ACsin?ACB AB =sin?ABC 55sin?ACB =sin?ABC 55sin75? = sin(180??51??75?)55sin75? = sin54?[来源:学&科&网] ≈ 65.7(m)答:A、B两点间的距离为65.7米
变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?
老师指导学生画图,建立数学模型。解略:2a km 例
2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法。[来源:学 科 网] 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C、D两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离。??
金太阳新课标资源网
解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得?BCA=?,? ACD=?,?CDB=?,?BDA =?,在?ADC和?BDC中,应用正弦定理得 asin(???)asin(???)AC = sin[180??(?)]= sin(?)asin?asin? BC = sin[180??(?)]= sin(?)计算出AC和BC后,再在?ABC中,应用余弦定理计算出AB两点间的距离
AB = AC2?BC2?2AC?BCcos? 分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
?ACD=30,?CDB=45,变式训练:若在河岸选取相距40米的C、D两点,测得?BCA=60,?BDA =60? 略解:将题中各已知量代入例2推出的公式,得AB=206 评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。
学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。
Ⅲ.课堂练习
课本第14页练习第1、2题
Ⅳ.课时小结
解斜三角形应用题的一般步骤:
(1)分析:理解题意,分清已知与未知,画出示意图
(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解
(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解
Ⅴ.课后作业
课本第22页第1、2、3题 ●板书设计 ??? 金太阳新课标资源网●授后记
高中数学必修五解三角形教案篇三:1高中数学必修5第一章_解三角形全章教案(整理)课题:
1.1.1正弦定理
如图1.1-1,固定?ABC的边CB及?B,使边AC绕着顶点C转动。
思考:?C的大小与它的对边AB的长度之间有怎样的数量关系?
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
从而在直角三角形ABC中,a sin?b sin?c sin
思考:那么对于任意的三角形,以上关系式是否仍然成立?
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当?ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinB?bsinA,则
同理可得
从而asinA?bsinB,csin??bsin?,a sinAbsinBcsinC Ac B
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a sinA?b sinB?c sinC [理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使a?ksinA,b?ksinB,c?ksinC;
(2)a sinA?b sinB?c sinC等价于a sinA?b sinB,c sinC?b sinB,a sinA?c sinC 从而知正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如a?bsinA; sin②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinA?sinB。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
例1.在?ABC中,已知A?450,B?750,a?40cm,解三角形。
例2.在?ABC中,已知a?20cm,b?,A?450,解三角形。
练习:已知?ABC中,sinA:sinB:sinC?1:2:3,求a:b:c ab 练习:1.在?ABC中,已知A?450,C?300,c?10cm,解三角形。2.在?ABC中,已知A?600,B?450,c?20cm,解三角形。3.在?ABC中,已知a?20cm,b?,B?300,解三角形。4.在?ABC 中,已知c?cm,b?20cm,B?450,解三角形。
补充:请试着推理出三角形面积公式(利用正弦)
课题: 1.1.2余弦定理
如图1.1-4,在?ABC中,设BC=a,AC=b,AB=c, 已知a,b和?C,求边c
联系已经学过的知识和方法,可用什么途径来解决这个问题?
用正弦定理试求,发现因A、B均未知,所以较难求边c。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。A ?如图1.1-5,设CB?a,CA?b,AB?c,那么c?a?b,则 c ???c?c?a?ba?b??
?ab?b??2a??b
C
aB ??2a??2 ?a?b?2a?b?2 从而
c2?a2?b2?2abcosC(图1.1-5)同理可证
a2?b2?c2?2bccosA b2?a2?c2?2accosB 于是得到以下定理
余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即
a2?b2?c2?2bccosA b2?a2?c2?2accosB c2?a2?b2?2abcosC 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论: b2?c2?a2 cosA?2bc a2?c2?b2 cosB?b2?a2?c2 cosC? 2 [理解定理] 从而知余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边;
②已知三角形的三条边就可以求出其它角。
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?
若?ABC中,C=900,则cosC?0,这时c2?a2?b2 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
例1.在?ABC 中,已知a ?cB?450,求b及A
练习:在?ABC中,若a2?b2?c2?bc,求角A。
b,A,讨论三角形解的情况 例1.在?ABC中,已知a, 分析:先由sinB? 则C?1800?(A?B)从而c?bsinA可进一步求出B; aasinC 1.当A为钝角或直角时,必须a?b才能有且只有一解;否则无解。2.当A为锐角时,如果a≥b,那么只有一解;
如果a?b,那么可以分下面三种情况来讨论:
(1)若a?bsinA,则有两解;
(2)若a?bsinA,则只有一解;
(3)若a?bsinA,则无解。
(以上解答过程详见课本第9?10页)
评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且
bsinA?a?b时,有两解;其它情况时则只有一解或无解。
练习:(1)在?ABC中,已知a?80,b?100,?A?450,试判断此三角形的解的情况。
(2)在?ABC中,若a?1,c?1,?C?400,则符合题意的b的值有_____个。2(3)在?ABC中,a?xcm,b?2cm,?B?450,如果利用正弦定理解三角形有两解,求x的取值范围。
例2.在?ABC中,已知a?7,b?5,c?3,判断?ABC的类型。
练习:(1)在?ABC中,已知sinA:sinB:sinC?1:2:3,判断?ABC的类型。
(2)已知?ABC满足条件acosA?bcosB,判断?ABC的类型。
例3.在?ABC中,A?600,b? 1
练习:(1)在?ABC中,若a?55,b? 16,且此三角形的面积S?C(2)在?ABC中,其三边分别为a、b、c,且三角形的面积S?
作业
(1)在?ABC中,已知b?4,c?10,B?300,试判断此三角形的解的情况。
(2)设x、x+
1、x+2是钝角三角形的三边长,求实数x的取值范围。
(3)在?ABC中,A?600,a?1,b?c?2,判断?ABC的形状。
(4)三角形的两边分别为3cm,5cm,它们所夹的角的余弦为方程5x2?7x?6?0的根,求这个三角形的面积。
2.2解三角形应用举例
(2)例
1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,?BAC=51?,?ACB=75?。求A、B两点的距离(精确到0.1m)4 a?b?c,求的值 sinA?sinB?sinCa2?b2?c24,求角C 变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30?,灯塔B在观察站C南偏东60?,则A、B之间的距离为多少?
例
3、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。
例
4、如图,在山顶铁塔上B处测得地面上一点A的俯角?=54?40?,在塔底C处测得A处的俯角?=50?1?。已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)
例
3、在?ABC中,求证: a2?b2sin2A?sin2B?;(1)22csinC(2)a2+b2+c2=2(bccosA+cacosB+abcosC)
变式练习1:已知在?ABC中,?B=30?,b=6,c=63,求a及?ABC的面积S 5