§4.7 解三角形的综合应用
最新考纲
考情考向分析
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.以利用正弦定理、余弦定理测量距离、高度、角度等实际问题为主,常与三角恒等变换、三角函数的性质结合考查,加强数学知识的应用性.题型主要为选择题和填空题,中档难度.实际测量中的常见问题
求AB
图形
需要测量的元素
解法
求
竖
直
高
度
底部
可达
∠ACB=α,BC=a
解直角三角形
AB=atan
α
底部不可达
∠ACB=α,∠ADB=β,CD=a
解两个直角三角形
AB=
求
水
平
距
离
山两侧
∠ACB=α,AC=b,BC=a
用余弦定理
AB=
河两岸
∠ACB=α,∠ABC=β,CB=a
用正弦定理AB=
河对岸
∠ADC=α,∠BDC=β,∠BCD=δ,∠ACD=γ,CD=a
在△ADC中,AC=;
在△BDC中,BC=;
在△ABC中,应用
余弦定理求AB
知识拓展
实际问题中的常用术语
1.仰角和俯角
与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).
2.方向角
相对于某正方向的水平角,如南偏东30°,北偏西45°等.
3.方位角
指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).
4.坡度(又称坡比)
坡面的垂直高度与水平长度之比.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.(×)
(2)俯角是铅垂线与视线所成的角,其范围为.(×)
(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(√)
(4)方位角大小的范围是[0,2π),方向角大小的范围一般是.(√)
题组二 教材改编
2.[P11例1]如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50
m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为________
m.答案 50
解析 由正弦定理得=,又∵B=30°,∴AB===50(m).
3.[P13例3]如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h=______米.
答案 a
解析 由题图可得∠PAQ=α=30°,∠BAQ=β=15°,△PAB中,∠PAB=α-β=15°,又∠PBC=γ=60°,∴∠BPA=-=γ-α=30°,∴=,∴PB=a,∴PQ=PC+CQ=PB·sin
γ+asin
β
=a×sin
60°+asin
15°=a.题组三 易错自纠
4.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC等于()
A.10°
B.50°
C.120°
D.130°
答案 D
5.如图所示,D,C,B三点在地面的同一条直线上,DC=a,从C,D两点测得A点的仰角分别为60°,30°,则A点离地面的高度AB=________.答案 a
解析 由已知得∠DAC=30°,△ADC为等腰三角形,AD=a,所以在Rt△ADB中,AB=AD=a.6.在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20
km/h;水的流向是正东,流速是20
km/h,若不考虑其他因素,救生艇在洪水中漂行的方向为北偏东________,速度的大小为________
km/h.答案 60° 20
解析 如图,∠AOB=60°,由余弦定理知OC2=202+202-800cos
120°=1
200,故OC=20,∠COy=30°+30°=60°.题型一 求距离、高度问题
1.(2018·吉林长春检测)江岸边有一炮台高30
m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m.答案 10
解析 如图,OM=AOtan
45°=30(m),ON=AOtan
30°=×30
=10(m),在△MON中,由余弦定理得,MN=
==10
(m).
2.(2017·郑州一中月考)如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,则山高CD=________.答案
解析 由已知得,∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠CAD=β.在△ABC中,由正弦定理得=,即=,∴AC==.在Rt△ACD中,CD=ACsin∠CAD=ACsin
β=.故山高CD为.3.(2018·日照模拟)一船以每小时15
km的速度向东航行,船在A处看到一个灯塔B在北偏东60°的方向上,行驶4
h后,船到达C处,看到这个灯塔在北偏东15°的方向上,这时船与灯塔的距离为________
km.答案 30
解析 如图,由题意知,∠BAC=30°,∠ACB=105°,∴B=45°,AC=60,由正弦定理得=,∴BC=30(km).
思维升华
求距离、高度问题的注意事项
(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.
(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
题型二 求角度问题
典例
如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cos
θ的值为________.
答案
解析 在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得
BC2=AB2+AC2-2AB·AC·cos
120°=2
800,得BC=20.由正弦定理,得=,即sin∠ACB=·sin∠BAC=.由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=.由θ=∠ACB+30°,得cos
θ=cos(∠ACB+30°)
=cos∠ACBcos
30°-sin∠ACBsin
30°=.思维升华
解决测量角度问题的注意事项
(1)首先应明确方位角或方向角的含义;
(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步;
(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.
跟踪训练 如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°的方向上,灯塔B在观察站C的南偏东60°的方向上,则灯塔A在灯塔B的______的方向上.
答案 北偏西10°
解析 由已知∠ACB=180°-40°-60°=80°,又AC=BC,∴∠A=∠ABC=50°,60°-50°=10°,∴灯塔A位于灯塔B的北偏西10°的方向上.
题型三 三角形与三角函数的综合问题
典例
(2018·石家庄模拟)在△ABC中,a,b,c分别是角A,B,C的对边,(2a-c)cos
B-bcos
C=0.(1)求角B的大小;
(2)设函数f(x)=2sin
xcos
xcos
B-cos
2x,求函数f(x)的最大值及当f(x)取得最大值时x的值.
解(1)因为(2a-c)cos
B-bcos
C=0,所以2acos
B-ccos
B-bcos
C=0,由正弦定理得2sin
Acos
B-sin
Ccos
B-cos
Csin
B=0,即2sin
Acos
B-sin(C+B)=0,又C+B=π-A,所以sin(C+B)=sin
A.所以sin
A(2cos
B-1)=0.在△ABC中,sin
A≠0,所以cos
B=,又B∈(0,π),所以B=.(2)因为B=,所以f(x)=sin
2x-cos
2x=sin,令2x-=2kπ+(k∈Z),得x=kπ+(k∈Z),即当x=kπ+(k∈Z)时,f(x)取得最大值1.思维升华
三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形中角的范围,充分利用正弦定理、余弦定理解题.
跟踪训练 设f(x)=sin
xcos
x-cos2.(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.
解(1)由题意知f(x)=-
=-=sin
2x-.由-+2kπ≤2x≤+2kπ,k∈Z,可得-+kπ≤x≤+kπ,k∈Z;
由+2kπ≤2x≤+2kπ,k∈Z,可得+kπ≤x≤+kπ,k∈Z.所以f(x)的单调递增区间是
(k∈Z);
单调递减区间是(k∈Z).
(2)由f=sin
A-=0,得sin
A=,由题意知A为锐角,所以cos
A=.由余弦定理a2=b2+c2-2bccos
A,可得1+bc=b2+c2≥2bc,即bc≤2+,当且仅当b=c时等号成立.
因此bcsin
A≤.所以△ABC面积的最大值为.函数思想在解三角形中的应用
典例
(12分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
思想方法指导 已知两边和其中一边的对角解三角形时,可以设出第三边,利用余弦定理列方程求解;对于三角形中的最值问题,可建立函数模型,转化为函数最值问题解决.
规范解答
解(1)设相遇时小艇航行的距离为S海里,则[1分]
S=
==.[3分]
故当t=时,Smin=10,v==30.即小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小.[6分]
(2)设小艇与轮船在B处相遇.
则v2t2=400+900t2-2·20·30t·cos(90°-30°),[8分]
故v2=900-+.∵0 故可设计航行方案如下: 航行方向为北偏东30°,航行速度为30海里/小时.[12分] 1.(2018·武汉调研)已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得∠ABC=120°,则A,C两地间的距离为() A.10 km B.10 km C.10 km D.10 km 答案 D 解析 如图所示,由余弦定理可得,AC2=100+400-2×10×20× cos 120°=700,∴AC=10.2.(2018·襄阳模拟)如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的() A.北偏东10° B.北偏西10° C.南偏东80° D.南偏西80° 答案 D 解析 由条件及图可知,∠A=∠CBA=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B的南偏西80°.3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是() A.10 海里 B.10 海里 C.20 海里 D.20 海里 答案 A 解析 如图所示,易知,在△ABC中,AB=20,∠CAB=30°,∠ACB=45°,根据正弦定理得 =,解得BC=10.4.(2018·广州模拟)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于() A.240(+1)m B.180(-1)m C.120(-1)m D.30(+1)m 答案 C 解析 如图,∠ACD=30°,∠ABD=75°,AD=60 m,在Rt△ACD中,CD== =60(m),在Rt△ABD中,BD=== =60(2-)m,∴BC=CD-BD=60-60(2-)=120(-1)m.5.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为() A.30° B.45° C.60° D.75° 答案 B 解析 依题意可得AD=20,AC=30,又CD=50,所以在△ACD中,由余弦定理得cos∠CAD= ===,又0°<∠CAD<180°,所以∠CAD=45°,所以从顶端A看建筑物CD的张角为45°.6.(2018·郑州质检)如图所示,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于() A.5 B.15 C.5 D.15 答案 D 解析 在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=15.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故选D.7.轮船A和轮船B在中午12时同时离开海港C,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h,15 n mile/h,则下午2时两船之间的距离是________n mile.答案 70 解析 设两船之间的距离为d,则d2=502+302-2×50×30×cos 120°=4 900,∴d=70,即两船相距70 n mile.8.(2018·哈尔滨模拟)如图,某工程中要将一长为100 m,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长________m.答案 100 解析 设坡底需加长x m,由正弦定理得=,解得x=100.9.(2018·青岛模拟)一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时________海里. 答案 10 解析 如图所示,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在Rt△ABC中,得AB=5,于是这艘船的速度是=10(海里/时). 10.如图,在山底A点处测得山顶仰角∠CAB=45°,沿倾斜角为30°的斜坡走1 000米至S点,又测得山顶仰角∠DSB=75°,则山高BC为________米. 答案 1 000 解析 由题图知∠BAS=45°-30°=15°,∠ABS=45°-(90°-∠DSB)=30°,∴∠ASB=135°,在△ABS中,由正弦定理可得=,∴AB=1 000,∴BC==1 000.11.(2018·泉州质检)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2分钟,从D沿DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米. 答案 50 解析 如图,连接OC,在△OCD中,OD=100,CD=150,∠CDO=60°.由余弦定理得OC2=1002+1502-2×100×150×cos 60°=17 500,解得OC=50.12.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度; (2)求sin α的值. 解(1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.在△ABC中,由余弦定理,得 BC2=AB2+AC2-2AB·AC·cos∠BAC =122+202-2×12×20×cos 120°=784,解得BC=28.所以渔船甲的速度为=14(海里/小时). (2)在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得=,即sin α===.13.(2018·德阳模拟)如图,在水平地面上有两座直立的相距60 m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角.则从塔BB1的底部看塔AA1顶部的仰角的正切值为________;塔BB1的高为________ m.答案 45 解析 设从塔BB1的底部看塔AA1顶部的仰角为α,则AA1=60tan α,BB1=60tan 2α.∵从两塔底部连线中点C分别看两塔顶部的仰角互为余角,∴△A1AC∽△CBB1,∴=,∴AA1·BB1=900,∴3 600tan αtan 2α=900,∴tan α=,tan 2α=,则BB1=60tan 2α=45.14.如图,据气象部门预报,在距离某码头南偏东45°方向600 km处的热带风暴中心正以20 km/h的速度向正北方向移动,距风暴中心450 km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为________h.答案 15 解析 记现在热带风暴中心的位置为点A,t小时后热带风暴中心到达B点位置,在△OAB中,OA=600,AB=20t,∠OAB=45°,根据余弦定理得OB2=6002+400t2-2×600×20t×,令OB2≤4502,即4t2-120t+1 575≤0,解得≤t≤,所以该码头将受到热带风暴影响的时间为-=15.15.如图所示,经过村庄A有两条夹角为60°的公路AB,AC,根据规划要在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ.(1)将AN,AM用含θ的关系式表示出来; (2)如何设计(即AN,AM为多长时),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)? 解(1)∠AMN=θ,在△AMN中,由正弦定理,得 ==,所以AN=sin θ,AM=sin(120°-θ). (2)AP2=AM2+MP2-2AM·MP·cos∠AMP =sin2(θ+60°)+4-sin(θ+60°)cos(θ+60°) =[1-cos(2θ+120°)]-sin(2θ+120°)+4 =-[sin(2θ+120°)+cos(2θ+120°)]+ =-sin(2θ+150°),θ∈(0°,120°)(其中利用诱导公式可知sin(120°-θ)=sin(θ+60°)),当且仅当2θ+150°=270°,即θ=60°时,工厂产生的噪声对居民的影响最小,此时AN=AM=2千米. 16.已知△ABC的三内角A,B,C所对的边分别是a,b,c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.(1)求角B的大小; (2)若b=,求a+c的取值范围. 解(1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,∴(2a+c)cos B+bcos C=0,由正弦定理,得cos B(2sin A+sin C)+sin Bcos C=0,∴2cos Bsin A+cos Bsin C+sin Bcos C=0,即2cos Bsin A=-sin(B+C)=-sin A.∵A∈(0,π),∴sin A≠0,∴cos B=-.∵0 b2=3=a2+c2-2accos =a2+c2+ac=(a+c)2-ac≥(a+c)2-2=(a+c)2,当且仅当a=c时取等号. ∴(a+c)2≤4,故a+c≤2.∴a+c的取值范围是(,2].