高中数学 第二章 第10课时 等差数列和等比数列的综合应用教案 苏教版必修5大全

时间:2019-05-12 17:42:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 第二章 第10课时 等差数列和等比数列的综合应用教案 苏教版必修5大全》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 第二章 第10课时 等差数列和等比数列的综合应用教案 苏教版必修5大全》。

第一篇:高中数学 第二章 第10课时 等差数列和等比数列的综合应用教案 苏教版必修5大全

盐城市文峰中学高中数学教学案

第二章 数列

第10课时 等差数列和等比数列的综合应用

教学目标:

将等比数列的通项公式和前n项求和公式应用到应用题的有关计算中去;增强学生的应用意识,提高学生的实际应用能力.教学重点:

等比数列通项公式和前n项和公式的应用.教学难点:

利用等比数列有关知识解决一些实际问题 教学过程: Ⅰ.问题情境:

Ⅱ.建构数学

Ⅲ.数学应用

例1水土流失是我国西部大开发中最突出的生态问题,全国9100万亩的坡耕地需要退耕还林,其中西部地区占70%,国家确定2000年西部退耕土地面积为515万亩,以后每年退耕土地面积递增12%,那么从2000年起到2005年底,西部地区退耕还林的面积共有多少万亩(精确到万亩)?

练习: 某地区荒山2200亩,从1995年开始每年春季在荒山植树造林,第一年植树100亩,以后每一年比上一年多植树50亩.(1)若所植树全部都成活,则到哪一年可将荒山全部绿化?(2)若每亩所植树苗、木材量为2立方米,每年树木木材量的自然增长率为20%,那么全部绿化后的那一年年底,该山木材总量为S,求S的表达式.8(3)若1.2≈4.3,计算S(精确到1立方米).例2 某人2004年初向银行申请个人住房公积金贷款20万元购买住房,月利率3.375%。,按复利计算,每月等额还贷一次,并从贷款后的次月初开始还贷,如果10年还清,那么每月应还贷多少元?

练习: 用分期付款的方式购买家电一件,价为1150元,购买当天先付150元,以后每月这一天都交付50元,并加付欠款利息,月利率为1%,若交付150元后的每一个月开始算分期付款的第一个月,问分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家用电器实际花费多少钱?

Ⅳ.课时小结

Ⅴ.课堂检测

Ⅵ.课后作业 书本P56 3 7

第二篇:高中数学必修5教案 等比数列 第2课时

等比数列第2课时

授课类型:新授课

●教学目标

知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法

过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。

情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。●教学重点

等比中项的理解与应用 ●教学难点

灵活应用等比数列定义、通项公式、性质解决一些相关问题 ●教学过程 Ⅰ.课题导入

首先回忆一下上一节课所学主要内容:

1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠an0),即:=q(q≠0)

an12.等比数列的通项公式:ana1q3.{an}成等比数列列的必要非充分条件

4.既是等差又是等比数列的数列:非零常数列 Ⅱ.讲授新课

1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab(a,b同号)

如果在a与b中间插入一个数G,使a,G,b成等比数列,则

n1(a1q0),anamqnm(amq0)

an1=q(nN,q≠0)

“an≠0”是数列{an}成等比数anGbG2abGab,aG反之,若G=ab,则≠0)

[范例讲解] 课本P58例4 证明:设数列an的首项是a1,公比为q1;bn的首项为b1,公比为q2,那么数列anbn的第n项与第n+1项分别为: 2Gb2,即a,G,b成等比数列。∴a,G,b成等比数列G=ab(a·baGa1q1n1b1q2与a1q1b1q2即为a1b1(q1q2)n1与a1b1(q1q2)nn1nnan1bn1a1b1(q1q2)nq1q2.n1anbna1b1(q1q2)它是一个与n无关的常数,所以anbn是一个以q1q2为公比的等比数列 拓展探究:

对于例4中的等比数列{an}与{bn},数列{

an}也一定是等比数列吗? bnana,则cn1n1 bnbn1探究:设数列{an}与{bn}的公比分别为q1和q2,令cncn1bn1abqa(n1)(n1)1,所以,数列{n}也一定是等比数列。ancnanbnq2bnbn22an1课本P59的练习4 已知数列{an}是等比数列,(1)a5a3a7是否成立?a5a1a9成立吗?为什么?

(2)anan1an1(n1)是否成立?你据此能得到什么结论?

2anankank(nk0)是否成立?你又能得到什么结2论?

结论:2.等比数列的性质:若m+n=p+k,则amanapak 在等比数列中,m+n=p+q,am,an,ap,ak有什么关系呢? 由定义得:ama1q2m1p1k1 ana1qn1apa1q aka1q

amana1qmn

2,apaka12qpk2则amanapak

Ⅲ.课堂练习

课本P59-60的练习3、5 Ⅳ.课时小结

1、若m+n=p+q,amanapaq

2、若an,bn是项数相同的等比数列,则anbn、{Ⅴ.课后作业

课本P60习题2.4A组的3、5题

an}也是等比数列 bn●板书设计 ●授后记

第三篇:2012高中数学 2.4等比数列(第2课时)教案 新人教A版必修5

2.4等比数列教案

(二)教学目标

(一)知识与技能目标

进一步熟练掌握等比数列的定义及通项公式;

(二)过程与能力目标

利用等比数列通项公式寻找出等比数列的一些性质

(三)方法与价值观 培养学生应用意识. 教学重点,难点

(1)等比数列定义及通项公式的应用;

(2)灵活应用等比数列定义及通项公式解决一些相关问题. 教学过程

二.问题情境

221.情境:在等比数列{an}中,(1)a5a1a9是否成立?a5a3a7是否成立? 2(2)anan2an2(n2)是否成立?

2.问题:由情境你能得到等比数列更一般的结论吗? 三.学生活动

2822对于(1)∵a5a1q4,a9a1q8,∴a1a9a1,a5q(a1q4)2a5a1a9成立. 2同理 :a5a3a7成立.

对于(2)ana1qn1,an2a1qn3,an2a1qn1,22n222∴an2an2a1qn3a1qn1a1,anq(a1qn1)2anan2an2(n2)成立.

一般地:若mnpq(m,n,q,pN),则amanapaq. 四.建构数学

1.若{an}为等比数列,mnpq(m,n,q,pN),则amanapaq. 由等比数列通项公式得:ama1qm1 , ana1qn1,apa1q故amana1q2mn22p1 ,aqa1qq1,且apaqa1qpq2,∵mnpq,∴amanapaq.

amqmn. ana由等比数列的通项公式知:,则mqmn .

an2.若{an}为等比数列,则五.数学运用 1.例题:

2例1.(1)在等比数列{an}中,是否有anan1an1(n2)?(2)在数列{an}中,对于任意的正整数n(n2),都有anan1an1,那么数列{an}一定是等比数列.

解:(1)∵等比数列的定义和等比数列的通项公式数列{an}是等比数列,∴2即anan1an1(n2)成立.

an1an,anan1用心 爱心 专心 1

2(2)不一定.例如对于数列0,0,0,,总有anan1an1,但这个数列不是等比数列.

例2. 已知{an}为GP,且a58,a72,该数列的各项都为正数,求{an}的通项公式。解:设该数列的公比为q,由

211a7 q75得q2,又数列的各项都是正数,故q,842a5n5n8则an8()(). 1212例3.已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数。解:由题意可以设这三个数分别为

a,a,aq,得: qaa3qaaq27 2122a(1q)91aa2a2q291q22q12∴9q482q290,即得q29或q,91∴q3或q,3故该三数为:1,3,9或1,3,9或9,3,1或9,3,1.

a说明:已知三数成等比数列,一般情况下设该三数为,a,aq.

q例4. 如图是一个边长为1的正三角形,将每边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图形(2),如此继续下去,得图形(3)……求第n个图形的边长和周长.

解:设第n个图形的边长为an,周长为cn.

由题知,从第二个图形起,每一个图形的边长均为上一个图形的边长的等比数列,首项为1,公比为

1,∴数列{an}是31. 31n1∴an().

3要计算第n个图形的周长,只要计算第n个图形的边数. 第一个图形的边数为3,从第二个图形起,每一个图形的边数均为上一个图形的边数的4倍,∴第n个图形的边数为34n1.

14cn()n1(34n1)3()n1.

332.练习:

1.已知{an}是等比数列且an0,a5a69,则log3a1log3a2log3a10 .

2.已知{an}是等比数列,a4a7512,a3a8124,且公比为整数,则a10 .

3.已知在等比数列中,a34,a654,则a9 . 五.回顾小结:

1.等比数列的性质(要和等差数列的性质进行类比记忆).

用心 爱心 专心

题,习题第6,8,9,10题. 用心 爱心 专心 3 六.课外作业:书练习第1,2七板书设计

第四篇:高中数学必修5高中数学必修5《等差数列复习》教案

等差数列复习

知识归纳

1.等差数列这单元学习了哪些内容?

定等差数列通义项前n项和主要性质

2.等差数列的定义、用途及使用时需注意的问题: n≥2,an -an-1=d(常数)3.等差数列的通项公式如何?结构有什么特点? an=a1+(n-1)d

an=An+B(d=A∈R)4.等差数列图象有什么特点?单调性如何确定?

d<0annannd>05.用什么方法推导等差数列前n项和公式的?公式内容? 使用时需注意的问题? 前n 项和公式结构有什么特点? n(a1an)n(n1)d na122SnSn=An2+Bn(A∈R)注意: d=2A!6.你知道等差数列的哪些性质? 等差数列{an}中,(m、n、p、q∈N+): ①an=am+(n-m)d ;

②若 m+n=p+q,则am+an=ap+aq ; ③由项数成等差数列的项组成的数列仍是等差数列;

④ 每n项和Sn , S2n-Sn ,S3n-S2n …组成的数列仍是等差数列.知识运用 1.下列说法:(1)若{an}为等差数列,则{an2}也为等差数列(2)若{an} 为等差数列,则{an+an+1}也为等差数列(3)若an=1-3n,则{an}为等差数列.(4)若{an}的前n和Sn=n2+2n+1, 则{an}为等差数列.其中正确的有((2)(3))2.等差数列{an}前三项分别为a-1,a+2,2a+3, 则an= 3n-2.3.等差数列{an}中, a1+a4+a7=39,a2+a5+a8=33, 则a3+a6+a9=27.4.等差数列{an}中, a5=10, a10=5, a15=0.5.等差数列{an}, a1-a5+a9-a13+a17=10,a3+a15= 20.6.等差数列{an}, S15=90, a8=.7.等差数列{an}, a1= -5, 前11项平均值为5, 从中抽去一项,余下的平均值为4, 则抽取的项为

(A)

A.a11

B.a10

C.a9

D.a8 8.等差数列{an},Sn=3n-2n2, 则(B)A.na1<Sn<nan

B.nan<Sn <na1

C.nan<na1<Sn

D.Sn<nan<na1 能力提高

1.等差数列{an}中, S10=100, S100=10, 求 S110.2.等差数列{an}中, a1>0, S12>0, S13<0, S1、S2、… S12哪一个最大?

课后作业《习案》作业十九.

第五篇:高中数学 等差数列教案 苏教版必修5

等差数列(2)

一、创设情景,揭示课题

1.复习等差数列的定义、通项公式(1)等差数列定义

(2)等差数列的通项公式:ana1(n1)d(anam(nm)d或andnp(p是常数))(3)公差d的求法:① dan-an1 ②d2.等差数列的性质:

(1)在等差数列an中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列an中,相隔等距离的项组成的数列是AP

如:a1,a3,a5,a7,……;a3,a8,a13,a18,……;

ana1aam ③dn n1nmanam(mn);

nm(4)在等差数列an中,若m,n,p,qN且mnpq,则amanapaq(3)在等差数列an中,对任意m,nN,anam(nm)d,d3.问题:(1)已知a1,a2,a3,an,an1,,a2n是公差为d的等差数列。①an,an1,,a2,a1也成等差数列吗?如果是,公差是多少? ②a2,a4,a6,a2n也成等差数列吗?如果是,公差是多少?(2)已知等差数列an的首项为a1,公差为d。

①将数列an中的每一项都乘以常数a,所得的新数列仍是等差数列吗?如果是,公差是多少?

②由数列an中的所有奇数项按原来的顺序组成的新数列cn是等差数列吗?如果是,它的首项和公差分别是多少?

(3)已知数列an是等差数列,当mnpq时,是否一定有amanapaq?(4)如果在a与b中间插入一个数A,使得a,A,b成等差数列,那么A应满足什么条件?

二、研探新知

1.等差中项的概念:

如果a,A,b成等差数列,那么A叫做a与b的等差中项。其中A a,A,b成等差数列A2.一个有用的公式:

(1)已知数列{an}是等差数列

①2a5a3a7是否成立?2a5a1a9呢?为什么? ②2anan1an1(n1)是否成立?据此你能得到什么结论? ③2anankank(nk0)是否成立??你又能得到什么结论? 求证:①amanapaq ②apaq(pq)d 证明:①设首项为a1,则(2)在等差数列an中,d为公差,若m,n,p,qN且mnpq

ab 2ab. 2amana1(m1)da1(n1)d2a1(mn2)dapaqa1(p1)da1(q1)d2a1(pq2)d

∵ mnpq ∴amanapaq

五、归纳整理,整体认识

本节课学习了以下内容:

aba,A,b,成等差数列,等差中项的有关性质意义 22.在等差数列中,mnpqamanapaq(m,n,p,qN)1.A3.等差数列性质的应用;掌握证明等差数列的方法。

六、承上启下,留下悬念

1.在等差数列{an}中, 已知a3+a4+a5+a6+a7=450, 求a2+a8及前9项和S9.解:由等差中项公式:a3+a7=2a5,a4+a6=2a5由条件a3+a4+a5+a6+a7=450, 得5a5=450, a5=90, ∴a2+a8=2a5=180.S9=a1+a2+a3+a4+a5+a6+a7+a8+a9

=(a1+a9)+(a2+a8)+(a3+a7)+(a4+a6)+a5=9a5=810.七、板书设计(略)

八、课后记:

判断一个数列是否成等差数列的常用方法 1.定义法:即证明 anan1d(常数)

例:已知数列an的前n项和Sn3n22n,求证数列an成等差数列,并求其首项、公差、通项公式。解:

n2a1S1321 当时

anSnSn13n22n[3(n1)22(n1)]6n5

n1时 亦满足

∴ an6n5

首项a11

anan16n5[6(n1)5]6(常数)

∴an成AP且公差为6 2.中项法: 即利用中项公式,若2bac 则a,b,c成AP。

111bccaab 例:已知,成AP,求证,也成AP。

abcabc111211 证明: ∵,成AP ∴ 化简得:2acb(ac)

abcbacbcabbcc2a2abb(ac)a2c22aca2c2

acacacac(ac)2(ac)2acbccaab= ∴,也成AP 2b(ac)acbabc2 3.通项公式法:利用等差数列得通项公式是关于n的一次函数这一性质。

例:设数列an其前n项和Snn22n3,问这个数列成AP吗?

解:n1时 a1S12

n2时 anSnSn12n3,a1不满足an2n3

n12 ∴ an

∴ 数列an不成AP 但从第2项起成AP。

n22n3

下载高中数学 第二章 第10课时 等差数列和等比数列的综合应用教案 苏教版必修5大全word格式文档
下载高中数学 第二章 第10课时 等差数列和等比数列的综合应用教案 苏教版必修5大全.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学 等差数列教案 苏教版必修5

    等差数列(4) 一、创设情景,揭示课题,研探新知 1.等差数列的定义:(1)等差数列的通项公式;(2)等差数列的求和公式。 2.等差数列的性质: 已知数列{an}是等差数列,则 (1)对任意m,nN,anam(nm)d,dan......

    高中数学必修5人教A教案2.4等比数列

    2.4等比数列 (一)教学目标 1`.知识与技能:理解等比数列的概念;掌握等比数列的通项公式;理解这种数列的模型应用. 2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个具体数列......

    高中数学必修5新教学案:2.2等差数列(第2课时)(推荐)

    必修5 2.2等差数列(学案) (第2课时) 【知识要点】 1.等差中项的概念; 2.等差数列的性质; 3.等差数列的判定方法; 4.等差数列的常用设法. 【学习要求】 1.理解等差中项的概念; 2.探......

    高中数学 2.2《等差数列》教案 新人教A数学必修5

    2.2等 差 数 列 教学目标 1.明确等差数列的定义. 2.掌握等差数列的通项公式,解决知道an,a1,d,n中的三个,求另外一个的问题 3.培养学生观察、归纳能力. 教学重点 1.等差数列......

    高中数学《等差数列》教案2 苏教版必修5

    第 4 课时:§2.2等差数列(2)【三维目标】:一、知识与技能1.进一步熟练掌握等差数列的通项公式及推导公式,掌握等差数列的特殊性质及应用;掌握证明等差数列的方法;2.明确等差中项的......

    高中数学必修5高中数学必修5《2.2等差数列(二)》教案

    2.2等差数列(二) 一、教学目标 1、掌握"判断数列是否为等差数列"常用的方法; 2、进一步熟练掌握等差数列的通项公式、性质及应用. 3、进一步熟练掌握等差数列的通项公式、性质及应......

    高中数学《2.4等比数列》第1课时评估训练 新人教A版必修5[推荐5篇]

    2.4 等比数列第1课时等比数列的概念及通项公式双基达标 限时20分钟1,3,63,则它的第四项是A.1B.83C.93D.123解析 a=aa2643q=a3a=3×==30=1.13答案 A2.已知等比数列{an}满足a1+a2=3,a2+a3=6,则a......

    2012高中数学 2.5等比数列的前n项和(第1课时)教案 新人教A版必修5

    等比数列前 项和(第一课时) 一、课标要求: 知识与技能:(1)通过教学使学生掌握等比数列前 项和公式的推导过程. (2)通过教学解决等比数列的a1,q,n,an,Sn 中知道三个数求另外两个数的一......