河北省衡水中学高中数学 2.1.2指数函数及其性质(第二课时)强化作业 新人教A版必修1

时间:2019-05-12 05:24:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《河北省衡水中学高中数学 2.1.2指数函数及其性质(第二课时)强化作业 新人教A版必修1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《河北省衡水中学高中数学 2.1.2指数函数及其性质(第二课时)强化作业 新人教A版必修1》。

第一篇:河北省衡水中学高中数学 2.1.2指数函数及其性质(第二课时)强化作业 新人教A版必修1

河北省衡水中学高一数学必修一强化作业:2.1.2指数函数及其性质

(第二课时)

一、选择题

1.函数y1的定义域为()2x1

A.RB.,C.,0D.x|xR且x0

2.函数y1()x2的定义域为()2

A.,1 B.(,1)C.(1,)D.1,

3.当x>0时,函数y(a1)的值总大于1,则a的取值范围是()

A、0a1B、a1

C、0a2D、a2

4.函数y=x1的值域是()2x1

A、(-,1)B、(-,0)(0,+)

C、(-1,+)D、(-,-1)(0,+)

5.若指数函数ya在[-1,1]上的最大值与最小值的差是1,则底数a等于 x()

A.151 B.22C.151 D.22

6.下列各不等式中正确的是()

12111321323222A、(3>()3B、C、()2>23D、(2<232222

7.若指数函数ya在[0,1]上的最大值与最小值的和是3,则底数a等于()x23

A.151 B.C.2 22D. 51 2

二.填空题

-0.10.28.对于正数a满足a>a,则a的取值范围是。

9.对于x<0,f(x)(a1)1恒成立,则a的取值范围是。x

10.90.4810.比较大小:y14,y28,y32 1.5。1

11.函数y1

10x11的定义域为。

三.解答题

12.求下列函数的定义域:

x1(1)y10x1;(2)y6

2x1

13.求下列函数的值域:

(1)y2x1x

2x1;(2)y4x6210

14.设0x2,求函数y4x1

22x15的最大值和最小值。

m3x1115.若函数y的定义域为R,求实数m的取值范围。x1m31

2.1.2指数函数及其性质(第二课时)

1.D

【解析】提示2x10

2.A x

【解析】提示1

220 3.D4.D5.D6.D

7.C

【解析】提示:a0a13

8.0<a<19.a>010.y1y3y2

11.x|x1 12.(1)解:因为x10

所以x1 故定义域为x|x1

(2)因为x20

2x10解得x2且x0 故定义域为x|x2且x0

13.(1)(-1,1)(2)(,+∞)

【解析】

提示:换元:令t2x则t0 14.当x=1时,最小值为3; 当x=2时,最大值为5 15.m0

第二篇:高中数学 2.1.2指数函数及其性质(二)教案 新人教A版必修1

2.1.2指数函数及其性质 第2课时

教学过程:

1、复习指数函数的图象和性质

2、例题

例1:(P66例7)比较下列各题中的个值的大小

2.5 3(1)1.7 与 1.7(2)0.80.1(3)1.70.3 与0.8

0.2

与 0.9

3.1 解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y1.7x的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5864y1.7x5102-10-50-2-4-6-8的点的上方,所以 1.72.51.73.2.5解法2:用计算器直接计算:1.7所以,1.72.53.77 1.734.91

1.73

解法3:由函数的单调性考虑

因为指数函数y1.7在R上是增函数,且2.5<3,所以,1.7x2.51.73

仿照以上方法可以解决第(2)小题.注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合.0.33.1 由于1.7=0.9不能直接看成某个函数的两个值,因此,在这两个数值间找到1,0.33.1把这两数值分别与1比较大小,进而比较1.7与0.9的大小.思考:

1、已知a0.8,b0.8,c1.2,按大小顺序排列a,b,c.2.比较a与a的大小(a>0且a≠0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.例2(P67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?

分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题: 1999年底 人口约为13亿

经过1年 人口约为13(1+1%)亿

第三篇:高中数学《指数函数》教案1 新人教A版必修1

3.1.2指数函数

(二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程:

本节课为习题课,可分以下几个方面加以练习: 备选题如下:

1、关于定义域

x(1)求函数f(x)=11的定义域

9(2)求函数y=1x的定义域

51x1(3)函数f(x)=3-x-1的定义域、值域是……()

A.定义域是R,值域是R

B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1)

2、关于值域

(1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞)

B.(-∞,1) C.(0,1)

D.(1,+∞)

(5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像

用心 爱心 专心 1

(1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象()

A.向右平移3个单位

B.向左平移3个单位 C.向右平移8个单位

D.向左平移8个单位

(2)函数y=|2x-2|的图象是()

(3)当a≠0时,函数y=ax+b和y=bax的图象只可能是()

(4)当0

B.第二象限 C.第三象限

D.第四象限

(5)若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),则b=______.(6)已知函数y=(12)|x+2|.

①画出函数的图象;

②由图象指出函数的单调区间并利用定义证明.(7)设a、b均为大于零且不等于1的常数,下列命题不是真命题的是()

用心 爱心 专心

A.y=a的图象与y=a的图象关于y轴对称

B.若y=a的图象和y=b的图象关于y轴对称,则ab=1 C.若a2x-xxx>a22-1,则a>1 ,则a>b D.若a>b

24、关于单调性

(1)若-1

A.5-x<5x<0.5x C.5<5<0.5x-xx

B.5x<0.5x<5-x D.0.5<5<5

x-xx(2)下列各不等式中正确的是() A.()3()3()3

252C.()3()3()3 52212121211

B.()3()3()3

225

D.()3()3()3

***

1211(x+1)(3-x)(3).函数y=(2-1)的单调递增区间是()

A.(1,+∞)C.(1,3)

B.(-∞,1)

D.(-1,1)

(4).函数y=()2xxx2为增函数的区间是()

(5)函数f(x)=a-3a+2(a>0且a≠1)的最值为______.(6)已知y=(数.(7)比较52x12x12)xx22+1,求其单调区间并说明在每一单调区间上是增函数还是减函与5x22的大小

5、关于奇偶性

(1)已知函数f(x)= m21x2x为奇函数,则m的值等于_____ 11(1)如果82 x2x=4,则x=____

用心 爱心 专心 3

6阶段检测题: 可以作为课后作业: 1.如果函数y=ax(a>0,a≠1)的图象与函数y=bx(b>0,b≠1)的图象关于y轴对称,则有 A.a>b B.a

3(3x-1)(2x+1)

≥1},则集合M、N的关系是

B.MN D.MN

3.下列说法中,正确的是

①任取x∈R都有3x>2x ②当a>1时,任取x∈R都有ax>a-x ③y=(3)-x是增函数 ④y=2|x|的最小值为1 ⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴

A.①②④ C.②③④

B.④⑤ D.①⑤

4.下列函数中,值域是(0,+∞)的共有 ①y=31 ②y=(A.1个 x1)③y=1()④y=3x

B.2个 x11xC.3个

D.4个

5.已知函数f(x)=a1-x(a>0,a≠1),当x>1时恒有f(x)<1,则f(x)在R上是 A.增函数 B.减函数

C.非单调函数 D.以上答案均不对

二、填空题(每小题2分,共10分)6.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如下图,则a、b、c、d、1之间从小到大的顺序是__________.用心 爱心 专心 4

7.函数y=ax1的定义域是(-∞,0],则a的取值范围是__________.8.函数y=2x+k-1(a>0,a≠1)的图象不经过第四象限的充要条件是__________.9.若点(2,14)既在函数y=2ax+b的图象上,又在它的反函数的图象上,a=________,b=________.10.已知集合M={x|2x2+x≤(14)

x-

2,x∈R},则函数y=2x的值域是__________.三、解答题(共30分)11.(9分)设A=am+a-m,B=an+a-n(m>n>0,a>0且a≠1),判断A,B的大小.12.(10分)已知函数f(x)=a-

22x1(a∈R),求证:对任何a∈R,f(x)为增函数.x1213.(11分)设0≤x≤2,求函数y=42a2xa21的最大值和最小值.课堂练习:(略)小结: 课后作业:(略)

用心 爱心 专心 则

第四篇:河北省衡水中学高中数学 第一章 集合与函数概念综合训练强化作业 新人教A版必修1

河北省衡水中学高一数学必修一强化作业:第一章 集合与函数概念

综合训练(1)

一、选择题

*1.已知全集UN,集合A=x|x2n,nN*,B=x|x4n,nN*,则()

AUABBU(CUA)B

CUA(CUB)DU(CUA)(CUB)

2.设f(x)是定义在R上的函数,则下列叙述正确的是()

Af(x)f(x)是奇函数

Bf(x)/f(x)是奇函数

Cf(x)f(x)是偶函数

Df(x)f(x)是偶函数

3.已知y(f)x,,x那a么b集合 (x,y)|yf(x),xa,b(x,y)|x2中所含元素的个数是()

A0B 1C 0或1D 1或2

4.函数yx4x6,x1,5的值域为()2

A 2, B,2C2,11D2,11

5.已知函数f(x)满足f(ab)f(a)

()

A 2(pq)Bp(pq)Cpq Dpq

6.已知f(x)=

22f(且b)f(2)p,f(3)q,则f(36)等于22x3,x9,则f(5)的值为()f[f(x4)],x91

A4B6C8D11

二、填空题

7.设函数yf(x)是偶函数,它在0,1上的图像如图所示,则它在1,0上的解析式是

8若函数f(x)=

9.设集合A,B都是U=1,2,3,4的子集,已知(CUA)(CUB)=2,(CUA)B=1,则A=

10.Ay|yx1,xR,B(x,y)|yx1,xR则A

三、解答题

11.已知UR,且Ax|4x4,Bx|x1,或x3,求(1)AB(2)

x1(x2007),则ff2006的值为 2007(x2007)

CU(AB)

x2

12.已知函数f(x)=,求: 2

1x

⑴f(x)+f()的值;

⑵f(1)f(2)f(3)f(4)+f()+f()+f()的值。

1x

121314

13.设yxmxn(m,nR),当y0时,对应x值的集合为{2,1},(1)求m,n的值;

(2)当x为何值时,y取最小值,并求此最小值。

14.已知集合AxR|xax10,B1,2,且AB,求实数a的取值范围。



15.(实验)定义在实数集上的函数f(x),对任意x,yR,有

f(xy)f(xy)2f(x)f(y)且f(0)0。

(1)求证f(0)1;(2)求证:yf(x)是偶函数

综合训练(1)答案

1.C 2.D 3.C 4.D

5.解:f(ab)f(a)f(b)且f(2)p,f(3)q,f23f6pq,f66362p+q, 答案为A。6.解:

f5ff9f6ff10f7ff11f8=ff12f96答案为B解:fx是偶函数,fx过1,1,0,2两点,设f

xkxb,f(x)=x+2。

8.解:ff

2006f20072008。答案为2008

9.3,410. 三:解答题:

11.AB=

x|4x1,或3x4

;

因为AB =12.解(1)

x|xR=R,所以CU(AB)=。

x2

2

11x2x11f(x)f112x=1x21x2x

1f(x)f

x的值是1.所以

(2)由(1)知,f(2)f=1,f(3)f=1,f

1

213

4f

11()=1,又因为f1,42

所以f(1)+f(2)+f(3)+ f(4)+ f()ff

1371的值是。

24

3131

13.(1)(2)yx3x2x,当x,y的最小是。m3,n2

2424

14.解:AB,A,或A ,当A,a40,a24,2a2,当A时,A1,11a,111,a1,综上2a2.15(1)令xy0f

0f02f0,f00,f01。

(2)令x0,yx,fxfx2f0fx2fx

fxfx,fx

是偶函数。

第五篇:河北省衡水中学高中数学 1.3.1函数的最值(第一课时)学案 新人教A版必修1

河北省衡水中学高一数学必修一学案:1.3.1函数的最值(第一课时)例1已知函数f(x)3x212x5,当自变量x在下列范围内取值时,求函数的 最大值和最小值:

(1)xR;(2)[0,3];(3)[1,1]

变式迁移1求f(x)x22ax1在区

间[0,2]上的最大值和最小值。

例2.已知函数f(x)x23x5,求

x[t,t1]时函数的最小值。

2.已知二次函数f(x)ax22ax1在区间[-3,2]上的最大值为4,求a的值.

例3.(1)已知关于x的方程

x22mx4m260的两根为,,试求(1)(1)的最值.

(2)若3x2y9x,且pxy有 最大值,求p的最大值. 222222

例4.求下列各函数的值域: 1.y322xx2 2.yx2x1

随堂练习:

1.函数f(x)ax22ax1(a0)在区间[3,2]上有最大值4,则a=_______.2.函数f(x)x22ax(1a)(a0)在区间[0,1]上有最大值2,则a=_______.3.函数f(x)ax22ax1在区间[3,2]上有最小值0,则a=_______.

下载河北省衡水中学高中数学 2.1.2指数函数及其性质(第二课时)强化作业 新人教A版必修1word格式文档
下载河北省衡水中学高中数学 2.1.2指数函数及其性质(第二课时)强化作业 新人教A版必修1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐