河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1

时间:2019-05-14 00:45:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1》。

第一篇:河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1

高一数学必修一学案:1.1.1集合的含义与表示

(一)一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。

二、自学导引:

1.集合的含义:

一般的,我们把研究统称为;把叫做集合(简称集)

2.集合的相等关系:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

3.如果a是集合A的元素,就说a集合A,记作:

如果a不是集合A的元素,就说a集合A,记作:

4.常用数集及表示符号

0;集合还可以用文氏图来表

示。

常用数集属于(aA)

集元素与集合的关系合不属于(aA)

确定性

互异性

无序性

6.集合元素的三个性质:

(1)确定性:设A是一个给定的集合,x是某一具体对象。则x或者是A的元素,x或者不

是A的元素,两种情况必有一种且只有一种情况成立。

(2)互异性:“集合的元素必须是互异的”,就是说“对于一个给定集合,它的任何两个元

素都是不同的”。如方程x210的解构成的集合为1,而不能记为1,1

a,b,c与b,c,a是同一集合。(3)无序性:集合与它的元素的排列顺序无关,如集合

三、典例剖析

例1.考察下列每组对象能否构成一个集合:

(1)著名的数学家;

(2)某校2007年在校的所有高个子同学;

(3)不超过20的非负数;

(4)方程x290在实数范围内的解;

(5)直角坐标平面内第一象限的一些点;

(6)的近似值的全体。

变式训练

1.下列各组对象:①接近于0的数的全体;②某一班级内视力较好的同学;③平面内到点O的距离等于2的点的全体;④所有锐角三角形;⑤太阳系内的所有行星。其中能构成集合的组数是()

A.2组B.3组C.4组D.5组

例2.(1)已知a∈N,b∈N,(a+b)∈N吗?

(2)已知a∈N,b∈Z,(a+b)∈Z吗?

变式训练:

2.已知a∈Q,b∈R,试判断元素a+b与集合Q,R的关系。

例3。已知Aa2,2a5a,12,且3A,求实数a的值。2

变式训练:

23.已知{x,x-x,0}表示一个集合,求实数x的范围

第二篇:河北省衡水中学高中数学 1.1.3集合的基本运算(一)学案 新人教A版必修1

1.1.3集合的基本运算

(一)一、学习目标

1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自学探究能力.3.能使用Venn图表达集合的关系及运算,体会Venn图的作用.二、自学导引

1、一般的,由所有属于的元素组成的集合,称为集合A与集合B的并集,记作AB(读作“A并B”),即AB=.2、由属于的所有元素组成的集合,称为集合A与集合B的交集,记作AB(读作“A交B”),即AB=.3、AA,AA,A,A.4、若AB,则AB=,AB=.5、ABA,ABB,AAB,ABAB.三、典型例题

1、求两个集合的交集与并集

例1求下列两个集合的交集和并集

⑴A1,2,3,4,5,B1,0,1,2,3;

⑵Ax|x2,Bx|x5.变式迁移1⑴设集合Ax|x1,Bx|2x2AB等于()

Ax|x2B.x|x1

C.x|2x1 D.x|1x2

⑵若将⑴中A改为Ax|xa,求AB.2、已知集合的交集、并集求参数的问题

例2已知集合A4,2a1,a

2,Ba5,1a,9,若AB=9,求a的值.3、交集、并集性质的综合应用

例3设Ax|x24x0,Bx|x22a1xa210.⑴若ABB,求a的值;

⑵若ABB,求a的值。

变式迁移

3已知集合Ax|2x5,Bx|2m1x

2m1,若ABA,求实数m的取值范围.4、课堂练习

1.已知A0,1,2,3,4,B3,0,5,6,则AB等于()

A0,3B.0,1,2,3,4

C.3,0,5,6D.0,1,2,3,4,5,6

2.已知Mx|x20,Nx|x20则MN等于()

A.x|x2或x2B.x|2x2

C.x|x2D.x|x2

23.已知集合Mx|yx1,,Ny|yx21那么MN等于

A.B.NC.MD.R

4.若集合A=1,3,x,B1,x2,AB=1,3,x,则满足条件的实数x的个数有

()

A.1个B.2个C.3 个D.4个

二、填空题

5.满足条件M11,2,3的集合M的个数是.6.已知A1且A2,0,10,1,0,1,2,则满足上述条件的集合A共有个.7.已知集合Ax|1x2,Bx|2axa3且满足AB=,则实数a的取值范围

是.8.已知集合A1,4,a22a,Ba2,a24a2,a2 

1,3,则AB=.3a3,a25a,若AB

10个高考试题

1.集合A=x|1x2,B=x|x1,则A(CRB)=

(A)x|x1(B)x|x1

(C)x|1x2(D)x|1x2 

2.若集合Axlog1x21,则ðRA 2

(,0],)A、B、C、(,0]D、)22

3.集合P{xZ0x3},M{xRx29}则PIM=

(A){1,2}(B){0,1,2}

(C){x|0≤x<3}(D){x|0≤x≤3}

4.若集合A={x-2<x<1},B={x0<x<2}则集合A ∩B= A.{x-1<x<1}B.{x-2<x<1} C.{x-2<x<2}D.{x0<x<1}

第三篇:人教A版必修一 1.1.1集合的含义与表示 教学设计

课题:§1.1 集合

教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高

二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、新课教学

(一)集合的有关概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。4.关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)集合相等:构成两个集合的元素完全一样 5.元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(或 a A)(举例)

6.常用数集及其记法

非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(课本例1)思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…; 例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)

强调:描述法表示集合应注意集合的代表元素

{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置

书面作业:习题1.1,第1-4题

五、板书设计(略)

第四篇:1.1.1《集合的含义与表示》教学设计(人教A版必修1)

1.1.1《集合的含义与表示》教案 【教学目标】

1.了解集合、元素的概念,体会集合中元素的三个特征; 2.理解元素与集合的“属于”和“不属于”关系; 3.掌握常用数集及其记法; 4.了解集合的表示方法;

5.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【导入新课】

一、实例引入:

军训前学校通知:8月20日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高

二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.二、问题情境引入:我们高一

(一)班一共52人,其中班长张三,现有以下问题: ⑴ 52人组成的班集体能否组成一个整体? ⑵ 张三和52人所组成的班集体是什么关系? ⑶ 假设李四是相邻班的学生,问他与高一·一班是什么关系? 新授课阶段

(一)集合的有关概念

集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集.[ 思考1:判断以下元素的全体是否组成集合,并说明理由: 大于3小于11的偶数; 我国的小河流; 非负奇数; 方程的解;

某校2012级新生; 血压很高的人; 著名的数学家;

平面直角坐标系内所有第三象限的点; 全班成绩好的学生.对学生的解答予以讨论、点评,进而讲解下面的问题.关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:给定一个集合与集合里面元素的顺序无关.(4)集合相等:构成两个集合的元素完全一样.(二)元素与集合的关系

1.(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A;(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA,例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4A,等等.2.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C„表示,集合的元素用小写的拉丁字母a,b,c,„表示.3.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R.例1 若集合A为所以大于1 二小于3的实数组成的集合,则下面说法正确的为()

A.

B.C.D.解析:根据元素与集合的关系可得,答案C.答案: C 例2用“∈”或“”符号填空:

(1)8

N;

(2)0

N;

(3)-3

Z;

(4)

Q;

(5)设A为所有亚洲国家组成的集合,则中国

A,美国

A,印度

A,英国

A.答案:

例3 判断下列各句的说法是否正确:(1)所有在N中的元素都在N*中

()(2)所有在N中的元素都在Z中

()(3)所有不在N*中的数都不在Z中

()(4)所有不在Q中的实数都在R中

()(5)由既在R中又在N中的数组成的集合中一定包含数0()(6)不在N中的数不能使方程4x=8成立

()答案: ×,√,×,√,×,√

例 4 已知集合P的元素为, 若且-1P,求实数m的值 解:根据,得若 此时不满足题意;若解得 此时或(舍),综上 符合条件的.点评:本题综合运用集合的定义和元素与集合的关系解题,注意集合的性质的运用.(三)集合的表示方法

我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合

(1)列举法:把集合中的元素一一列举出来,并用花括号“”括起来表示集合的方法叫列举法.如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},„

说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序.2.各个元素之间要用逗号隔开;

3.元素不能重复;

4.集合中的元素可以数,点,代数式等;

5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为.例5 用列举法表示下列集合:

(1)x2-4的一次因式组成的集合.(2){y|y=-x2-2x+3,x∈R,y∈N}.(3)方程x2+6x+9=0的解集.(4){20以内的质数}.(5){(x,y)|x2+y2=1,x∈Z,y∈Z}.(6){大于0小于3的整数}(7){x∈R|x2+5x-14=0}.(8){(x,y)}|x∈N,且1≤x<4,y-2x=0}.(9){(x,y)|x+y=6,x∈N,y∈N}.分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2}.(2)y=-x2-2x+3=-(x+1)2+4,即y≤4,又y∈N,∴y=0,1,2,3,4.故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4}.(3)由x2+6x+9=0得 x1=x2=-3,∴方程x2+6x+9=0的解集为{-3}.(4){20以内的质数}={2,3,5,7,11,13,17,19}.(5)因x∈Z , y∈Z,则x=-1,0,1时,y=0,1,-1.那么{(x,y)|x2+y2=1,x∈Z ,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)}.(6){大于0小于3的整数}={1,2}.(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2}.(8)当x∈N且1≤x<4时,x=1,2,3,此时y=2x,即y=2,4,6.那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)}.(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内.具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.一般格式:

如:{x|x-3>2},{(x,y)|y=x2+1},{x︳直角三角形},„; 说明:

1.课本P5最后一段话;

2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x︳整数},即代表整数集Z.辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.例6 用描述法表示下列集合:

(1)方程2x+y=5的解集.(2)小于10的所有非负整数的集合.(3)方程ax+by=0(ab≠0)的解.(4)数轴上离开原点的距离大于3的点的集合.(5)平面直角坐标系中第Ⅱ、Ⅲ象限点的集合.(6)方程组的解的集合.(7){1,3,5,7,„}.(8)x轴上所有点的集合.(9)非负偶数.(10)能被3整除的整数.分析:用描述法表示集合的关键是找出集合中元素的公共属性,确定代表元素,公共属性可以用文字直接表述,也可用数学关系表示,但要抓住其实质.解:(1){(x,y)|2x+y=5}.(2)小于10的所有非负整数的集合用描述法表示为{x|0≤x<10,x∈Z}.(3)方程ax+by=0(ab≠0)的解用描述法表示为{(x,y)|ax+by=0(ab≠0)}.(4)数轴上离开原点的距离大于3的点的集合用描述法表示为{x|x>3}.(5)平面直角坐标系中第Ⅱ、Ⅲ象限点的集合用描述法表示为{(x,y)|xy<0}.(6)方程组的解的集合用描述法表示为{(x,y)|}.(7){1,3,5,7,„}用描述法表示为{x|x=2k-1,k∈N*}.(8)x轴上所有点的集合用描述法表示为{(x,y)|x∈R,y=0}.(9)非负偶数用描述法表示为{x|x=2k,k∈N}.(10)能被3整除的整数用描述法表示为{x|x=3k,k∈Z}.(3)文恩图法:集合的表示除了列举法和描述法外,还有恩韦图(文氏图)叙述如下: 画一条封闭的曲线,用它的内部来表示一个集合.如图:

表示任意一个集合A

边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素和子集统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.例7设集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},C={x|x=4k+1,k∈Z},又有a∈A,b∈B,判断元素a+b与集合A、B和C的关系.解:因A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则集合A由偶数构成,集合B由奇数构成.即a是偶数,b是奇数

设a=2m,b=2n+1(m∈Z ,n∈Z)则a+b=2(m+n)+1是奇数,那么a+bA,a+b∈B.又C={x|x=4k+1,k∈Z}是由部分奇数构成且x=4k+1=2·2k+1.故m+n是偶数时,a+b∈C;m+n不是偶数时,a+bC 综上a+bA,a+b∈B,a+bC.课堂小结

1.集合的概念中,“某些指定的对象”,可以是任意的具体确定的事物,例如数、式、点、形、物等.2.集合元素的三个特征:确定性、互异性、无序性,要能熟练运用之.3.集合的常用表示方法,包括列举法、描述法.作业

1.习题1.1,第1-2题; 2.预习集合的表示方法.拓展提升

1.用集合符号表示下列集合,并写出集合中的元素:

(1)所有绝对值等于8的数的集合A;

(2)所有绝对值小于8的整数的集合B.2.下列各组对象不能形成集合的是()

A.大于6的所有整数

B.高中数学的所有难题 C.被3除余2的所有整数

D.函数y=图象上所有的点 3.下列条件能形成集合的是()

A.充分小的负数全体

B.爱好飞机的一些人

C.某班本学期视力较差的同学

D.某校某班某一天所有课程

4.集合A的元素由kx2-3x+2=0的解构成,其中k∈R,若A中的元素至多有一个,求k值的范围.5.若x∈R,则{3,x,x2-2x}中的元素x应满足什么条件?

6.方程 ax2+5x+c=0的解集是{,},则a=_______,c=_______.7.集合A的元素是由x=a+b(a∈Z,b∈Z)组成,判断下列元素x与集合A之间的关系:0,.参考答案

1.分析:由集合定义:一组确定对象的全体形成集合,所以能否形成集合,就看所提对象是否确定;其次集合元素的特征也是解决问题依据所在.解:(1)A={绝对值等于8的数}

其元素为:-8,8(2)B={绝对值小于8的整数} 其元素为:-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7.2.解:综观四个选择支,A、C、D的对象是确定的,惟有B中的对象不确定,故不能形成集合的是B.3 解:综观该题的四个选择支,A、B、C的对象不确定,惟有D某校某班某一天所有课程的对象确定,故能形成集合的是D.4.解:由题A中元素即方程kx2-3x+2=0(k∈R)的根 若k=0,则x=,知A中有一个元素,符合题设[ 若k≠0,则方程为一元二次方程.当Δ=9-8k=0即k=时,kx2-3x+2=0有两相等的实数根,此时A中有一个元素.又当9-8k<0即k>时,kx2-3x+2=0无解.此时A中无任何元素,即A=也符合条件 综上所述 k=0或k≥

评述:解决涉及一元二次方程问题,先看二次项系数是否确定,若不确定,如该题,则须分类讨论.其次至多有一个元素,决定了这样的集合或者含一个元素,或者不含元素,分两种情况.5.解:集合元素的特征说明{3,x,x2-2x}中元素应满足关系式

也就是

即x≠-1,0,3满足条件.6.解:方程ax2+5x+c=0的解集是{,},那么、是方程两根 即有得

那么 a=-6,c=-1 7.解:因x=a+b,a∈Z ,b∈Z 则当a=b=0时,x=0 又=+1=1+

当a=b=1时,x=1+ 又=+

当a=,b=1时,a+b=+ 而此时Z,故有:A,故0∈A,∈A,A.8.解:若x是整数,则有x+x=15,x=与x是整数相矛盾,若x不是整数,则x必在两个连续整数之间 设n<x<n+1 则有n+(n+1)=15,2n=14,n=7

即7<x<8 ∴x∈(7,8)

第五篇:高中数学《集合的含义及其表示》教案1 北师大必修1[模版]

1.1.1集合的含义及其表示

(一)教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,“ ”的使用 教学难点:集合概念的理解; 课 型:新授课 教学手段: 教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。

下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

二、新课教学

“物以类聚,人以群分”数学中也有类似的分类。如:自然数的集合 0,1,2,3,„„

如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。

1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,„ 集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,„

2、元素与集合的关系

a是集合A的元素,就说a属于集合A,记作 a∈A,a不是集合A的元素,就说a不属于集合A,记作 aA

思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

例1:判断下列一组对象是否属于一个集合呢?(1)小于10的质数(2)著名数学家(3)中国的直辖市(4)maths中的字母

(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数(9)方程x2x10的实数解

评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。

3、集合的中元素的三个特性:

1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合

3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

集合元素的三个特性使集合本身具有了确定性和整体性。

4、数的集简称数集,下面是一些常用数集及其记法:

非负整数集(即自然数集)记作:N 有理数集Q 正整数集 N*或 N+ 实数集R 整数集Z

5、集合的分类 原则:集合中所含元素的多少

①有限集 含有限个元素,如A={-2,3} ②无限集 含无限个元素,如自然数集N,有理数

③空 集 不含任何元素,如方程x+1=0实数解集。专用标记:Φ

三、课堂练习

1、用符合“∈”或“”填空:课本P15练习惯1

2、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”(1)所有在N中的元素都在N*中()(2)所有在N中的元素都在Z中()(3)所有不在N*中的数都不在Z中()(4)所有不在Q中的实数都在R中()

(5)由既在R中又在N*中的数组成的集合中一定包含数0()(6)不在N中的数不能使方程4x=8成立()

四、回顾反思

1、集合的概念

2、集合元素的三个特征

其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3、常见数集的专用符号.五、作业布置

1.下列各组对象能确定一个集合吗?(1)所有很大的实数(2)好心的人(3)1,2,2,3,4,5. 2.设a,b是非零实数,那么

aabb32

可能取的值组成集合的元素是 33.由实数x,-x,|x|,x,x所组成的集合,最多含()(A)2个元素(B)3个元素(C)4个元素(D)5个元素 4.下列结论不正确的是()A.O∈N B.2Q C.OQ D.-1∈Z 5.下列结论中,不正确的是()

2A.若a∈N,则-aN B.若a∈Z,则a∈Z C.若a∈Q,则|a|∈Q D.若a∈R,则3aR 6.求数集{1,x,x-x}中的元素x应满足的条件; 2

板书设计(略)

下载河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1word格式文档
下载河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐