第一篇:高中数学 第一章《集合的含义与表示》教学设计 北师大版必修1
数学学习总结资料
1.1集合的含义及其表示 教学设计
一、目的要求
1.通过本章的引言,使学生初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到用数学解决实际问题离不开集合与逻辑的知识。
2.在小学与初中的基础上,结合实例,初步理解集合的概念,并知道常用数集及其记法。
3.从集合及其元素的概念出发,初步了解属于关系的意义。
二、内容分析
1.集合是中学数学的一个重要的基本概念。在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
3.这节课主要学习全章的引言和集合的基本概念。学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。本节课的教学重点是集合的基本概念。
4.在初中几何中,点、直线、平面等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。”这句话,只是对集合概念的描述性说明。
三、教学过程 提出问题:
教科书引言所给的问题。组织讨论:
数学学习总结资料
数学学习总结资料
为什么“回答有20名同学参赛”不一定对,怎么解决这个问题。归纳总结:
1.可能有的同学两次运动会都参加了,因此,不能简单地用加法解决这个问题.2.怎么解决这个问题呢?以前我们解一个问题,通常是先用代数式表示问题中的数量关系,再进一步求解,也就是先用数学语言描述它,把它数学化。这个问题与我们过去学过的问题不同,是属于与集合有关的问题,因此需要先用集合的语言描述它,完全解决问题,还需要更多的集合与逻辑的知识,这就是本章将要学习的内容了。
提出问题:
1.在初中,我们学过哪些集合? 2.在初中,我们用集合描述过什么? 组织讨论: 什么是集合? 归纳总结:
1.代数:实数集合,不等式的解集等; 几何:点的集合等。
2.在初中几何中,圆的概念是用集合描述的。新课讲解:
1.集合的概念:(具体举例后,进行描述性定义)(1)某种指定的对象集在一起就成为一个集合,简称集。(2)元素:集合中的每个对象叫做这个集合的元素。(3)集合中的元素与集合的关系:
a是集合A的元素,称a属于集合A,记作a∈A; a不是集合A的元素,称a不属于集合A,记作。
例如,设B={1,2,3,4,5},那么5∈B,注:集合、元素概念是数学中的原始概念,可以结合实例理解它们所描述的整体与个体的关系,同时,应着重从以下三个元素的属性,来把握集合及其元素的确切含义。
①确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
数学学习总结资料
数学学习总结资料
例如,像“我国的小河流”、“年轻人”、“接近零的数”等都不能组成一个集合。②互异性:集合中的元素是互异的,即集合中的元素是没有重复的。此外,集合还有无序性,即集合中的元素无顺序。例如,集合{1,2},与集合{2,1}表示同一集合。2.常用的数集及其记法:
全体非负整数的集合通常简称非负整数集(或自然数集),记作N,非负整数集内排除0的集,表示成或
;
全体整数的集合通常简称整数集,记作Z; 全体有理数的集合通常简称有理数集,记作Q; 全体实数的集合通常简称实数集,记作R。
注:①自然数集与非负整数集是相同的,就是说,自然数集包括数0,这与小学和初中学习的可能有所不同;
②非负整数集内排除0的集,也就是正整数集,表示成的集,也是这样表示,例如,整数集内排除0的集,表示成数集、正实数集等,没有专门的记法。
课堂练习:
教科书1.1节第一个练习第1题。归纳总结:
1.集合及其元素是数学中的原始概念,只能作描述性定义。学习时应结合实例弄清其含义。
2.集合中元素的特性中,确定性可以用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可以用于判定集合间的关系(如后面要学习的包含或相等关系等)。
四、布置作业
教科书1.1节第一个练习第2题(直接填在教科书上)。
或或
。其它数集内排除0。负整数集、正有理数学学习总结资料
第二篇:高中数学《集合的含义及其表示》教案1 北师大必修1[模版]
1.1.1集合的含义及其表示
(一)教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,“ ”的使用 教学难点:集合概念的理解; 课 型:新授课 教学手段: 教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学
“物以类聚,人以群分”数学中也有类似的分类。如:自然数的集合 0,1,2,3,„„
如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,„ 集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,„
2、元素与集合的关系
a是集合A的元素,就说a属于集合A,记作 a∈A,a不是集合A的元素,就说a不属于集合A,记作 aA
思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?(1)小于10的质数(2)著名数学家(3)中国的直辖市(4)maths中的字母
(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数(9)方程x2x10的实数解
评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
3、集合的中元素的三个特性:
1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合
3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
4、数的集简称数集,下面是一些常用数集及其记法:
非负整数集(即自然数集)记作:N 有理数集Q 正整数集 N*或 N+ 实数集R 整数集Z
5、集合的分类 原则:集合中所含元素的多少
①有限集 含有限个元素,如A={-2,3} ②无限集 含无限个元素,如自然数集N,有理数
③空 集 不含任何元素,如方程x+1=0实数解集。专用标记:Φ
三、课堂练习
1、用符合“∈”或“”填空:课本P15练习惯1
2、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”(1)所有在N中的元素都在N*中()(2)所有在N中的元素都在Z中()(3)所有不在N*中的数都不在Z中()(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N*中的数组成的集合中一定包含数0()(6)不在N中的数不能使方程4x=8成立()
四、回顾反思
1、集合的概念
2、集合元素的三个特征
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3、常见数集的专用符号.五、作业布置
1.下列各组对象能确定一个集合吗?(1)所有很大的实数(2)好心的人(3)1,2,2,3,4,5. 2.设a,b是非零实数,那么
aabb32
可能取的值组成集合的元素是 33.由实数x,-x,|x|,x,x所组成的集合,最多含()(A)2个元素(B)3个元素(C)4个元素(D)5个元素 4.下列结论不正确的是()A.O∈N B.2Q C.OQ D.-1∈Z 5.下列结论中,不正确的是()
2A.若a∈N,则-aN B.若a∈Z,则a∈Z C.若a∈Q,则|a|∈Q D.若a∈R,则3aR 6.求数集{1,x,x-x}中的元素x应满足的条件; 2
板书设计(略)
第三篇:集合的含义与表示教学设计
集合的含义与表示
一、教学内容分析:集合概念及其基本理论,称为集合论,是近现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在数学理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用。
二、学情分析:这是高中数学的第一节课。首先初中和高中学生的心理是不一样的,学生还没有适应高中的学习,起步要慢,尽可能及一些让学生容易接受的例子。虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。本节课要记的东西多,可让学生自己阅读,然后再老师的引导下思考问题,进一步解决问题。
三、设计思想:本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点.
四、教学目标:
1.知识与技能:(1)通过实例,了解集合的含义,体会集合与元素的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性、互异性、无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力
2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
3.情感、态度与价值观:让学生感受到学习集合的必要性,增强学习的积极性
五、教学重点和难点:
重点:集合的含义与表示方法 难点:表示方法的恰当选择
六、教学过程设计:
(一)创设情境,解释课题:1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?(引导学生回忆,举例和互相交流。与此同时,教师对学生的活动给予评价)2.接着教师指出:那么,集合的含义是什么?这就是我们这一堂课所要学习的内容
(二)研究新知
1.教师利用多媒体设备向学生投影出下面9个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国;(4)所有的正方形;
(5)浙江省在2011年之前建成的立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程x2—5x+6=0的所有实数根;(8)不等式x—3>0的所有解;
(9)实验中学2010年9月入学的高一学生的全体
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出一位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义。(一般地,指定的某些对象的全体称为集合,简称集。集合中的每个对象叫做这个集合的元素)
4.教师指出,集合常用大写字母A,B,C,D……表示,元素常用小写字母a,b,c,d……表示
(三)质疑答辩,排忧解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生阴暗,使学生明确集合元素的三大特性,即:确定性,互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。
2.教师组织引导学生思考以下问题:
判断一下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数(2)我国的小河流(让学生充分发表自己的见解)
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动及时的评价。
4.教师提出问题,让学生思考
(1)如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b表示高一4班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于(如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a∉A)(2)让学生完成教材第6页联系第1题
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相关内容,写出常用数集的记号,并让学生完成习题1.1A组第1题
6.教师引导学生阅读教材中的相关内容,并思考,讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言,列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?(使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象)
(四)巩固深化,反馈矫正
教师投影学习:(1)用自然语言描述集合{1,3,5,7,9}(2)用例举法表示集合A={x∈N 1≤x<8}(3)试选择适当的方法表示下列集合:教材第6页第2题
(五)归纳整理,整体认识
在师生互动中,让学生了解或体会下列问题: 1.本节课我们学习过哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A组第4题
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种?如何表示?请同学们通过预习教材
七、教学反思:集合语言是现代数学的基本语言,在高中数学课程中,它于是学习、掌握和使用数学语言的基础,由于集合的概念较难理解,因此采用渐进式学习,而集合的列举法和描述法的形式比较容易接受,在注重让学生自己学习,重点引导学生学习这两种方法的应用。同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法。在练习过程中熟练掌握集合语言与自然语言的转换,教师在教学过程中实施监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱。对学生解题过程中遇到的困难给予适当点拨。引导学生养成良好学习习惯,最大限度地挖掘学生的学习潜力是教师的奋斗目标。
第四篇:《集合的含义与表示》教学设计
《集合的含义与表示》教学设计
一、教材分析
1、教材的地位与作用剖析
《集合与函数的概念》是高中数学必修1的第一章内容,是高中数学的基础,集合作为一种数学思想在其它一些章节中也都有渗透,因此学好这一章内容是十分关键的。本章又是高中数学课程的起始章,内容有一定的抽象性,研究的方法也与初中数学不一样,因此设计好这一章内容的教学不但对学生的知识掌握情况而且对学生能否入门高中数学都是很重要的。
2、教学内容与学情剖析
本教材对集合的定位是将集合作为一种语言来学习的,通过教学使学生感受到用集合语言来表示数学内容时的简洁性、准确性,并使学生能用集合语言简洁、准确地表示数学对象。
高一新生经历了初中的启发式学习,对一些具体的知识已有了一定的掌握,但对一些抽象的知识还不能完全明了如何来学,一些良好的数学素养还需要去形成,一些能力还需要去培养、提高。
3、教学目标与重、难点剖析
鉴于以上分析,又结合《课程标准》的要求,我确定本节课的教学目标、教学重、难点如下:(1)教学目标 知识技能目标: ①了解。(集合的含义)②理解。(元素与集合的关系)③掌握。(集合的表示方法)④培养。(学生观察、类比、归纳、表达的能力)过程与方法目标:
①体验从特殊到一般的学习规律; ②渗透分类思想; 情感与价什观目标:
①通过教学,激发学生的学习兴趣,培养学生积极的学习态度;
②通过教学,让学生体会集合的文化价值,感受数学问题探究的过程之美及数学思维的严谨之美;
(2)教学重、难点
重点:集合的基本概念与表示。难点:用集合的两种常用表示法――列举法与描述法,正确表示一些简单的集合。[难点突破:]对于难点,则是通过实例引导,启发学生分析、寻找概念区分点,尽而把握概念特点,从而达到准确表达等一系列活动来完成突破。
二、教法设计
由于本节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学不仅使学生能学到知识,更能使学生掌握怎样来学到知识,从而实现培养学生学习能力的目的。为此,对于本节课的教法设计,我从以下三个方面来完成。
1、课前知识准备。通过课前预习、尝试达到让学生知道本节课要学什么的目的。
2、课中自主阅读-探究-归纳。就是在教师组组织下,以学生为主体,发挥学生的自主作用,培养学生的探究意识,提高学生的归纳能力。从而达到让学生知道怎样来学的目的。
3、课后抽查小结。通过引导学生回顾与小结,从而达到让学生知道学到了什么的目的。
以上三个方面,是由三个问题产生的,因此,我就称之为 “三问教学法”。[这个方法实际上也是对“堂堂清”这一教学指导思想的较为完整的体现。] 我的设计依据是:支架式教学理念,就是把教学看成是一个由教师的“导”、学生的“学”及教学过程中的“悟”三要素组成的整体。教师的启发、诱导、激励为学生的学习搭建支架,把学习任务转移给学生;学生则是接受任务、探究任务、完成任务。这两条线以问题为核心,通过对知识的发生、发展和运用过程的演绎、展示和探究来组织和推动教学。
三、学法指导
作为高中数学的起始章,重视潜移默化地进行初、高中知识和学习方法的过渡,培养良好的高中数学学习习惯,以逐步适应后续的高中数学学习。
本节课是本章的第一节课,针对学生实际情况及本节课内容的特点,我从以下几个方面来完成对学生的学法指导:
1、通过启发思考、引导阅读、诱使探究来完成学生良好的数学素养(阅读、探究、归纳、反思)的形成。
2、通过归纳小结、知识反馈来实现学生数学能力的提高。
3、通过对过程的回顾来让学生认识到学习是一个递进的(循序渐进)、积累(潜移默化)的过程。
四、教学程序
本着遵循学生的认知规律、让学生去经历知识的形成过程、发展过程的原则,在本节课的教学过程中,我设计了如下的环节:
1、创设情景、导入新课
多媒体展示: [生活实例]
一群迁徙的鸟在飞翔;雪原上一群奔跑的马; „„
鸟群、马群„„都是“同一类对象汇集在一起”,这就是本章将要学习的集合。
启发1:想一想:集合这个术语,在初中我们是否使用过? [联想旧知]
在初中学习“自然数”、“有理数”等内容时,已经使用了“自然数集”、“有理数集”等术语,并且一提到这些语言,我们就会想它所包含的内容。另外,初中代数《不等式的解法》中也有曾提到:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。不等式解集的定义中也涉及到“集合”。
启发2:用“集合”来描述研究对象,既简洁又方便。那么,集合的含义到底是什么?
通过“展示[生活实例]启发[联想旧知]从而[产生问题]尽而[引入新课]”来激发学生的学习动机,培养学生思维的主动性,为新知的学习与接受做好准备;
2、自主阅读、探求新知 多媒体展示 [观察下列集合实例]
(1)2010年上海世博会中所有展馆。(2)目前河南省的所有“国家地质公园”。(3)高一(1)班的全体同学。(4)所有的正方形。
(5)20以内的所有奇数。
启发:以上几种集合实例有何共同特征? [阅读教材,完成问题]
(1)本节关于集合知识有哪些概念?(2)元素与集合有何关系?
(3)集合的常用的表示方法有哪些?各自特点如何?(4)本节中涉及了哪些新的符号?是怎样表示的?
通过“组织学生[观察集合实例]引导学生[阅读教材内容]启发学生[自主探究学习]”来培养学生参与学习的自主意识,充分调动其自主学习的积极性。其中,集合实例的设置做到新颖(有吸引力)和联系旧知(亲和力)两点。
3、感悟实例、归纳新知
多媒体展示
[集合的有关概念]
(1)集合的概念:集合的含义:
集合中元素特点:
(2)常用数集及记法:自然数集: 正整数集:
整数集: 有理数集: 实数集:
[元素与集合的关系]
(1)属于:(2)不属于: [集合的表示方法]
(1)自然语言法:(2)描述法、列举法:(3)图示法: [集合的分类]
(1)有限集:(2)无限集:(3)空集:
通过师生互动,来展示阅读探究的结果,即构建新知联系、归纳新知识点。[设计意图:]本环节既是对学生自主阅读环节的反馈,也是对学生归纳、表达能力的培养。与传统的灌输式教学相比较,这一环节更体现了平等和谐的师生关系。
4、巩固新知、反馈回授 [基础巩固]
例
1、用列举法表示下列集合:
(1)小于10的所有素数组成的集合。
(2)由大于-1小于7的自然数组成的集合。(3)方程x2-16=0的实数解组成的集合。例
2、用描述表示下列集合:
(1)小于10的有理数组成的集合。(2)所有的偶数组成的集合。
(3)直角坐标平面内,由第二象限内的点组成的集合。[题后反思]能否用描述法把例1中的三个集合表示出来? [随堂练习]
[拓展练习]
通过[例题]的分析,组织学生完成[课后练习]并进一步完成[拓展练习]从而达到知识的升华。
[设计意图:]本环节设计目的是实现学生对本节知识的应用,完成学生学习的“实践―――认识―――再实践”过程,力求通过(对例题)入微的分析、规范的板书来引导学生养成良好地解题习惯;通过课后练习实现教师的再指导和学生的渐进式提高;通过拓展练习加深学生对本节知识的理解。
5、归纳小结、布置作业 [学生自查、小结]
启发:本节课你学到了什么? [作业布置] 方案一: 方案二:
引导学生围绕“本节学到了什么”这一问题展开回顾与反思,尽而让学生自主地完成对本节知识的建构。
6、板书设计
本节课我设计了由三个板块构成的板书,第一大板块是本节课的知识结构;第二板块书写了例
1、例2及拓展练习;第三板块是学生演板。由此,让本节的知识更清析,过程更明了。
五、评价分析
教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆旧知识的记忆评价、得出集合有关概念的归纳评价、书写集合有关符号时的准确性评价、进行集合表示时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节我还注意启发学生自评、互评,通过以上这些评价方式让更多的学生获得学习的自信,从而,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
另外,我还会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,以达到预期的教学效果。
以上是我对《集合的含义与表示》这节课的设计和思考,敬请大家批评、指正!谢谢!
第五篇:《集合的含义与表示》教学设计
《集合的含义与表示》教学设计
人教A版
一、课型、课时
(一)课型:新知讲授课
(二)课时:一课时
二、教材分析与学情分析 教材分析
(一)、《课程标准》对本课内容的要求是:能够了解集合的含义,知道常用数集的表示方法,了解集合要素的三个性质,会用适当的方法表示集合。集合知识是整个高中学习的基础,使学生掌握和使用数学语言表述数学问题的基础。通过学习集合知识,可以使学生更好的理解数学中的集合语言,可以使学生逐步运用集合的观点和思想分析数学问题。
集合是集合论中的原始的不定义只描述的概念。在初中数学不等式解集的定义中涉及过集合,学生已经有了一定的感性认识,在此基础上,本节结合实例引出集合与集合中元素的相关概念,集合的元素特征,及集合的表示方法等。
(二)、知识目标
1、了解集合的含义,体会元素与集合的属于关系;知道常用数集的专用符号,能够判断具体数值与常用数集之间的关系;了解集合元素的三性,即确定性,互异性,无序性;能够用集合语言熟练描述有关数学对象。
2、能用适当的方法表示集合,即熟练应用自然语言,列举法和描述法来描述具体问题。
(三)、能力目标
在对具体问题的处理过程中,培养学生对周围事物的感知能力和语言组织能力。鼓励学生的发散思维,培养学生的抽象概括和想象能力。
(四)、情感态度价值观
在对周围事物的列举中,培养学生积极乐观的生活态度和热爱集体的主人翁精神。
(五)、教学重点和难点
重点:集合的意义与表示方法。难点:集合的表示方法的适当选择。学情分析
学生在初中阶段的学习中,已经有了对集合的初步认知,有了对周围事物的发现总结能力,对部分粗心大意的学生,培养其细致的观察力,在本节的学习中学生可能会对集合的表示方法:列举法和描述法会有所混淆,通过不断的练习巩固来达到标准要求。学生可能会用初中熟知的记忆学习方法来学习,鼓励学生理解学习,事半功倍。
三、方法与手段
本节课采用新知讲授课的教学模式,教学策略为先熟悉在深入,教学方法是诱导式教学方法,教学手段选用多媒体教学。
四、教学流程
(一)、课前准备
让学生在日常的生活中找出一些集合的例子,使学生在这些例子中感受集合的概念和元素的性质,贴近日常生活,便于学生接受和学习。教师制作一些相应的幻灯片,以激发学生的学习热情,达到兴趣教学的目的。
(二)、导入新课
1、我们初中学习都有哪些数集啊? 学生踊跃回答:有自然数集,有理数集等。
2、这些都是我们今天学习的集合。大家能否举一些我们身边的例子? 学生举例自己的家庭,班级,学校等等。
(三)、教与学的过程
1、幻灯片出示集合的概念:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。元素用小写的拉丁字母a,b,c……表示,集合用大写的拉丁字母A、B、C……表示。介绍集合的分类:有限集合无限集。结合实例,加深学生的理解。
2、例题
1、下列是说法正确的是()A.{302班个子高的男生}是一个集合 B.{1,2,1,3}是一个集合 C.{1,2}和{2,1}是同一个集合 答案:C。
由上面的例题大家发现集合中元素应该具有哪些性质了吗? 学生讨论总结:确定性,互异性,无序性。
3、我们说我们302班任何一个学生都属于我们这个班集体,那我们在数学中如何表达这个
意思呢?
引导学生阅读教科书中这部分内容,教室在教室活动,及时发现问题,个别学生单独辅导,解除疑难。
请一个同学说一个集合:302班的所有女生组成集合A,a是班里的一名同学,b是303班的一名同学。请用符号来表示A,a,b之间的关系。另一同学回答。
4、同学们知道常用数集的记号吗?
引导学生回忆初中部分相关内容,并阅读教科书第三页中表格内容。学生回忆,阅读相关知识。认识常用数集符号。完成课后练习第一题。
5、你能用列举法来表示下列集合吗?
从1到10之间的偶数(包括10);302班的全体任课教师;302班班长。学生回答,由于贴合实际,激发学生学习热情。你能用列举法表示下面集合吗? 不等式2X+4>8的解集。学生回答不出,引出描述法。答案:{x︱x>2}。
引导学生探究列举法与描述法之间的各自特点与不同。完成相关习题,巩固所学习的知识。
(四)、学习反馈与检测
反馈:学生对列举法和描述法还有待进一步在学习中强化,对二者的表示时有混淆。检测:
1、下列各组对象不能形成集合的是()
A、大于5的所有整数
B、高中数学的所有难题
C、被3整除的所有整数
D、函数y=x图像上所有的点
2、若x∈R,则{3,x,x+3}中的元素x应满足什么条件?
3、选择合适的方法来表示下列集合。
⑴、小于5的正奇数
⑵、15以内的质数
⑶、平面坐标系中第Ⅰ、Ⅲ象限点的集合⑷、到(1,1)的距离等于2的点的集合
(五)作业设计
习题1.1A组第4题;讲练学案本节练习。
(六)、教学反思
学生对于新的知识的接受能力参差不齐,这就要求教师要采用分类教学的方法,各个辅导,重点内容,多练,多复习,巩固所学知识。
五、其他 板书设计 1.1.1 集合的含义和表示
集合的概念 集合的表示方法 例题分析 变式训练 目标检测