第一篇:《初一数学教学中培养学生逻辑思维能力的研究》
《初一数学教学中培养学生逻辑思维能力的研究》
沛县栖山中学 吕静
一、课题研究的目的意义
1、核心概念
逻辑思维能力是指正确、合理思考的能力。即对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的能力,采用科学的逻辑方法,准确而有条理地表达自己思维过程的能力。
2、课题提出的背景
从初中一年级开始,初中生就开始具备基本的逻辑思维能力。但是初中生思维发展的特点就是思维片面性和表面性非常明显。初中生思维的片面性主要表现在其思想的偏激与极端,不能全面、辩证地分析回题、解决问题,而是抓住一点而不计其余。
所以,引导学生正确培养抽象逻辑思维能力、提高初一学生的抽象逻辑能力是必须的,也是必要的。3.所要解决的问题分析
现行数学教材在编排过程中,为加强学生的逻辑思维能力培养提供了一定的素材,创造了必要的条件。关键是教师在数学课堂教学中,应如何结合教学内容,引导学生动手操作,动脑思考。以达到发展学生抽象思维思维能力之目的。
二、研究内容及研究方法
1、研究内容
1)、搜集有关的文献资料,并进行学习,设计出研究方案。2)、通常调查、观察,了解学生的抽象思维能力的现状。3)、对学生进行定性分析,并制定有针对性引导方案。4)、做好学生引导、矫正工作。
5)、对评价指标展开调查及数理统计,并对实施效果鉴定。2.研究方法 调查法
观察法
归纳法
实践教学法
查阅资料法
三、研究步骤:
1、第一阶段:准备阶段(2010年3月——2010年5月)。通过问卷和查阅文献资料等形式开展前期调研,了解我们初一年级学生逻辑思维能力的现状以及如何提高学生逻辑思维能力的的策略。本阶段主要采取文献资料法、调查法、观察法等进行。从而确立课题的研究内容,撰写出研究方案。
2、第二阶段:实施阶段(2010年6月——2011年1月)。结合课堂实际教学,使用了解到的策略,寻求使有效培养逻辑思维能力的适合方法。并在实际教学中加以应用实践。本阶段主 采取实践教学法、观察法、归纳法等。
3、第三阶段:总结阶段(2011年2月——2011年3月)写课题总结。本阶段采用归纳法进行。
五、研究成果及形式
1、阶段成果
1)、我们农村中年级小学生课堂上逻辑思维能力的现状的调查报告,2010年5月底完成。
2)、完成读书笔记、教学随笔、教学案例和学生个人案例,2011年1月底完成。
3)、农村中年级小学生课堂上如何培养学生逻辑思维能力的专题论文,2011年2月完成。
2、最终成果
《初一数学教学中培养学生逻辑思维能力的研究》,课题研究报告,2011年3月完成
第二篇:浅谈培养学生数学逻辑思维能力
浅谈培养学生数学逻辑思维能力
巧家县新华小学
肖秀元
逻辑思维是借助于概念、判断、推理等思维形式所进行的思考活动,是一种有条件、有步骤、有根据、渐进式的思维方式,是小学生数学能力的核心。因此,在小学数学教学中必须着力培养学生的逻辑思维能力。
一、要重视思维过程的组织
要培养学生的逻辑思维能力,就必须把学生组织到对所学数学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。教学中要重视下列思维过程的组织。
第一,提供感性材料,组织从感性到理性的抽象概括。从具体的感性表象向抽象的理性思考启动,是小学生逻辑思维的显著特征、随着学生对具体材料感知数量的增多、程度的增强,逻辑思维也渐次开始。因此,教学中教师必须为学生提供充分的感性材料,并组织好他们对感性材料从感知到抽象的活动过程,从而帮助他们建立新的概念。例如教学循环小数时,可先演算小数除法式题,使学生初步感知“除不尽。然后引导学生观察商和余数部分,他们会发现商的小数部分从某一位起,一个数字或几个数字依次不断地重复出现,与此同时使之领会省略号所表示的意义,这样,他们可在有效数字后面想象出若干正确的数字来。这种抽象概括过程的展开,完全依赖于“观察—思考”过程的精密组织。
第二,指导积极迁移,推进旧知向新知转化的过程。数学教学的 过程,是学生在教师的指导下系统地学习前人间接知识的过程,而指导学生知识的积极迁移,推进旧知向新知转化的过程,正是学生继承前人经验的一条捷径。小学数学教材各部分内容之间都潜含着共同因素,因而使它们之间有机地联系着,挖掘这种因素,沟通其联系,指导学生将已知迁移到未知、将新知同化到旧知,让学生用已获得的判断进行推理,再获得新的判断,从而扩展他们的认知结构。为此,一方面在教学新知时,要注意唤起已学过的有关旧知。如教学除数是小数的除法时,要唤起“商不变性质”、“小数点位置移动引起小数大小变化的规律”等有关旧知的重现;另一方面要为类比新知及早铺垫。如帮助学生认识一个数乘分数的意义,要在教学整数、小数时就帮助学生理解一个数乘整数、乘以小数就是„„使学生在此前学习中所掌握的知识,成为“建立新的联系的内部刺激物和推动力。”
第三,强化练习指导,促进从一般到个别的运用。学生学习数学时,了解概念,认识原理,掌握方法,不仅要经历从个别到一般的发展过程,而且要从一般回到个别,即把一般的规律运用于解决个别的问题,这就是伴随思维过程而发生的知识具体化的过程。因此,一要加强基本练习,注重基本原理的理解;二要加强变式练习,使学生在不同的数学意境中实现知识的具体化,进而获得更一般更概括的理解;三要重视练习中的比较,使学生获得更为具体更为精确的认识;四要加强实践操作练习,促进学生“动作思维”。
第四,指导分类、整理,促进思维的系统化。教学中指导学生把所学的知识,按照一定的标准或特点进行梳理、分类、整合,可使学 生的认识组成某种序列,形成一定的结构,结成一个整体,从而促进思维的系统化。例如出示各种类型的循环小数,让学生自定标准进行分类,以达到思维的系统化,获得结构性的认识。
二、要重视寻求正确思维方向的训练
首先,指导学生认识思维的方向问题,逻辑思维具有多向性。1.顺向性。这种思维是以问题的某一条件与某一结果的联系为基础进行的,其方向只集中于某一个方面,对问题只寻求一种正确答案。也就是思维时直接利用已有的条件,通过概括和推理得出正确结论的思维方法。
2.逆向性。与顺向性思维方法相反,逆向性思维是从问题出发,寻求与问题相关联的条件,将只从一个方面起作用的单向联想,变为从两个方面起作用的双向联想的思维方法。
3.横向性。这种思维是以所给的知识为中心,从局部或侧面进行探索,把问题变换成另一种情况,唤起学生对已有知识的回忆,沟通知识的内在联系,从而开阔思路。
其次,指导学生寻求正确思维方向的方法。培养逻辑思维能力,不仅要使学生认识思维的方向性,更要指导学生寻求正确思维方向的科学方法。为使学生善于寻求正确的思维方向,教学中应注意以下几点: 1.精心设计思维感性材料。思维的感性材料,就是指用以实物直观或具体表象进行思维的材料。培养学生思维能力既要求教师为学生提供丰富的感性材料,又要求教师对大量的感性材料进行精心设计和巧妙安排,从而使学生顺利实现由感知向抽象的转化。例如教学质 数、合数概念时,先让学生写出几个大于1的自然数,在寻求其约数个数时,学生通过观察、分析、归纳后,可“发现”约数的个数有两种情况:一种是只有1和本身,另一种是除1和本身外,还有其他约数,从而便引出质数和合数的概念。
2.依据基础知识进行思维活动。小学数学基础知识包括概念、公式、定义、法则等。学生依据上述知识思考问题,便可以寻求到正确的思维方向。例如有些学生不知道如何作三角形的高,怎样寻求正确的思维方向呢?很简单,就是先弄准什么是三角形的高,“高的概念”明确了,作起来也就不难了。
3.联系旧知,进行联想和类比。旧知是思维的基础,思维是通向新知的桥梁。由旧知进行联想和类比,也是寻求正确思维方向的有效途径。联想和类比,就是把两种相近或相似的知识或问题进行比较,找到彼此的联系和区别,进而对所探索的问题找到正确的答案。
4.反复训练,培养思维的多向性。学生思维能力培养,不是靠一两次的练习、训练所能奏效的,需要反复训练,多次实践才能完成。由于学生思维方向常是单一的,存在某种思维定势,所以不仅需要反复训练,而且注意引导学生从不同的方向去思考问题,培养思维的多向性。
三、要重视对良好思维品质的培养
思维品质如何将直接影响着思维能力的强弱,因此培养学生逻辑思维能力必须重视良好思维品质的培养。
1.培养思维敏捷性和灵活性。教学中要充分重视教材中例题和 练习中“也可这样算”、“看谁算得快”、“怎样算简单就怎样算”等提示,指导学生通过联想和类比,拓宽思路,选择最佳思路,从而培养学生思维的敏捷性和灵活性。
2.培养思维的广阔性和深刻性。教学中注意沟通知识之间的联系,可以培养思维的广阔性和深刻性。例如教学分数应用题时启发学生联想起倍数应用题,教学百分数应用题时启发学生联想起分数应用题,这样可以调整和完善学生头脑中的认知结构,从几倍的“几”到几分之几的“几”,到百分之几的“几”,从而使之连成一个整体,不仅培养了学生思维广阔性,也培养了思维的深刻性。
3.培养思维的独立性和创造性。教学中要创造性地使用教材和借助形象思维的参与,培养学生思维的独立性和创造性。例如教材例题中前面的多是为学习新知起指导、铺垫作用的,后面的则是为已获得的知识起巩固、加深作用的。因此,对前面例题教学的重点是使学生对原理理解清楚,对后面例题教学则应侧重于实践,即采劝放手让学生自己去思考、去做的方法,以培养他们思维的独立性。
教学中要重视从直观形象入手,充分调动他们的各种感官,获取多方面感性认识,并借助于形象思维的参与,加强对知识的理解和思维的发展,培养学生逻辑思维能力的创造性。
第三篇:在小学数学教学中培养学生的逻辑思维能力
在小学数学教学中培养学生的逻辑思维能力
培养学生思维能力是一个很复杂的问题,它涉及到逻辑学、心理学、教育学等多学科的知识。同时,逻辑学和心理学都研究思维,但它们的侧重面有所不同。逻辑学主要从思维的结果(或产物)如概念、判断、推理等方面来研究,而且着重研究正确思维的规律及形式,以及这些认识结果之间的关系。心理学则主要从思维过程本身来研究,着重研究思维过程中的规律,以及导致形成某些认识结果的内在的隐蔽的原因。由于思维过程与思维结果是密切联系着的,所以心理学与逻辑学对思维的研究也要紧密联系,并且相互补充。我们在研究小学数学教学中发展思维能力也同样要注意思维过程和思维结果紧密联系这一特点,忽视哪一方面都不可能收到良好的教学效果。
人类思维发展有着不同的阶段。人的逻辑思维一般在小学三年级左右开始有较为明显的发展。主要为抽象的逻辑思维,它是以抽象概念为基础的思维。又可以分为两个阶段。
1.形式逻辑思维:简称逻辑思维。它是以同一律为核心规律,进行确定的、无矛盾的、前后一贯的思维。它要求在同一思维过程中的每一个概念必须是确定的。例如,A就是A,不能既是A又是非A。在小学数学中每一个概念也都必须是确定的。例如教学约数、倍数时,把0排除,否则公倍数、最小公倍数也要包括0了。
形式逻辑思维的特点主要是从思维形式(概念、判断、推理)上进行思维。它是抽象逻辑思维发展的初级阶段,因此也称为普通思维,形式逻辑也称普通逻辑。一般地说,10—11岁是过渡到逻辑思维的关键年龄。这时学生的概括能力有了较显著的变化。
2.辩证逻辑思维:简称辩证思维。它是以对立统一为核心规律而进行的思维。它着重从事物内部的矛盾性,概念的矛盾运动来进行思考。它把思维形式和思维内容联系起来,对事物的发展变化、相互联系、相互转化的过程进行思考。它是抽象逻辑思维发展的高级阶段,必须在形式逻辑思维的基础上才能形成。据心理学家研究,9—11岁学生的辩证思维才开始萌芽。
小学数学教学大纲中都有关发展学生思维能力的规定基本,即培养学生初步的逻辑思维能力。这里所讲的逻辑思维主要是指形式逻辑思维。大纲中明确提出,“结合有关内容的教学,培养学生进行初步的分析、综合、比较、抽象、概括,对简单的问题进行判断、推理,逐步学会有条理、有根据地思考问题;同时注意思维的敏捷和灵活。”这表明,在小学阶段主要是培养学生初步的形式逻辑思维能力,同时也注意培养学生的一些良好的思维品质。
为什么在小学以培养初步的形式逻辑思维能力为主呢?个人体会有以下两点。
(一)从数学的特点看:数学具有抽象性和逻辑严密性。数学本身是由许多判断组成的确定体系。这些判断都是由数学术语和逻辑术语以及相应的符号所表示的语句来表达的,并且借助逻辑推理由一些判断形成新的判断。而这些判断的总和就构成了数学这门科学。小学数学内容虽然比较简单,也没有严格的推理论证,但都是经过人们抽象、概括、判断、推理、论证得出的真正的科学结论,只是不给学生进行严密的合乎逻辑的论证。即使这样,一时一刻也离不开判断、推理。这就为培养学生的逻辑思维提供了十分有利的条件。
(二)从小学生的思维特点看:小学生正处在从具体形象思维向抽象逻辑思维过渡的阶段。特别是中、高年级,学生的抽象思维发生了“飞跃”或“质变”。具体地说,10—11岁学生开始能逐步分出概念的本质特征,能初步掌握比较科学的定义,能领会概念之间的逻辑关系,也能独立进行一些简单的逻辑分析,并进行间接的推理(即由几个判断推出新的判断)。因此可以说,这一阶段正是发展学生形式逻辑思维的有利时期。
由此可以看出,小学数学教学大纲中提出培养学生初步的逻辑思维能力,既符合数学学科的特点,又符合小学生的年龄特点。
有人一度提出,小学数学的教学目的之一是发展学生的创造思维。这一点值得商榷。第一,根据心理学研究,创造思维是人们思维活动的高级过程。它有普通思维的特点,例如在解问题时,也有提出问题、明确问题、提出假设、检验假设等阶段。但是不同之处在于有想象的参与。另外,创造思维往往是逻辑思维的简缩。从多数学生来说,如果没有良好的逻辑思维的训练,很难发展创造思维。也就是说,发展创造思维首先要有逻辑思维做基础。其次,人们的一般思维活动中也具有一定的创造性思维的因素。可以说,发展逻辑思维,在一定程度上也包含着发展思维的创造性品质。但是如果把创造思维作为基本要求提出来,对小学生说就要求太高了。此外,由于创造思维这一过程本身比较复杂,心理学的分析研究还很不充分,还难以具体说明它的内涵,要在小学里提出明确具体的教学要求就更困难了。也有人强调小学数学应着重发展辩证思维。这也值得商榷。如前所述,辩证思维是抽象逻辑思维发展的高级阶段,需要有一定的形式逻辑思维做基础。而且从小学数学内容来说,虽然有些内容能够反映辩证思维的某些规律,但有很多内容受到一定的局限。例如,对加与减,可以说是相反的运算,两种运算相互依存,但是在一定条件下可以互相转化就不好讲,因为还没有学过负数。另外从小学生的年龄特点来说,9—11岁才开始萌发辩证思维,显然比形式逻辑思维发展得晚。因此在小学把发展辩证思维作为教学的基本要求,还为时过早。在小学只能结合某些内容适当渗透一些唯物辩证观点的因素,给学生积累一些感性材料,而不是讲辩证法。例如,讲整数加法与减法时,可以通过实例说明它们是相反的运算,是相互依存的;讲分数乘除法时,可以通过实例说明两种运算在分数中可以相互转化。
通过本次继续教育中对小学数学课程中的逻辑教学的学习,更加深刻地认识到数学课堂教学中逻辑学的重要性,同时也有利更深入的理解和认识,在以后的教学中一定不断地加强。
第四篇:解决问题教学中培养学生逻辑思维能力
低年级解决问题教学中培养学生逻辑思维能力
《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”培养学生初步的逻辑思维能力,就是培养他们比较、分析、综合、抽象、概括等思维方法和判断、推理等思维形式,逐步学会有条不紊地思考问题。小学低年级正是学生智力开发的高峰期,也是培养逻辑思维能力的最佳时期。而低年级简单的解决问题既可以培养学生做到,考虑和解决问题时,思路鲜明、条理清楚、严格遵循逻辑规律。又可以为以后学习较复杂的几步计算应用题打好基础。
一、教会审题,理解题意,促进思维发展。
应用题的难易不仅取决于数据的多少,同时题目中的叙述大多是书面语言,对低年级学生的理解会有一定的困难,所以解题的首要环节和前提就是理解题意,即审题。做题时先认真,仔细地读题,读一遍不太清楚再读一遍、两遍,通过读题来理解题意,掌握题中讲的是一件什么事?弄清题中给出那些条件?要求的问题是什么?实践证明学生不会做或者做错题,往往是不理解题意,一旦理解题意,其数量关系也将明了,因此,从这个角度上讲理解了题意就等于题目做出了一半。
例如,在教学一年级下册第19页《解决问题》的例3时:13个同学玩抓迷藏,这里有6个人,藏起来几人?我先让学生自己小声读一篇,通过读的过程中还让学生找出题中讲的是一件什么事,再全班一起读一篇,这一次要求学生在读的过程中找出题目告诉我们什么?求什么问题?我根据学生说的比划一下主题图的内容,帮助学生理解题意,这样学生理解起来就比较容易。
二、分析数量关系,训练说理,促进思维发展。
分析数量关系是解决问题过程中非常重要的一步。在理解题意的基础上教会学生用不同的符号将题目中数量关系划下来,帮助理解题意,然后对数量关系进行分析与说理。这是因为不仅要通过数量关系的分析找出解答的计算过程,同时计算过程本身也反映了解题的算理。所以要重视教学生联系运算意义,把题目中叙述的情节语言转换成数学运算。对每一道题的算法,我们都要认真说理,也要学生去说理,使学生能够将数量关系从题中的情节中抽象出来纳入到已有的概念中去。在表述过程中,可能出现语言不精炼,用词不当,思路迂回等现象,这时,我们要耐心地给以引导,使学生从敢说到会说,从那些朦胧认识和儿童的自然语言,逐步过渡到规范、准确的数学语言。
还以上面的例题为例,掌握题中讲的事情,弄清题中给出的条件,知道要求的问题是什么?开始分析:根据题目给出的已知数学信息可知,玩抓迷藏的一共有13人,这里的6人是13人中的一部分,要求藏起来几人,就是求另一部分是多少,用什么方法解决呢?留给学生去说,学生说的语句不通,但意思说到点上,老师再帮他整理,然后和学生一起完整地表达。也可以画上以前学过的有大括号,问号的简单的图结合理解说理,让学生更能正确表达,从而知道求部分数是用减法来计算。又如,在教学一年级数学下册第72页例3《求一个数比另一个数多多少》的问题时,通过学生操作和教师直观演示题目中已知的条件,让学生划起谁和谁比,分析谁多谁少,求小雪比小磊多多少朵红花,就是把小雪得的12朵红花分成两部分:一部分是和小磊得的同样多的8朵,另一部分是那8朵以外的4朵,这里的4朵也就是小雪比小磊多得的朵数。分析后让学生试说解决的方法,从而知道解决这类的题是用减法计算。
再如第三册关于乘、除法的题:
(1)15个同学玩游戏,分成3组,每组几个同学?
(2)有4组同学,每个同学分得5朵红花,一共要做多少朵红花? 做题时先让学生分析找出总数、份数和每份数,根据总数÷份数=每份数;份数×每份数=总数的关系式确定计算方法。这样教学生对题目的数量关系比较清楚,掌握了每一类问题的分析思路,从而避免学生仅仅依靠对题中某些词的片面理解或盲目尝试来选择算法。
三、掌握基本结构,方法正确,促进思维发展。
简单应用题是由两个已知条件和一个问题组成的,在教学中渗透基本的三量关系。读到前面的两个条件,联想问题是什么;题目给出一个条件和一个问题,那么求的是一个什么条件。这样思路清晰就不会出现问非所答现象。
1、做题时,充分利用题目引导学生观察、比较,找出两道题的相同点与不
同点,从而加深学生对所学知识的理解。如上面求相差数的例子:
①小雪得12朵红花,小磊得8朵红花,小雪比小磊多多少朵红花? ②小雪得12朵红花,小磊得8朵红花,小磊比小雪少多少朵红花? 先引导学生通过题目观察、比较出:两题中有两个条件是相同的,即小雪得12朵红花,小磊得8朵红花,问题不同。再让学生结合直观图,观察两题有何相同与异同的地方:①题和②题里的两个条件是一样的;①题里的问题是小雪比小磊多多少朵红花?在②题里变成了小磊比小雪少多少朵红花?把两个人的名字前后调换了位置,谁多谁少没变,只是说法上变了,求小磊比小雪少多少朵红花?也就是求小雪比小磊多多少朵红花?因此,解答方法是一样。最后再从结构比较两题:从条件看,都是已知小雪得12朵红花,小磊得8朵红花,题①是求小雪比小磊多多少朵红花,要从小雪红花里去掉与小磊同样多的部分,剩下的就是小雪比小磊多的部分,即“12-8 =4(朵)”。题②是求小磊比小雪少多少朵红花,也要从小雪红花里去掉与小磊同样多的部分,就是小磊比小雪少的朵数,即“12-8 =4(朵)”。这样的观察、比较,使学生对两类应用题的结构和数量关系更加明确,培养了学生的观察、比较能力。
2、还要通过给不完整的题目补条件、补问题,使其成为一道完整的应用题。补条件、补问题的练习能使学生进一步掌握应用题的结构和数量关系,初步培养学生从条件出发来考虑问题和从问题出发来考虑条件的综合、分析的思维能力。
例如:花园里有18只蝴蝶,9只蜻蜓,? 要求学生根据条件分析数量关系,补充问题。
又如:,白兔有6只,白兔和黑兔一共有几只?
这题缺少什么条件,要求白兔和黑兔一共有几只,必须知道哪两个条件。白兔的只数已知道了,必须补上黑兔的只数。
这种由问题想条件的过程是分析过程。我们经常有意识地训练学生由条件补出问题,由问题补出条件,不仅使学生对应用题的结构有了明确的认识,而且也培养了学生综合、分析的思维能力。
四、从实际生活出发,激起兴趣,促进思维发展。
“兴趣是最好的老师”。因为兴趣是主动学习的动力,是思维的动力。根据低年级学生好奇、好动、好胜的特点,对什么都感到新鲜。我们要深挖教材,活用教材,积极引导激发学生学习数学的兴趣,促进思维的发展。
首先课堂的引入尽量创设情境激趣,发展形象思维。对低年级的学生来说,故事、游戏、现实生活场景都是他们最轻易接受的学习方式。通过有趣的喜闻乐见的场景引入题目,可以牢牢地吸引学生的注意力,学生仿佛自己进入了故事情景中,不由自主地产生了强烈的探究欲望,引导学生体验解决问题的愉快,促进思维的发挥。
例如,复习用数学解决问题“我们的校园”时,可以创设一个这样的情景:下课啦,同学们玩起各种游戏,出示同学们玩游戏的图和问题,让学生进入游戏中,然后学生自己选择解决喜欢玩的游戏出现的问题,这样引起学生探索的欲望,更喜欢解决问题。
其次数学教学应该联系生活、贴近生活现实,使学生体会数学与生活的联系,体会数学的价值,增进对数学的理解和应用数学的信心,从而激发学生的学习兴趣。我们把教学内容附着在现实的背景中生活化呈现,让学生在这种情境中尝试解决问题,获取知识。同时增强其学习数学的主动性,发展思维能力。
例如,在“认识人民币”单元里,有很多问题都是通过场景图呈现各种信息的,我们在教学中就要充分调动学生买卖物品的生活体验来收集信息,解决问题。
五、注重动手操作,促进思维发展。
为了帮助学生更好地理解题意,有时我们还需要为学生提供动手操作的机会,让学生感受到动手操作也是一种很好的审题方法和思考策略。“手是脑的老师。”小学生学习数学是与具体实践活动分不开的。重视动手操作是发展学生思维,培养学生数学能力最有效途径之一。新教材特点之一是重视直观教学,增加了学生的实践活动和动手操作内容。为此,操作活动成了课堂教学过程中的一个重要环节。低年级教学更是如此,在操作实践活动中获取知识,是每节课的核心。例如,一年级下册第26页的思考题解决这样的问题:
“我们一队有12个男生,老师让两个男生之间插进一个女生。一共可以插进多少个女生?”
又如“至少要用()个小正方形才能拼成1个大正方形?” 等都可以让学生通过亲自操作,不仅能使学生获得知识更轻易,记得更牢,而且有利于提高学生的逻辑思维能力。
六、注重设计开放性题,促进思维发展。
课堂开放性是《数学课程标准》对教学改革的主要标志。开放性试题可以促进学生更深层地思考所学知识,有利于扩大学生思维空间,新教材很注重开放性题目的编排。如例题既让学生填出过程,又让学生说出不同的想法和算法,非常注重学生求异思维的培养。练习题后出现一道思考题,培养学生奥数思维。我在教学中很好地利用了这些内容。我在教学第二册第19—20页《解决问题》这节课时,电脑出示小精灵聪聪带领同学们去公园玩的场景,吸引住学生的注意力。然后,让学生观察图上的小朋友给大家带来了什么问题。学生解决后,我说:“同学们,你们敢和图上的小朋友比一比吗?看谁的问题提得好、提得多、解决得对。”同学们个个兴趣盎然,精神十足。一会就提出了四五个不同的问题,并得到了正确的解答。等到第二个场景时,学生很快又提出几个不同的问题,解决问题的速度也加快了。意想不到的活跃场面令我兴奋。放开学生的手脚,让他们尽情地想象,尽情地说出自己的伟大发现,尽情地享受成功的快乐,将会再次激发他们的数学思维,再次发现数学知识的奥妙,热爱数学的激情也会不断攀升。
总之,在低年级应用题教学中,让学生养成认真审题的习惯,加强数量关系的分析和说理,掌握应用题的基本结构和对应的解答方法,努力创设和谐的、开放的教学情境,激发学生的兴趣,给学生创造一个广阔的思维空间,就一定能促进学生逻辑思维的发展。
第五篇:小学数学教学中对学生逻辑思维能力的培养研究
小学数学教学中对学生逻辑思维能力的培养研究
摘 要:随着人们逐渐认识到逻辑思维对工作和生活的重要性,这也对学校加强学生逻辑思维能力的培养提出了更高的要求。当然,培养学生的任何能力都需要从小开始,只有从小开始培养小学生的逻辑思维能力,才能培养学生这方面的能力。因此,研究小学数学教学中对学生逻辑思维能力的培养具有非常重大的意义。
关键词:小学数学;学生;逻辑思维能力;培养
中图分类号:G623文献标志码:A文章编号:2095-9214(2016)06-0018-01
随着我国素质教育的实行和基础教育改革的不断深入,以小学教育为起点的九年义务教育都要求培养学生的全面发展。在培养高素质和高能力人才的发展过程中,培养学生的理性思维能力就显得非常关键。当然,对小学数学这门课来说,是一门逻辑性和综合性都较强的学科,因此,通过在小学数学教学中加强小学生逻辑思维的培养是一个很好的途径,这也复合现代素质教育发展的基本要求。
一、小学数学教学中常用的逻辑思维方法
针对小学数学具有逻辑学强的特点,在实际的小学数学教学中被应用逻辑思维方法主要包括以下几种:第一,演绎与归纳法。归纳和演绎是解决数学问题被广泛采用的一种方法,这种方法的推理过程是将某一特殊的数学问题类推到一般数学问题。小学数学教学涉及到的一些法则和运算方法都是由这种推理方法引入的;第二,分类与比较法这种方法是将研究的数学对象按照一定的要求进行分类,然后通过学生的想象能力将其进行比较。因此,这种方法一般会贯穿于整个小学数学教学的过程;第三,综合与分析法。这种方法是将所研究的对象全部联系起来,从对象的整体认识其本质。然后才对所有对象的个体进行分析,这也是解决小学 数学问题的一种逻辑思维能力较强的方法;第四,概括与抽象法。这种方法是从同一类研究对象中概况出共性,然后分析其共有本质的一种方法。概况和抽象法是小学数学计算规律环节应用最为广泛的一种方法。
二、小学数学教学中加强学生逻辑思维能力培养的措施
(一)重视问题的引出
由于小学数学这门科学的特点就是逐一解决具体问题,所以在小学数学教学中培养学生的逻辑思维能力应该重视问题的引出。只有从问题层面引出和发散学生的思维,才能从本质上调动小学生的思维活动。有效的数学教学应该是在教师的引导下让学生自己不断提出问题和解决问题,这种教学方法才能最有效地培养小学生的逻辑思维能力。当然,在小学数学教学中实施这种方法对数学教师的掌控能力提出了更高的要求。因此,可以这门说,在小学数学教学中培养学生的逻辑思维能力就是借助数学问题实施的。但是,在小学数学实际教学的过程中,一方面要培养小学生的逻辑思维能力,同时又要让小学生牢固地掌握教学的知识。为了同时达到这两个目的,首先应该让学生了解数学知识的根源,教师也应该有针对性地提出数学问题,然后积极引导学生对数学问题进行分析,指导学生采用一些有效的逻辑思维方法来解决这些问题,这样才能达到以上两个重要的目的。
(二)精心设计数学课程
由于小学生的理想思维并不是很强,这就给在小学数学教学中培养学生的逻辑思维能力的实施提出了更高的要求。当然,对小学数学教师来说,他们首先应该精心设计教学的课程,同时采用适当的教学方法。小学数学教师还应该保证所设计的课程足够生动和有趣,这样才能最好地调动小学生的学习积极性,进而才能促进教学内容的开展。但是,对小学生来说,他们一般对新生事物具有很强的好奇心,小学数学教师就可以很好地利用学生的这种特点,引导小学生自己对新知识的探索,让小学生在学到知识的同时获得乐趣。
(三)结合学生特点培养小学生逻辑思维
由于小学生的数学思维和基础都不相同,所以教师不能千篇一律的采用同一种方法进行教学。在小学数学课堂上,为了发生和培养学生的逻辑思维,教师应该切实了解学生的特点,然后就有针对性地实施教学方法。与此同时,小学数学教师可以采用多样化的解题方法,而在解决数学问题时不要局限于单一的方法和思维,并以此鼓励学生寻求解题思维的多样化,从而实现对小学生逻辑思维能力的培养。
(四)适当的设计练习题的难度
适当的数学练习是小学数学教育中的一个必要环节,做题不仅能够加深学生对知识的巩固,还能提高学生的数学思维能力。但是,为了增加学生在解决数学问题后的成就感,数学教师应该适当地提高练习题目的难度,以保证大多数数学通过努力能够自己解决问题,促进学生勤于思考。
三、结语
总而言之,在小学数学教学中,为了有效地培养学生的逻辑思维能力,数学教师应该坚持以学生为主体,努力为学生营造良好的数学学习氛围。积极引导学生独立探索和解答数学问题,激发他们的求职欲望,在掌握数学知识的同时培养其逻辑思维能力。
(作者单位:九江市鹤湖学校)
参考文献:
[1]闫学峰.小学数学教学中对学生逻辑思维能力的培养探究[J].西部素质教育,2015,1(4):15.[2]吴球.小学数学教学中对学生逻辑思维能力的培养探究[J].教育科学,2014,26(8):66-67.[3]高斐.论小学数学教学中学生逻辑思维能力的培养[J].创新教育,2013,12(21):197.