5.2求解一元一次方程(一)教案

时间:2019-05-15 03:24:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《5.2求解一元一次方程(一)教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《5.2求解一元一次方程(一)教案》。

第一篇:5.2求解一元一次方程(一)教案

§5.2求解一元一次方程

(一)教案

备课时间:2012.11.27 授课时间:2012.12.3 教学目标:

1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能. 2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.

3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.教学重点:掌握用移项法解一元一次方程.教学难点:灵活用移项法解一元一次方程.教学过程

一、复习引入

复习上节课用等式基本性质一解方程的过程,观察、分析、概括出移项法则.解下列一元一次方程,学生先自主完成,然后以小组形式交流各种解法,要说明这样解的依据.

(1)5x28 ;

解:方程两同时加上2,得5x2282.

也就是

5x=8+2.方程两边同除以5,得

x=2.此题学生可能会用差+减数=被减数的方法(2)5x28x .

解:方程两都加上28x,得5x228x8x28x

也就是

5x-8x=2.化简,得

-3x=2.方程两边同除以-3,得

x=23.设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么? 设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?

设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上28x的目的是什

么?

归纳:像这样把原方程中的某一项改变 后,从 一边移到,这种变

形叫做移项 思考:(1)移项的依据是什么?移项的目的是什么?(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)

二、达标训练 【达标训练1】

1.把下列方程进行移项变形(未知数的项集中于方程的左边,常数项集中于方程的右边)(1)4x35移项,得 ;(2)5x27x8移项,得 ;(3)3x204x25移项,得 ;(4)132x3x52移项,得 ;

2.下列变形符合移项法则的是()

A.由53x2,得3x25 B.由10x5=2x,得10x2x5 C.由7x94x1,得7x4x19

D.由5x29,得5x92

目的:通过及时的训练落实移项变形,并由学生总结出移项的注意事项并归纳出移项法则. 总结:移动的项要

;移项通常是将,已知项 ;(移项法则)例1 解方程:(1)2x61;

解: 移项,得 2x16.

化简,得

2x5.

方程两边同时除以2,得x52

(2)3x32x7.

解: 移项,得 3x2x73.

合并同类项,得

x4.

【达标训练2】

(1)4x39;

(2)4y23y;(3)3x204x25.

(通过例题分析,规范学生的书写步骤格式,并训练落实.)

三、合作学习例2.解方程14x12x3.解: 移项,得 14x12x3.

合并同类项,得 34x3.

方程两边同时除以344(或同乘以3),得x4

学生独立完成例2,学生互评(有哪些方法)

2.以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答,组长负责检查,组员负责看解答结果如何.目的:

1.学生自己出题的过程本身就是对本课时题型的一种掌握.2.学生互解对方题目的过程,也是一个互相学习、取长补短的过程.3.合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的.四、巩固提高 解下列方程:

⑴4x23x ⑵7x22x4

⑶x25x1 ⑷2x13x32

五、课堂小结

1.本节课学习了哪些内容?哪些思想方法?

2.移项的目的是什么?为什么学习了等式的性质还要学习移项法则呢?

六、布置作业.

习题5.3第1题 自我检测: 解下列方程:

⑴3x76x⑵0.5x0.76.51.3x

⑶23x1x

⑷34x21314x2、若3x3y

m-

1与-

12xn+1y

3是同类项,请求出 m,n的值。

3、已知x=12是关于x的方程3m+8x=12+x的解,求关于x的方程,m+2x=2m-3x的解。

第二篇:求解一元一次方程_教学设计_教案

教学准备

1.教学目标

1、会解含有括号的一元一次方程,进一步体会解方程是运用方程解决实际问题重要环节.2、通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解方程,提高解决问题的能力.3、通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.2.教学重点/难点

教学重点

灵活解含有括号的一元一次方程.教学难点

灵活运用解一元一次方程的步骤.3.教学用具

课件

4.标签

求解一元一次方程

教学过程

一、小组讨论,引入课题

内容:设置问题串,观看课本(或课前预习),请同学回答:

1、上课时解一元一次方程的题型有什么特点?

2、解方程:4(x+0.5)+x=17.此方程有什么特点?与上课时的题型差异何在?

3、解方程:x-6(2x-1)=4.此方程又该如何解呢?

二、合作学习内容:请同学们分析理解137页图解题.1、由同学根据图示编出一道合理的应用题.2、比较此题与本章节第一节引例的实际问题有何区别? 完整编出此题:

小林到超市,准备买1听果奶和4听可乐,小明告诉他一听可乐比一听果奶贵5角钱,小林给了营业员10元钱,找回了3元,大家帮助小林算算一听果奶,一听可乐各是多少钱?完成的过程中体现出学生对图例中已知、未知等相关方面的信息掌握全面,梳理清晰,表达准确.本例学生们发现设问中的未知量由原来的一个增加到现在的两个,并给出完整的解答过程.这些方面学生都能很完整、准确地给予书面语言的表达,完成得非常好,为后续课程的学习奠定了很好的基础.列出方程:4(x+0.5)+x=10-3.这个方程列的对吗?怎样解所列的方程? 例3解方程:4(x+0.5)+ x=7.解:去括号,得4x+2+x=7.移项,得4x+x=7-2.合并同类项,得5x=5.方程两边同除以5,得x=1.此题通过师生合作解决,强调规范的步骤格式.三、探索交流,深化认识

内容:课本137页,例4解方程:-2(x-1)=4.解法一:去括号,得-2x+2=4.移项,得-2x=4-2.化简,得-2x=2.方程两边同时除以-2,得x=-1.解法二:方程两边同时除以-2,得x-1=-2.移项,得x=-2+1.即x=-1.四、巩固提高

让同学们独立完成课本138页随堂练习的八道题,完成后小组间进行讨论交流,教师最后再对同学们解答过程中的存在的一些问题给予指导和纠正.课堂小结

1、本节课我们学习了哪些内容?

2、解含有括号的一元一次方程的一般步骤是什么?每步变形的依据及需注意什么?

课堂小结

学了这节课,你有什么收获?

课后习题 完成课后练习题。

板书 求解一元一次方程

第三篇:初一数学一元一次方程教案一

第三章 一元一次方程 2.1.1一元一次方程(1)提出课本P79的问题

问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)教师可以在学生回答的基础上做回顾小结。

问题2:你会用算术方法求出王家庄到翠湖的距离吗?

(当学生列出不同算式时,应让他们说明每个式子的含义)

教师可以在学生回答的基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;

2、从知的信息中可以求出汽车的速度;

3、从路程的角度可以列出不同的算式

问题3:能否用方程的知识来解决这个问题呢?

二、讲解新课

1、教师引导学生设未知数,并用含未知数的字母表示有关的数量

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山

千米,王家庄距秀水

千米。

2、教师引导学生寻找相等关系,列出方程. 问题1:题目中的“汽车匀速行驶”是什么意思?

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

问题3:根据车速相等,你能列出方程吗?

教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:x-503 =x+70 5,依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:x-503 =50+70 2

3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);

(2)根据问题中的相等关系,列出方程.

渗透列方程解决实际问题的思考程序。

5、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报。

列算式:只用已知数,表示计算程序,依据是间题中的数量关系; 列方程:可用未知数,表示相等关系,依据是问题中的等量关系。3.1.2等式的性质

问题:我们用估算的方法,可以求出简单的一元一次方程的解。你能用这种方法求出下列方程解吗?

(1)3x-5=22;(2)0.28-0.13y=0.27y+1 学生得出规律:把平衡的天平的两边的重量,同时变为原来的几倍或几分之几,天平还保持平衡。(天平相当于等号)归纳出:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。即:如果如果a=b,那么ac=bc;如果a=b(c≠0),那么ac = bc

三、巩固知识:讲解例2

课本P84 练习

四、总结

本节主要学习等式的性质,并会用等式的性质解简单的一元一次方程,主要用到的思想是类比思想与转化思想。注意等式性质1,一定要注意等式的两边同时加上或减去同一个数或式,才能保证等式成立。等式性质2,要注意等式的两边不能除以0。等式的性质是等式变形的依据。

3.2解一元一次方程

(一)——合并同类项与移项 问题1:如何列方程?分哪些步骤? 师生讨论分析:(1)设未知数:前年购买计算机x台

(2)找相等关系:前年购买量+去年购买量+今年购买量=140台(3)列方程:x+2x+4x=140 问题2:怎么解这个方程?如何将这个方程转化为x=a的形式? 学生观察、思考

根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x 教师演示解方程过程

问题3:以上解方程“合并”起了什么作用?每一步的根据是什么? 学生讨论、回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近x=a的形式。

三、巩固知识:课本P89 例1:课本P89 练习

3.2解一元一次方程

(一)——合并同类项与移项 第二课时 教学过程:

一、创设情境,引入新课

问题:课本P89 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

学生思考,然后讨论合作。

二、讲授新课

问题1:列方程解决实际问题的基本思路是什么? 学生讨论、分析

1、设未知数:设这个班有x名学生

2、找相等关系:这批书的总数是一个定值,表示它的两个等式相等

3、列方程:3x+20=4x-25 问题2:怎么解这个方程?它与上节课遇到的议程有什么不同? 学生讨论后发现:方程的两边都有含x的项和常数项 问题3:怎样才能使它向x=a的形式转化?

学生思考、探索:为使方程右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20,即3x-4x=-25-20 问题4:以上变形的依据是什么? 学生:等式的性质1 归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。师生共同完成这道题的解题过程。

问题5:以上解方程中的“移项”起了什么作用? 学生讨论、回答,师生共同整理。通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

第四篇:解一元一次方程_教案2(推荐)

等式的性质与方程的简单变形

【教学目标】

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

3.掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

【教学重难点】

1.重点:掌握去分母解方程的方法。

2.重点:解含有括号的一元一次方程的解法。

3.难点:求各分母的最小公倍数,去分母时,有时要添括号。4.难点:括号前面是负号时,去括号时忘记变号。

【教学过程】

一、复习提问。

1.解下列方程:

(1)5x-2=8(2)5+2x=4x 2.去括号法则是什么?“移项”要注意什么?

二、新授。

一元一次方程的概念.如44x+64=328 3+x=(45+x)y-5=2y+l问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1:判断下列哪些是一元一次方程 x=3x-2x-=-l 5x2-3x+1=0 2x+y=l-3y=5 例2:解方程(见课本)解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

/ 2

补充例:解方程(x+15)=-(x-7)

三、巩固练习。

完成练习。

四、小结。

1.学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

2.解一元一次方程有哪些步骤?

3.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

/ 2

第五篇:7.3一元一次方程的解法教案(一)

七年级数学(上)7.3一元一次方程的解法(1)

设计人:佛山中学 马冬梅(***)审核人:张同华

【教学目标】

1、掌握移项法则,会用移项法则对方程进行变形

2、掌握解一元一次方程的基本步骤:“移项”、“合并同类项”和“化未知数的系数为1”。

3、会解简单的一元一次方程。【重难点】

重点:一元一次方程的解法步骤。难点:移项法则 【教学过程】

一、检查课前预习。(指一列学生说出下列题目的答案)

1、等式的基本性质是什么?(等式的基本性质是学习本节课的重要依据,学生回答后,全班同学齐读一遍)

2、利用等式的基本性质把下列一元一次方程化成“x=a”的形式.(1)x-5=7(2)-5x=5

课内探究:

环节1:自主学习

1、结合课前预习中的内容,自学课本,解方程x-2=5 ,2x=x+3(1)你发现将方程的一项由等式一边移到另一边时,它的符号发生了什么变化?(学生先自学,然后同桌讨论交流)

(2)把方程中某一项_______________,从方程的一边移到另一边,这种变形叫做____。

注意:(1)移项一定要改变符号

(2)一般的,把含有未知数的项移到方程左边,不含未知数的项(常数项)移到右边。

二、巩固新知:

下列方程的变形正确吗?如果不正确,怎么改正?(1)由方程z+3=1,移项得z=1+3

(2)由方程3x=4x-9,移项得3x-4x=-9

(3)由方程3x+4=-5x+6,移项得3x+5x=6-4

(4)由方程5-2x=x-9,移项得-2x-x=9-5 强调:(移项一定要改变符号,不移项符号不变。)

环节

2、交流提升:

以小组为单位,学习交流课本例1、2、3,共同讨论解一元一次方程的步骤和注意事项,每组找代表汇报课本例1、2、3的解法,师用幻灯片显示解答过程。集体交流解题步骤。1.移项,2.合并同类项,3.把未知数的系数化为1,4.检验。根据学到的方法,解答下列方程。试一试:

(1)(2)

(3)(3)

(指做得最快的4名同学在黑板上做出4道题然后集体交流,找出薄弱环节,加强练习)

环节

3、精讲点拨:

问题:解方程要注意“移项”与“化未知数的系数为1”的区别。求下列

方程的解是移项还是化未知数的系数为1?并说明变形的根据。

(1)5 x3(2)5x2

2x59(3)(4)5x =3x – 5

(再找做得快的其他4名同学上黑板做出这4道题,每名同学讲出自己的做题依据。找出典型错误,订正)

温馨提示:(1)移项:要先改变符号再移项

(2)合并同类项:移项后,把方程左右两边的同类项合并,将方程化为ax=b的形式

(3)化未知数的系数为1:将方程ax=b未知数x的系数x化成1。

环节4:巩固检测

1、(1)3 + x = 6(2)x — 15 = 2

(3)7x—5 = —3x

(同桌交换所做练习,集体交流答案,标出对错,教师了解学生的掌握情况)

课堂小结:通过对本节课的学习,你能说出解简单方程的步骤吗?在每一步中有哪些注意事项?

三、【作业布置】

(1-3题巩固作业,为必做题;

4、5题拓展提升)

1、解方程

(1)3 – x = 6(2)2x + 3 = 3x

(3)2x – 1 = 5x + 7

2、解下列方程,并写出方程变形的根据:

(1)x + 1.6 = 0(2)-2.8y - 0.7 = 1.4

3、填空题

(1)若 是关于x的一元一次方程,则k的取值是______________.(2)、如果方程3x+2a=12和方程3x-4=2的解相同,那么a=__________.4、解答题:

当x取何值时,2x+1 与 — x —2的值,(1)相等(2)互为相反数

5、回顾:

整式的加减中的去括号法则你还记得吗?利用去括号法则完成下列题目

1、(1)3x +(2x –x)(2)3(x + 6)– 9 + 5(1 – 2x)

2、尝试解下了方程:

(1)3(x + 6)= 9 – 5(1 – 2x)

(2)(y + 1)1)= 1 – 3y 【板书设计】

一元一次方程的解法

1.移项定义

注意事项:(1)移项一定要改变符号

(2)一般的,把含有未知数的项移到方程左边,不含未知数的项(常数项)移到右边。

强调:(移项一定要改变符号,不移项符号不变。)2.精讲点拨: 例题讲解 3.解一元一次方程的基本步骤:(1)移项(2)合并同类项(3)化未知数的系数为1

下载5.2求解一元一次方程(一)教案word格式文档
下载5.2求解一元一次方程(一)教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元一次方程教案

    一元一次方程(1)公开课教案 授课:张福仁 地点:七年级 教学目标: 1.知识与技能(1)通过观察,归纳一元一次方程的概念.(2)根据方程解的概念,会估算出简单的一元一次方程的解. 2.过程与方法.通......

    一元一次方程教案

    3.1一元一次方程教案 上课人:周艳 一、教学目标 知识目标:掌握方程、一元一次方程的及其解的概念,理解等式的基本性质,并利用等式的基本性质解一元一次方程。 能力目标:通过列方......

    一元一次方程教案

    一元一次方程讲学稿 执笔:苏阳 审核: 教学目标: 1.了解什么是方程,什么是一元一次方程; 2.经历把“实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效地模型,认识......

    错中求解教案

    《错中求解》教学设计 教学目标: 1、 知识点:倒推 2、 知识目标:让学生学会从错误入手,找到正确结果的方法——倒推 3、 能力目标:提高运用倒推法解决问题的能力 教学过程: 一 初......

    错中求解教案

    深圳 市教育培训中心 课题:错中求解 班级姓名一、本讲知识点和能力目标1、知 识 点:倒推2、知识目标:让学生学会从错误入手,找到正确结果的方法——倒推法。 3、能力目标: 提高运......

    解一元一次方程教案

    解一元一次方程(二)——去括号与分母 一、教学目的和要求: 1、知识目标 (1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;......

    解一元一次方程教案

    解一元一次方程(去括号) 教学设计 一、本节课的主要内容: 解含有括号的一元一次方程以及运用一元一次方程模型解决实际问题.本节课是在学生会用移项、合并同类项解简单的一元......

    解一元一次方程教案

    解一元一次方程(2) ------------去分母教学内容:课本第99至第101页。 知识与技能目标:使学生掌握去分母解方程的方法,总结解方程的步骤。 过程与方法目标:经历去分母解方程的过程,......