第一篇:线段图的作用之我见
线段图的作用之我见
俗话说:授之以鱼,不如授之以渔。教师不仅要教给学生知识,更重要是教给学生学习的方法。画线段图分析在小学应用题教学中起了奇妙的作用。线段图能使题目中的数量关系更形象、更直观;更重要的是线段图能开阔学生思维,帮助学生一题多解。例如,在教学同学们开联欢会布置会场,用的红气球占总数的4/9,红气球有28个一共有多少个气球?这个例题时,小组长领着小组到前面展示前置性作业,画出线段图后,根据等量关系:气球的个数×4/9=红气球的个数。其中3号根据线段图及等量关系很快列出了方程。
解:设气球的总个数为x。4/9 x = 28 X = 28÷4/9 X = 63 答:气球一共有63个。这时1号问谁还有不同做法?
生1:我有,大家看线段图,因为把气球总数看做单位“1”红气球占4/9也就是说把单位“1”平均分成9份红气球占了4份。所以我是这样做的,28÷4×7=63个。先求出一份多少个,再求9份多少。(掌声响起)
生2:我还有一种做法,大家看线段图。气球总数的4/9是28个,我用28÷4/9=63个。(掌声响起)师随机引导说,你真厉害。只要知道一个数的几分之几是多少,求这个数,是不是都可以用这种方法计算呢?生说是,在线段图上有啥特点呢?谁来谈一下。生:在线段图上体现为,一个具体数对应一个分率。(渗透了对应分率)通过这节课的教学,使我深刻的理解到让学生通过画线段图来分析解题有意想不到的效果,我在以后的教学中我更要培养学生画图分析应用题的能力。
第二篇:解决问题画线段图
解决问题的策略——画线段图
教学目标
1.使学生在解决实际问题的过程中,学会画线段图来描述条件和问题,能借助线段图分析数量关系,能解答有关的实际问题。
2.使学生经历解决实际问题的全过程,进一步积累解决问题的经验,感受画线段图描述和分析问题对于解决问题的价值,提高分析和解决问题的能力。
3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,树立学好数学的信心。教学重点难点
重点:学会画线段图来描述条件和问题,能借助线段图分析数量关系,增强运用策略的意识。
难点:使学生在问题情境中运用策略的意识,能正确解决有关实际问题,并养成检验的良好习惯。教学过程
一、引入新课 1.线段表示数量 出示一条线段
师:这是什么?关于线段,你知道些什么? 你觉得这条线段可以表示什么?(出示课件)
可以表示15千克?表示20元?表示670米?表示52人吗?(分别出示课件)也就是说,线段可以表示什么? 生:数量
二、新课 1.出示课题题
师:本节课我们一起学习解决问题的策略,你会哪些策略? 生:
2.出示例题
师:我们从这个问题开始(出示课件例题)
小宁和小春共有72枚邮票,小春比小宁多12枚。两人各有邮票多少枚? 3.学生读题,尝试解决
师:你从题目中读到那些信息?你能尝试解决吗? 4.用线段图整理条件
师:由于两个人的邮票数量都是未知的,列表不容易找到解题思路。我们可以什么来分析数量关系呢?
师:题目中有几个相关联的量?应该用几条线段来表示呢?
师:如果用这条线段表示小宁的邮票枚数,那小春能用这条线段表示吗?这条呢?为什么?这样呢? 师:条件整理出来了,问题该怎么整理?
师:只看线段图,你能把题目意思给表达出来吗? 3.根据线段图解决问题
师:解决这个问题,你是愿意只看文字叙述思考,还是结合线段图分析? 生:看着线段图 师:为什么?
生:看着线段图更清楚,好懂。
师:那就结合直观的线段图,动笔试一试。生独立解答,师巡视。
师:现在与小组其他同学交流一下,你是怎样想的?
师:现在请小组推选出一个代表来汇报一下你们的想法。(小组代表汇报)生汇报两种思路,板书。教师整理说明: 思路一:
先去掉小春比小宁多的12,这时总数就会(也去掉12),这样(他们两人的邮票数就一样多了,这时的总数是小宁的2倍)。然后我们再把他们平均分,这样就可以求出小宁的邮票数,那么由求出的小宁的邮票数,我们就可以求出小春的邮票数。思路二:
追问:还有其他的解题思路吗?
给小宁补上12,这时总数就会(也补上12),这样(他们两人的邮票数就一样多了,这时的总数是小春的2倍)。然后我们再把他们平均分,这样就可以求出小春的邮票数,那么由求出的小春的邮票数,我们就可以求出小宁的邮票数。
思路三:
如有第三种方法,请学生解释清楚。4.对比总结方法的共同点
师:虽然这道题有两种不同的解法,但这两种不同的解法有没有共同之处? 引导学生发现后小结:这两种方法,虽然一种是将小春去掉12,另一种是将小宁补上12,但是两种方法都是想办法使它们一样多,要么转化成两个小宁的枚数,要么转化成两个小春的枚数,再平均分。这也是解决这种题型的关键。5.引导学会检验
师:判断解决问题是否正确、符合题意,我们可以对解题结果进行检验。可以怎样检验?
生:用一种方法检验另一种方法。
师:我们也可以用“把得数带入原题”的方法检验,想想看,将得数带入原题检验要分几步进行? 生:两步 师:谁能说说是哪两步?
生:先检验两人邮票的总数是不是72,还要检验小春是不是比小宁多12枚。师:动笔在作业本上列式检验。提问,板书:
30+42=72 42-30=12 师:今后解决问题时,我们都可以用“把得数代入原题”的方法进行检验,看计算的结果是否满足所有的条件,判断解题是否正确。
三、练习巩固 1.“练一练”。
师:要掌握画图的策略,我们首先要看懂图,这张图,你能看懂吗?谁来说说这张图的意思?
看着图,先想想你准备怎样解决?请同学们列式解答。(给学生一些思考的时间,直接列式解答)
交流:你能说说你是怎样想的吗? 4.回顾总结
回顾刚才两道题分析、解题的过程,你有什么体会? 生回答后板书:直观 清楚
师:这就是这节课我们要学习的解决问题的策略——画线段图(出示课题)其实,在以前的学习中,我们就遇到过很多用画图的策略解决问题的情况,你还记得吗?
生:通过画一画,圈一圈,认识了一个数是另一个数的几倍;解决问题时画线段图表示题中的条件和问题;探索周期规律时,画图表示物体的排列顺序,找出规律。
四、课堂小结
五、效果检测
六、课外提升
第三篇:解决问题--画线段图
解决问题的策略——画线段图
教学内容:义务教育课程标准实验教科书(西师版)第5~6页例
4、例5及课堂活动,练习一第11题。
教学目标:
1、知识与能力:初步学会用线段图表示数量关系,借助线段图分析具体的实际问题。培养学生的问题意识和用两步混合运算解决问题的能力。
2、过程与方法:经历画线段图和用两步计算解决简单的实际问题的过程,获得解决问题的实际体验。
3、解决问题:会解决涉及倍数关系的两步计算的实际问题,获得基本的画线段图解题问题的策略。
教学重点:学习用线段图表示数量关系。
教学难点:列综合算式时记住正确使用小括号。教学过程
一、复习引入
1、计算下面各题,并说一说运算顺序:125×4+54
340×2-120
(90-25)×
322、情境引入
教师:学校体育节报名开始了,一年级有102人报名参赛,四年级的报名参赛人数是一年级的2倍少15人。
看到这个信息,你能提一个什么数学问题? 学生提出问题:四年级有多少人参赛?
教师:你能用你学过的方法解决吗?
板书课题:解决问题。
二、自主探索
1、教学例题
(1)教师抽学生板书算法:102×2=204(人),204-15=189(人)
教师肯定学生的算法,提出:现在老师有一个更高的要求,不知道你们能不能完成? 学生充满期待的聆听:把这道题的数量关系用线段图来表示?
(2)学生讨论:画几条线段?哪条画在上面?怎样画?(边画边交流,师巡视)(3)抽学生上台尝试画线段图,并明确正确画法:
教师:哪个年级的人数是被比的?就把这个年级的人数用一条线段(一般是一厘米)表示出来。四年级的人数与一年级的人数是什么关系?刚好是一年级的2倍那样多吗?
学生:没有,比2倍少。
教师:所以我们先要画一年级的2倍,就是2厘米,还要在此基础上减去15人才得到四年级的人数。因此表示四年级人数的线段是2厘米少一点。
指导学生在线段图上标出有关信息,如:102人、一年级的2倍、少15人。(4)根据这幅线段图你能将它列为综合算式吗?试一试。学生独立完成,师巡视。并抽生上台板演:102×2-15
=204-15
=189(人)
(5)回顾解决问题的过程,总结策略——画线段图
2、运用策略,解决新的问题:将教材第5页例4 作为习题出示,要求学生用画线段图的方法来解决。抽生板书:165×3-45
=495-45
=450(只)教师将例4中的少45只改成多45只,学生画线段图并独立解决,然后交流。
学生1:我的线段图这样画:学生2:我是这样列式的:165×3+45。
教师:你发现这两个问题有什么相同点和不同点呢?
学生:相同点是啄木鸟每天吃害虫的只数与山雀吃害虫的只数都有倍数关系。但一个是比山雀的3倍少45只,所以计算出3倍后要减去45只;一个比3倍多45只,所以要计算出3倍后要加上45只。
2.教学例5。
教师:刚才我们解决了森林医生吃害虫的问题,下面我们来解决小朋友在集邮过程中遇到的问题。
课件出示例5并提出数学问题。要求学生先试着画线段图帮助分析,再独立列式解决,再在小组中交流自己的解决方法。
教师:线段图是怎样画的?要画几条线段?谁应该画在上面? 学生1:要画三条,小华的画在最上面。学生2:再画小明的张数,比小华的短一点。学生3:最后画小青的,是小明的3个长度。学生4:我这样思考,根据小明比小华少15张邮票,可以求出小明的邮票张数为:80-15=65张。根据小青的邮票是小明的3倍可以求出小青的邮票张数,即:65×3=195张。
学生5:我这样思考:要求小青有多少张邮票,必须先知道小明有多少张邮票,因为题中告诉了小青的邮票张数是小明的3倍。而要求小明有多少张邮票,可以直接用80减去15,因为题中告诉了小明比小华少15张。由此可以这样列式: 80-15 ×3。
要求学生讨论:80-15 ×3这种列式对吗? 指导学生说出:这个列式应先算15 ×3,而题意应先算80减15的差。为了先算我们必须加上一个小括号,成为(80-15)×3才正确。
指导学生写答语。
三、活动思考
(完成第6页课堂活动)学生在独立思考的基础上先在组内交流思考方法,再以小组为单位开展全班交流。
学生:要求积在80与100之间,由此我想到了90与99,由题中告知:按3颗或9颗的拿都要剩1颗,由此这些糖可能是91或100颗,但是题中又说到这些糖要比100颗少,所以应是91颗。
四、独立练习
学生完成练习一第9、12题,做后交流。
五、小结
通过今天的问题解决,你有什么收获?
第四篇:线段图在小学数学教学中的作用
线段图在小学数学教学中的作用
[摘 要]线段图在小学数学应用题教学中可起到微妙的作用:形象直观,线段图巧化变量利解题;条理清楚,线段图速析条件好判断;开思启智,线段图发散思维促提高。
[关键词]线段图;应用题;小学数学
“授之以鱼,不如授之以渔。”教师不仅要教给学生知识,更重要是教给学生学习的方法。线段画可帮助低年级、高年级的同学轻松、愉快地学会简单、复杂的应用题,促进学生思维的发展。
一、形象直观,线段图巧化变量利解题
通过线段图的绘制,抽象文字变量被巧妙地转化,形象直观地呈现在小学生面前,有利于学生解决问题。进行数形转化是线段图最普遍的用法,教师在教学过程中,要注重引导学生根据数量关系进行图形绘制,帮助学生准确掌握线段图绘制的规律,利用线段图解决大部分应用题。
另外,通过绘制线段图,可以将应用题中的数量关系直观地展现出来,学生根据直观图形的形象表示,很容易就能掌握变量关系,之后的解题就是单纯的数量运算了。
二、条理清楚,线段图速析条件好判断
教师在引导学生利用线段图解析数量复杂的应用题型时,关键要做好几方面工作:提取条件时要准确;转化数量时要清楚;绘制线段图时要符合逻辑。力求通过线段图的绘制,化繁为简,化难为易,有效准确地解决复杂型应用题。
例如,在“分数的加减”这一课程教学中,有一道应用题:已知A比B多1/4,请问B比A少几分之几?许多学生看到这道题目后直接回答:“1/4。”但答案被否定了,因为在整数的范畴中,当A比B多多少,B同时就比A少多少,但分数的性质决定了这道题目不能按照之前的思路来做。
要帮助学生有效准确地理解这道题目,教师要从分数的性质入手,提问:“A比B多1/4,是把什么数看作单位‘1’?平均分成几份?”学生很快说出:“A比B多1/4 是把B看作单位‘1’,平均分成4份,A比B多了4份里面的1份。”当学生有了初步的认识后,教师可通过画线段图,引导学生进一步认识数A与数B的关系:“你认为这道题的线段图要先画什么数?”学生纷纷说:“应该先画B,也就是要先画单位‘1’。”顺着学生的思路,笔者在黑板上画了一条线段后,问:“这是B,我们把它的长度看作单位‘1’,平均分成几份?”学生回答:“把它平均分成4份。”画好了B线段,画A线段就比较容易了,学生很快就画出了B线段。接下来引导学生进行比较:“从这个线段图上可以看出A是5份,B是4份,那么B比A少几分之几呢?”学生很快就从线段图上得到答案:“B比A少1/5。”
可见,通过画线段图,可以将复杂多变的数量关系简化成图形,弥补学生抽象思维的不足,让学生通过观察图形发现特征,并能根据特征列出式子进行计算,大大提高了学生解题的准确性。
三、开思启智,线段图发散思维促提高
线段图就像是学生自主探究意识培养的催化剂,为学生做题带来灵感。教师在教学中要充分发挥线段图的启智作用,提高学生解决应用题的能力和效率。
如题:水果摊上有苹果50千克,香蕉是苹果的3倍,请问香蕉比苹果多多少千克?学生在做题过程中,一般是直接列式计算“50×3-50=100千克”。这样的算法千篇一律难免单调,而线段图给题目的计算带来了其他可能性:画出线段图后,可以清晰地发现苹果是1份(50千克),香蕉比苹果多2份,50×2=100千克,快速而准确地得出答案了。
线段图的正确运用,为学生展现了一种全新的数学思维,学生的思维方式由原先的直观思维向结构化直观思维转变,丰富了学生的思维方式。通过引导学生利用线段图进行创造性的学习活动,让学生从不同角度切入,深入浅出地理解题目,一题多解,全面思考,既有利于提高学生的数学能力和综合素质,又让学生形成有个性的、富有创造性的学习习惯。
综上所述,线段图具有使得题目的理解更加简洁、明了,使得数量关系更加清晰,还能发展学生思维能力及表达能力等多种优点,如果学生从小掌握了用线段图辅助解题的方法,分析问题和解决问题的能力得到提高,对今后的学习生活将有很大的帮助。
责任编辑 晴 天
第五篇:线段图在小学数学应用题教学中的作用
线段图在小学数学应用题教学中的作用
小学数学应用题既是教学中的重点,也是教学中的难点。有不少应用题,文字叙述比较抽象,数量关系比较复杂,小学生的思维又处于具体形象思维向抽象逻辑思维的过渡阶段,对于一些抽象问题理解起来困难较大。如果教师一味的从字面去分析题意,用语言来表述数量关系,学生却难以理解和掌握。即使是学生理解了,也只是局限于会做某个题了。俗话说,授之以鱼,不如授之以渔。一个教师不仅要教给学生知识,更重要的是交给学生学习知识的方法。线段图在小学数学应用题教学中起到了奇妙的作用,它可以帮助学生轻松、愉快的学会复杂关系的应用题,既培养了学生的能力,又促进了学生了思维的发展,是教学中行之有效的教学方法。
一、画线段图解应用题的优点
1、小学生年龄小,理解能力有限,借助于线段图解题,可以化抽象的语言到具体、形象、直观图形。教师引导学生用线段图的形式表示题目中的数量关系,更直观,形象,具体。
2、有的应用题,数量关系比较复杂,学生难以理清,借助线段图可以准确的找出数量间的对应关系,很容易解出要求的问题,可以化难为易,判断准确。
3、有些应用题数量较多,数量关系学生感觉比较乱,学生容易混。借助线段图,可以化繁为简,发展学生思维。
4、线段图不但使学生解答应用题不再困难,而且借助线段图,可以对学生进行多种能力的培养。如一题多解能力的培养、根据线段图来编应用题,进行说话能力的培养、还可以直接根据线段图进行列式计算。线段图画的美观大方,结构合理,还可以对学生进行审美观念,艺术能力的训练。
二、培养学生画线段图的能力
1、从低年级开始,培养画简单线段图的习惯。有人认为用线段图帮助解题是高年级的事,是比较难的题才使用的方法,中低年级和比较简单的应用题不需要画画线段图。这种认识是不适当的。有的学生也错误的认为,这么容易的题,我不画图就能理解题意,把题做对,何苦去自找麻烦。教师要讲清,如果从小基础打不牢固,到高年级遇到比较难的应用题,需要画线段图辅助解题的时候,就会画不出来或画不正确,解题的能力就会的大大降低,就会影响思维的发展。所以,线段图的培养一定要从中低年级培养,从简单题入手,从小养成画图解题的意识和良好的画图技能技巧,打下坚实的基础,到高年级才能如鱼得水,应用自如。
2、学会画图是关键。学生刚学习画线段图,不知道从那下手,如何去画。教师的指导、示范就尤为重要。教师可以指导学生跟教师一步一步来画,找数量关系。也可以教师示范画出以后,让学生仿照重画一遍,即使是把老师画的图照抄一边,也是有收获的。学生可边画边讲,或互相讲解。教师对有困难的学生一定要给以耐心的指导。学生掌握了一定的技能后,教师可以放手让学生自己去画,教师给以适时的点拨,要注意让学生讲清这样画图的道理,可自己讲,也可分组合作讲。教师一定要让学生体会用图解题的直观,形象,体会简洁、方便、易理解的特点,提高应用的自觉性、主动性。
3、学会分析是重点。只会画线段图,不会分析,不会用线段图解决实际问题,画线段图就没有意义了。怎样分析线段图?要做到以下三点:
(1)、认真读题,全面理解题意,所画的图要与题目中的条件相符合。
(2)、图中线段的长短要和数值的大小基本一致,不要长的线段标出小的数据而短的线段标出大的数据。图要画的美观、大方、结构合理,具有艺术性。
(3)、要按照题目的叙述顺序,在图上标明条件。对于双线段并列图和多线段并列图一定要分清先画和后画的顺序,要找准数量间的对应关系,明确所求的问题,弄清个部分之间的关系。这是分析题意和列算式的重点,需要进行大量的训练才能提高分析问题和解决问题的能力,并非一日之功、掌握一个解题方法,比做几十道题更重要。实践证明,线段图具有直观性、形象性、实用性,如果学生从小掌握了用线段图辅助解题的方法,分析问题和解决问题的能力将会有大大的提高,对学生今后的学习有很大的帮助。