一次函数与一元一次方程教案

时间:2019-05-15 03:46:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一次函数与一元一次方程教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一次函数与一元一次方程教案》。

第一篇:一次函数与一元一次方程教案

一次函数与一元一次方程教案

教学目标:

1.知识与技能

会用一次函数图象描述一元一次方程的解,发展抽象思维.

2.过程与方法

经历探索一元一次方程与一次函数的内在联系,体会数与形结合的数学思想.

3.情感、态度与价值观

培养良好的应用能力,体会代数的实际应用价值.

重、难点与关键

1.重点:理解用函数观点解决一元一次方程的问题.

2.难点:对一次函数与一元一次方程的再认识.

3.关键:应用数形结合的思想.

教具准备

直尺、圆规.

教学方法

采用“直观操作”教学方法,让学生在图形的认知中领会本节课内容.

教学过程

一、回顾交流,知识迁移

问题提出:请思考下面两个问题:

(1)解方程2x+20=0.

(2)当自变量x为何值时,函数y=2x+20的值为0?

【学生活动】观察屏幕,通过思考,得到(1)、(2)的答案,回答问题.

【教师活动】在学生充分探讨的基础上,引导学生思考:“一元一次方程与一次函数之间有何内在联系”?

【思路点拨】在问题(1)中,解方程2x+20=0,得x=-10;解问题(2)就是要考虑当函数y=2x+20的值为0时,所对应的自变量x为何值,这可以通过解方程2x+20=0,得出x=-10.这两个问题实际上是一个问题,从函数图象上看,直线y=2x+20与x轴交点的坐标是(-10,0),这说明,方程2x+20=0的解是x=-10.(课本图14.3-1)

【问题探索】

教师叙述:由上面两个问题的关系,能进一步得到“解方程ax+b=0(a,b为常数”与“求自变量x为何值时,一次函数y=ax+b的值为0”有什么关系?

【学生活动】小组讨论,观察上述问题的图象,联系方程、函数知识,领会贯通,踊跃回答.

【师生共识】由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值,从图象上看,这相当于已知直线y=ax+b,确定它与x轴交点的横坐标的值.

【教学形式】小组合作讨论,教师巡视、引导.

二、范例点击,领会新知

【例1】一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?

【教师活动】激发学生思考.

【学生活动】先不看课本解答,独立地思考问题,抓住问题的本质:“设未知数,寻找等量关系.”得出方程,再应用函数的观点建立两个变量的关系式,上讲台演示自己的做法.

【评析】这两种解法分别从数与形两方面得出相同的结果,培养学生识图能力.

解法1:设再过x秒物体的速度为17米/秒.

依题意得:2x+5=17

解得:x=6

解法2:设速度y(单位:米/秒)是时间x(单位:秒)的函数.

y=2x+5

由2x+5=17

得2x-12=0

由如图看出,直线y=2x-12与x轴的交点为(6,0),得x=6.

三、随堂练习,巩固深化

1.看图2填空:

(1)当y=0时,x=_______.

(2)直线对应的函数解析式是________.

2.一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?

3.某种摩托车的油箱最多可储油10升,加满后,油箱中的剩油量y(升)与摩托车行驶路程x(千米)之间的关系式如图所示.

根据图象所提供的信息,回答下列问题:

(1)一箱汽油可供摩托车行驶多少千米?

(2)摩托车每行驶100千米消耗多少升汽油?

(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警.

四、课堂总结,发展潜能

1.请同学们谈一谈,函数与方程的联系和区别.

2.对数形结合的思维方法进行总结.

五、布置作业,专题突破

1.课本P129习题14.3第1,2,5题.

2.选用课时作业设计.

第二篇:一次函数与一元一次方程教学反思

一次函数与一元一次方程教学反思

本节内容并不多,通过讨论一次函数与方程的关系,从运动变化的角度,用函数的观点加深对已经学习过的内容的认识,熟悉数形结合思想。教材还说“这种再认识不是简单的回顾复习,而是居高临下地进行动态分析。

学完课本内容后,让学生找开基训P23,做上面的1、2。第2题要求“求函数解析式且画出图象,根据图象回答„„”。学生练习本上求解函数解析式,巡视中发现许多学生并没有作出一次函数的图象而直接把已知代入解析式求解,虽然也能答出结果但有悖题意。我赶快提示学生,根据要求答题。几分钟后,检查学生完成的情况,却发现部分学生所画的图象不规范,如没有标出与两坐标轴的交点。还有的学生虽然画出了图象却依然是“把X=2代入„„”可见学生对于图象的运用仍然不熟练,本章还有许多利用图象解决实际问题的题,数形结合真是一个难点。临下课五分钟,我突然想到用几何画板讲解这道题目非常合适,因为画板能准确地做出此题的图象,一试效果不错。

第三篇:《一次函数与一元一次方程》 教学反思

《一次函数与一元一次方程》教学反思

图们市第三中学

张翠兰

本节课从解具体的一元一次方程与当自变量x为何值时,一次函数的值为0这两个问题入手,通过观察、探究,发现这两个问题实际上是同一个问题,进而得到解方程kx+b=0与求自变量x为何值时,一次函数y=kx+b的值为0的关系,并通过观察函数图象确认了这个问题在函数图象上的反映。从而,归纳总结得出了用一次函数的观点求解一元一次方程的方法。

虽然前面有了学习一元一次方程和一次函数的基础,但是学生不会想到将一次函数与一元一次方程联系起来,所以从“数”和“形”两方面理解二者之间的关系,进一步将“数”和“形”结合起来,对学生来说仍然是个难点。

为了进一步理解二者之间的关系,通过一次函数来求解一元一次方程,我在得出结论后,设计了一系列的习题进行加深巩固,题目设计由易到难,由“数”到“形”,层层递进,便于学生理解掌握。在完成题目的过程中,注意规范学生的解题格式,以及解题过程的完整性,进一步渗透数形结合的思想以及函数观点看方程的思想。经历了这些练习后,同学们可以更熟练地掌握通过函数求解一元一次方程的方法。虽然用函数解决方程问题未必简单,但这种数形结合的思想在以后的学习过程中有着很重要的作用。

从课堂效果来看,大部分同学可以用函数的观点来认识一元一次方程,用函数的方法来求解一元一次方程。但也存在一下不足:

1、个别同学在自己通过画图象来求解一元一次方程上还有一定困难,理解上不是很到位,还需要教师进一步的指导落实。

2、本节课在时间安排上还有所欠缺,前面引导探究得出结论的过程用时过多,导致后面巩固练习中的最后一题没有完成,以后在教学中要注意各环节的时间安排,尽可能的合理一些。

3、教学中没能注重学生思维多样性的培养,数学教学的探究过程中,对于问题的最终结果应是一个从“求异”逐渐走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样控制了学生思维的发展。如在研究一次函数与一元一次方程的关系的过程中,我是步步指导,层层点拔,惟恐有所纰漏,使得学生的思维受到了限制。

4、对于运用,我采用老师问学生答的形式,没有照顾到全体学生的参与。以后可让学生在独立思考前提下进行小组活动,这样能使每个学生都能发挥自己的作用,每个学生都有表达和倾听的机会,每个人的价值作用都能显现出来,在这个过程中,学优生得到了锻炼,而学困生也在互补、互动中学到了知识,促进了发展。作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握各种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,教师只是课堂的组织者,引导者和合作者。

第四篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率=.(3)打x折的售价=原售价×.二、新授

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.选用课时作业设计

第一课时作业设计

一、填空题.⒈某商品原标价为165元,降价10%后,售价为_____元,若成本为110元,则利润为______元.⒉新华书店一天内销售甲种书籍共卖得1560元,其利润率为25%,•则这一天售出甲种书的总成本为_______元.二、选择题.⒊下面四个关系中,错误的是().A.商品利润率=;B.商品利润率= C.商品售价=商品进价×(1+利润率)D.商品利润=商品利润率×商品进价

⒋ 一件商品标价a元,打九折后售出为 a元,如果再打一次九折,•那么现在的售价是()元.A.(1+)a B.a

三、解答题.⒌甲种商品每件的进价是400元,现按标价560元的8折出售,•乙种商品每件的进价是600元,现按标价1100元的六折出售,相比较哪种商品的利润率高一些?

答案:

一、1.148.5 38.5 2.1248

二、⒊ B ⒋ B •

三、⒌ 甲商品利润率为12%,•乙商品的利润率为10%,甲商品比乙商品利润率高.

第五篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率= 商品利润÷商品进价.(3)打x折的售价=原售价×

x 10

二、新授课

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

小红以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.

下载一次函数与一元一次方程教案word格式文档
下载一次函数与一元一次方程教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一次函数教案

    一、要点解读1,知识总揽 一次函数是函数大家族中的主要成员之一,是研究两个变量和学习其它函数的基础,它的表达式简单,性质也不复杂,但在我们的日常生活中的应用却十分广泛......

    一次函数教案

    一次函数(1) 知识技能目标 1.理解一次函数和正比例函数的概念; 2.根据实际问题列出简单的一次函数的表达式. 过程性目标 1.经历由实际问题引出一次函数解析式的过程,体会数学与现......

    一次函数教案

    教案示例 6.2一次函数 一、教学目标 1、理解一次函数和正比例函数的概念,以及它们之间的关系。 2、能根据所给条件写出简单的一次函数表达式。 二、能力目标 1、经历一般规律......

    一次函数教案

    一次函数教案 (一) 教学目标 (一)教学知识点 1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系. 3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函......

    一元一次方程教案

    一元一次方程(1)公开课教案 授课:张福仁 地点:七年级 教学目标: 1.知识与技能(1)通过观察,归纳一元一次方程的概念.(2)根据方程解的概念,会估算出简单的一元一次方程的解. 2.过程与方法.通......

    一元一次方程教案

    3.1一元一次方程教案 上课人:周艳 一、教学目标 知识目标:掌握方程、一元一次方程的及其解的概念,理解等式的基本性质,并利用等式的基本性质解一元一次方程。 能力目标:通过列方......

    一元一次方程教案

    一元一次方程讲学稿 执笔:苏阳 审核: 教学目标: 1.了解什么是方程,什么是一元一次方程; 2.经历把“实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效地模型,认识......

    七年级《实际问题与一元一次方程》教案

    七年级《实际问题与一元一次方程》教案 一、教学目标 【知识与技能】能利用方程解决实际问题。 【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、......