第一篇:高一数学《集合》教学案例
高一数学《集合》教学案例
石家庄实验中学 白芹彩
§1.1.1 集合(—)
一、教学目标
(—)教学知识点
1.集合的概念和性质
2.集合的元素特征
3.有关数的集合
(二)能力训练要求
1.培养学生的思维能力
2.提高学生理解掌握概念的能力
(三)德育渗透目标
1.培养学生认识事物的能力
2.引导学生爱班,爱校,爱国
二、教学重点
1.集合的概念
2.集合元素的三个特征
三、教学难点
1.集合元素的三个特征
2.数集与数集的关系
四、教学方法—— 尝试指导法
学生依集合概念的要求,集合元素的特征,在教师指导下,能自己举出符合要求的实
例,加深对概念的理解,特征的掌握
五、教具准备
投影片四张
第一张:(记作§1.1.1 A)观察下列实例
⑴数组
1,3,5,7 ⑵到两定点距离的和等于两定点距离的点 ⑶满足3x-2〉x+3的全体实数 ⑷所有直角三角形
⑸高一(3)班全体男同学
⑹所有绝对值等于6的数的集合 ⑺所有绝对值小于3的整数的集合 ⑻中国足球男队的队员
⑼参加2008年奥运会的中国代表团成员 ⑽参与中国加入WTO谈判的中方成员 第二张:(记作§1.1.1 B)问题及解释
⑴A={1,3},问3,5哪个是A的元素? ⑵A={所有素质好的人}能否表示为集合? ⑶A={2,2,4}表示是否准确?
⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合 第三张:(记作§1.1.1 C)
判断下面说法是否正确,正确的在()内填“√”,错误的填“х” ⑴所有在N中的元素都在N*中
()⑵所有在N中的元素都在Z中
()
⑶所有不在N*中的数都不在Z中
()⑷所有不在Q中的实数都在R中
()
⑸由既在R中又在Z*中的数组成的集合中一定包含数0
()⑹不在N中的数不能使方程4x=8成立
()第四张:(记作§1.1.1 D)
3.常见数集的专用符号
N:非负整数集(或自然数集)(全体非负整数的集合)N*或N+:正整数集(非负整数集内排除0的集合)Z:整数集(全体整数的集合)
Q:有理数集(全体有理数的集合)R:实数集(全体实数的集合)
六、教学过程 1.
复习回顾
师生共同回顾初中代数涉及“集合”的提法
[师]同学们回忆一下,在初中代数第六章不等式的解法一节中提到:
一般的说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。
不等式的解集的定义中涉及到“集合”。2.
讲授新课
下面我们再看一组实例 投影片:(§1.1.1 A)观察下列实例
⑴数组
1,3,5,7 ⑵到两定点距离的和等于两定点距离的点 ⑶满足3x-2〉x+3的全体实数 ⑷所有直角三角形
⑸高一(3)班全体男同学
⑹所有绝对值等于6的数的集合 ⑺所有绝对值小于3的整数的集合 ⑻中国足球男队的队员
⑼参加2008年奥运会的中国代表团成员 ⑽参与中国加入WTO谈判的中方成员
通过以上实例,教师指出:
1.定义
一般地,某些指定对象集在一起就成为一个集合(集)师进一步指出:
集合中每个对象叫做这个集合的元素。
[师]上述各例中集合的元素是什么?
[生]例⑴的元素为1,3,5,7。
例⑵的元素为到两定点距离的和等于两定点尖距离的点。
例⑶的元素为满足不等式3x-2〉x+3的实数x
例⑷的元素为所有直角三角形
例⑸为高一(3)班全体男同学
例⑹的元素为-6,6
例⑺的元素为-2,-1,0,1,2
例⑻的元素为中国足球男队的队员
例⑼的元素为参加2008年奥运会的中国代表团成员
例⑽的元素为参与WTO谈判的中方成员
[师]请同学们另外举出三个例子,并指出其元素。
[生]⑴高一年级所有女同学。
⑵学校学生会所有成员。
⑶我国公民基本道德规范。
其中例⑴的元素为高一年级所有女同学。
例⑵的元素为学生会所有成员。
例⑶的元素为爱国守法,明礼诚信,团结友爱,勤俭自强,敬业奉献。
[师]一般地来讲,用大括号表示集合。师生共同完成上述例题集合的表示。
如:例⑴{1,2,5,7};
例⑵到{两定点距离的和等于两定点尖距离的点};
例⑶{3x-2}x+3的解}
例⑷{直角三角形};
例⑸{高一(3)班全体男同学};
例⑹{-6,6};
例⑺{-2,-1,0,1,2};
例⑻{中国足球男队的队员};
例⑼{参加2008年奥运会的中国代表团成员};
例⑽{参与中国加入WTO谈判的中方成员}。
2集合元素的三个特征 投影片:(§1.1.1 B)问题及解释
⑴A={1,3},问3,5哪个是A的元素? ⑵A={所有素质好的人}能否表示为集合? ⑶A={2,2,4}表示是否准确?
⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合?
生在师的指导下回答问题:
例⑴ 3是集合A的元素,5不是集合A的元素。例⑵由于素质好的人标准不可量化,故A不能表示为集合。例⑶的表示不准确,应表示为A={2,4}。例⑷的A与B表示同一集合,因其元素相同。
由此从所给问题可知,集合元素具有以下三个特征:
⑴确定性
集合中的元素必须是确定的,也就是说,对于一个给定的集合,其元素的意义是明确的。
如上的例⑴,例⑵,再如{参加学校运动会的年龄较小的人}也不能表示为一个集合。⑵互异性
集合中的元素必须是互异的,也就是说,对于一个给定的集合,它的任何两个元素都是不同的。如例⑶,再如A={1,1,2,4,6}应表示为A={1,2,4,6} ⑶无序性
集合中的元素是无先后顺序,也就是说,对于一个给定的集合,它的任何两个元素都是可以交换的。如上例⑴
[师]元素与集合的关系有“属于∈”及“不属于”两种。
如A={2,4,8,16}
4∈A
8∈A
32不属于A 请同学们考虑:
A={2,4},B={{1,2},{2,3},{2,4},{3,5},A与B的关系如何? 虽然A本身是一个集合。但相对B来讲,A是B的一个元素。故A∈B。投影片:(§1.1.1 C)3.常见数集的专用符号
N:非负整数集(或自然数集)(全体非负整数的集合)N*或N+:正整数集(非负整数集内排除0的集合)Z:整数集(全体整数的集合)Q:有理数集(全体有理数的集合)R:实数集(全体实数的集合)
[师]请同学们熟记上述符号及其意义。3.课堂练习
1)(口答)下面集合中的元素。⑴{大于3小于11的偶数} 其元素为4,6,8,10 ⑵{平方等于1的数} 其元素为1,-1 ⑶{15的正约数} 其元素为1,3,5,15 2)用符号∈或不属于填空
1∈N
O∈N
-3不属于N
0.5不属于N
1∈Z
O∈Z
-3∈Z
0.5不属于Z
1∈Q
O∈Q
-3∈Q
0.5∈Q
1∈R
O∈R
-3∈R
0.5∈R
(一)补充练习投影片:(§1.1.1 D)
判断下面说法是否正确,正确的在()内填“√”,错误的填“х” ⑴所有在N中的元素都在N*中
(х)⑵所有在N中的元素都在Z中
(√)⑶所有不在N*中的数都不在Z中
(х)
⑷所有不在Q中的实数都在R中
(√)
⑸由既在R中又在Z*中的数组成的集合中一定包含数0
(х)⑹不在N中的数不能使方程4x=8成立
(√)
4.课时小结
1)
集合的概念中,“某些指定的对象”,可以是任意的具体确定的事物,例如数,点,形,物等。
2)
集合元素的三个特征:确定性,互异性,无序性,要能熟练运用之。
5.课后作业
(一)课本P6习题1.1.1
(二)1.预习内容:课本P4~P5 1.
预习提纲:
⑴集合的表示方法有几种?怎样表示?试举例说明。⑵集合如何分类?依据是什么? 板书设计§1.1.1 集合
1.集合的概念
练习
2.集合元素的三个特征
⑴确定性
⑵互异性
⑶无序性
作业
教学反思
本堂课是遵循充分尊重学生,相信学生,依靠学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动师生交流的“匣门”,是教学相长的教学过程真正成为师生间的双向活动。要求教师在备课时,除常规内容外还要突出地精备学生,要备学生的认知规律,心理活动,要备学生在“触新”时,可能回忆,再现哪些“旧知”?可能萌生哪些“猜想”?在理解,掌握“新知”时可能出现哪些正确的,不正确的;不完全,不严密的思维„„设法在“前,后,左,右”给予帮助,这也正是教师“主导”作用的重要所在。
第二篇:高一数学教学案例
高一数学教学案例
巩义五中:李小举
§1.1.1集合(—)
教学目标
(—)教学知识点
1.集合的概念和性质
2.集合的元素特征
3.有关数的集合(二)能力训练要求
1.培养学生的思维能力
2.提高学生理解掌握概念的能力
(三)德育渗透目标
1.培养学生认识事物的能力
2.引导学生爱班,爱校,爱国
教学重点
1.集合的概念
2.集合元素的三个特征
教学难点
1.集合元素的三个特征
2.数集与数集的关系
教学方法
尝试指导法
学生依集合概念的要求,集合元素的特征,在教师指导下,能自己举出符合要求的实例,加深对概念的理解,特征的掌握
教具准备
投影片四张
第一张:(记作§1.1.1A)
观察下列实例
⑴数组1,3,5,7
⑵到两定点距离的和等于两定点距离的点
⑶满足3x-2〉x+3的全体实数
⑷所有直角三角形
⑸高一(3)班全体男同学
⑹所有绝对值等于6的数的集合⑺所有绝对值小于3的整数的集合⑻中国足球男队的队员
⑼参加2008年奥运会的中国代表团成员
⑽参与中国加入WTO谈判的中方成员
第二张:(记作§1.1.1B)
问题及解释
⑴A={1,3},问3,5哪个是A的元素? ⑵A={所有素质好的人}能否表示为集合? ⑶A={2,2,4}表示是否准确?
⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合 第三张:(记作§1.1.1C)
判断下面说法是否正确,正确的在()内填“√”,错误的填“х” ⑴所有在N中的元素都在N*中()⑵所有在N中的元素都在Z中()⑶所有不在N*中的数都不在Z中()⑷所有不在Q中的实数都在R中()
⑸由既在R中又在Z*中的数组成的集合中一定包含数0()⑹不在N中的数不能使方程4x=8成立()第四张:(记作§1.1.1D)3.常见数集的专用符号
N:非负整数集(或自然数集)(全体非负整数的集合)N*或N+:正整数集(非负整数集内排除0的集合)Z:整数集(全体整数的集合)
Q:有理数集(全体有理数的集合)R:实数集(全体实数的集合)
教学过程
1.复习回顾
师生共同回顾初中代数涉及“集合”的提法
[师]同学们回忆一下,在初中代数第六章不等式的解法一节中提到:
一般的说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。
不等式的解集的定义中涉及到“集合”。2.讲授新课
下面我们再看一组实例
投影片:(§1.1.1A)观察下列实例
⑴数组1,3,5,7
⑵到两定点距离的和等于两定点距离的点 ⑶满足3x-2〉x+3的全体实数 ⑷所有直角三角形
⑸高一(3)班全体男同学
⑹所有绝对值等于6的数的集合 ⑺所有绝对值小于3的整数的集合 ⑻中国足球男队的队员
⑼参加2008年奥运会的中国代表团成员 ⑽参与中国加入WTO谈判的中方成员通过以上实例,教师指出: 1.定义
一般地,某些指定对象集在一起就成为一个集合(集)
师进一步指出:
集合中每个对象叫做这个集合的元素。[师]上述各例中集合的元素是什么? [生]例⑴的元素为1,3,5,7。
例⑵的元素为到两定点距离的和等于两定点尖距离的点。例⑶的元素为满足不等式3x-2〉x+3的实数x例⑷的元素为所有直角三角形例⑸为高一(3)班全体男同学例⑹的元素为-6,6
例⑺的元素为-2,-1,0,1,2例⑻的元素为中国足球男队的队员
例⑼的元素为参加2008年奥运会的中国代表团成员例⑽的元素为参与WTO谈判的中方成员
[师]请同学们另外举出三个例子,并指出其元素。[生]⑴高一年级所有女同学。⑵学校学生会所有成员。⑶我国公民基本道德规范。
其中例⑴的元素为高一年级所有女同学。例⑵的元素为学生会所有成员。
例⑶的元素为爱国守法,明礼诚信,团结友爱,勤俭自强,敬业奉献。[师]一般地来讲,用大括号表示集合。师生共同完成上述例题集合的表示。如:例⑴{1,2,5,7};
例⑵到{两定点距离的和等于两定点尖距离的点};例⑶{3x-2}x+3的解}例⑷{直角三角形};
例⑸{高一(3)班全体男同学};例⑹{-6,6};
例⑺{-2,-1,0,1,2};例⑻{中国足球男队的队员};
例⑼{参加2008年奥运会的中国代表团成员};例⑽{参与中国加入WTO谈判的中方成员}。2集合元素的三个特征
投影片:(§1.1.1B)问题及解释 ⑴A={1,3},问3,5哪个是A的元素? ⑵A={所有素质好的人}能否表示为集合? ⑶A={2,2,4}表示是否准确?
⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合? 生在师的指导下回答问题:
例⑴ 3是集合A的元素,5不是集合A的元素。例⑵由于素质好的人标准不可量化,故A不能表示为集合。例⑶的表示不准确,应表示为A={2,4}。例⑷的A与B表示同一集合,因其元素相同。
由此从所给问题可知,集合元素具有以下三个特征: ⑴确定性
集合中的元素必须是确定的,也就是说,对于一个给定的集合,其元素的意义是明确的。
如上的例⑴,例⑵,再如{参加学校运动会的年龄较小的人}也不能表示为一个集合。⑵互异性
集合中的元素必须是互异的,也就是说,对于一个给定的集合,它的任何两个元素都是不同的。如例⑶,再如A={1,1,2,4,6}应表示为A={1,2,4,6} ⑶无序性
集合中的元素是无先后顺序,也就是说,对于一个给定的集合,它的任何两个元素都是可以交换的。如上例⑴
[师]元素与集合的关系有“属于∈”及“不属于”两种。
如A={2,4,8,16}4∈A8∈A32不属于A 请同学们考虑:
A={2,4},B={{1,2},{2,3},{2,4},{3,5},A与B的关系如何? 虽然A本身是一个集合。但相对B来讲,A是B的一个元素。故A∈B。投影片:(§1.1.1C)3.常见数集的专用符号
N:非负整数集(或自然数集)(全体非负整数的集合)N*或N+:正整数集(非负整数集内排除0的集合)Z:整数集(全体整数的集合)
Q:有理数集(全体有理数的集合)R:实数集(全体实数的集合)
[师]请同学们熟记上述符号及其意义。3.课堂练习
1)(口答)下面集合中的元素。⑴{大于3小于11的偶数} 其元素为4,6,8,10 ⑵{平方等于1的数} 其元素为1,-1 ⑶{15的正约数}
其元素为1,3,5,15 2)用符号∈或不属于填空
1∈NO∈N-3不属于N0.5不属于N∏不属于N 1∈ZO∈Z-3∈Z0.5不属于Z∏不属于Z 1∈QO∈Q-3∈Q0.5∈Q∏不属于Q 1∈RO∈R-3∈R0.5∈R∏∈R
(一)补充练习
投影片:(§1.1.1D)
判断下面说法是否正确,正确的在()内填“√”,错误的填“х” ⑴所有在N中的元素都在N*中(х)⑵所有在N中的元素都在Z中(√)⑶所有不在N*中的数都不在Z中(х)⑷所有不在Q中的实数都在R中(√)
⑸由既在R中又在Z*中的数组成的集合中一定包含数0(х)⑹不在N中的数不能使方程4x=8成立(√)
4.课时小结
1)集合的概念中,“某些指定的对象”,可以是任意的具体确定的事物,例如数,点,形,物等。
2)集合元素的三个特征:确定性,互异性,无序性,要能熟练运用之。
5.课后作业
(一)课本P6习题1.1.1
(二)1.预习内容:课本P4~P5 1.预习提纲:
⑴集合的表示方法有几种?怎样表示?试举例说明。⑵集合如何分类?依据是什么?
板书设计§1.1.1集合1.集合的概念练习2.集合元素的三个特征
⑴确定性小结 ⑵互异性
⑶无序性作业
教学反思
本堂课是遵循充分尊重学生,相信学生,依靠学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动师生交流的“匣门”,是教学相长的教学过程真正成为师生间的双向活动。要求教师在备课时,除常规内容外还要突出地精备学生,要备学生的认知规律,心理活动,要备学生在“触新”时,可能回忆,再现哪些“旧知”?可能萌生哪些“猜想”?在理解,掌握“新知”时可能出现哪些正确的,不正确的;不完全,不严密的思维„„设法在“前,后,左,右”给予帮助,这也正是教师“主导”作用的重要所在。
高一数学教学案例
巩义五中:李小举
第三篇:高一数学集合的概念教学设计
高一数学集合的概念教学设计
本资料为woRD文档,请点击下载地址下载全文下载地址课
题:1.1集合-集合的概念教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教
具:多媒体、实物投影仪内容分析:
.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:
一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)
二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、c、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人
(不确定)(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素
(B)3个元素
(c)4个元素
(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
当x∈N时,x∈G;
若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明:在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0*=a+b∈G,即x∈G
证明:∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=+=+∵a∈Z,b∈Z,c∈Z,d∈Z∴∈Z,∈Z∴x+y=+
∈G,又∵=且不一定都是整数,∴=不一定属于集合G
四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
七、课后记:
八、附录:康托尔简介
发疯了的数学家康托尔(Georgcantor,1845-1918)是德国数学家,集合论的创始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷
康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果,许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列,通过严格证明得出了许多惊人的结论
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院
真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世
集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.w.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.cauchy,1789-1857)、魏尔斯特拉斯(k.weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(c.H.Her-mannwey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.klein,1849-1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书j.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.k.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》上
第四篇:高一数学集合的概念教学设计
课 题:1.1集合-集合的概念
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念,在小学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集,至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用。基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些知识可以帮助认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念。
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括
数0
(2)非负整数集内排除0的集记作N*或N+、Q、Z、R等其它
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
七、课后记:
八、附录:康托尔简介
发疯了的数学家康托尔(Georg Cantor,1845-1918)是德国数学家,集合论的创始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷
康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院
真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世
集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础
康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了
德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所
去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世
流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研
究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》上
在小学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(p4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作n,(2)正整数集:非负整数集内排除0的集 记作n*或n+
(3)整数集:全体整数的集合 记作z ,(4)有理数集:全体有理数的集合 记作q ,(5)实数集:全体实数的集合 记作r
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括
数0
(2)非负整数集内排除0的集 记作n*或n+ q、z、r等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0 的集,表示成z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a
(2)不属于:如果a不是集合a的元素,就说a不属于a,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如a、b、c、p、q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈a颠倒过来写
三、练习题:
1、教材p5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含(a)
(a)2个元素(b)3个元素(c)4个元素(d)5个元素
5、设集合g中的元素是所有形如a+b(a∈z, b∈z)的数,求证:
(1)当x∈n时, x∈g;
(2)若x∈g,y∈g,则x+y∈g,而 不一定属于集合g
证明(1):在a+b(a∈z, b∈z)中,令a=x∈n,b=0,则x= x+0* = a+b ∈g,即x∈g
证明(2):∵x∈g,y∈g,∴x= a+b(a∈z, b∈z),y= c+d(c∈z, d∈z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈z, b∈z,c∈z, d∈z
∴(a+c)∈z,(b+d)∈z
∴x+y =(a+c)+(b+d)∈g,又∵ =
且 不一定都是整数,∴ = 不一定属于集合g
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
七、课后记:
第五篇:《集合》教学案例
循循善诱 引爆激情
——《数学广角――集合问题》
一、创设探究情境,引领学生初步感知。
1、创设情境,激发兴趣。
脑筋急转弯:房间里有两位爸爸和两位儿子,请问一共有几个人?学生猜测各种可能性,你一言我一语地发表自己的高见。
活动分析:通过学生喜爱的脑筋急转弯引入,激发了学生无限的学习兴趣,同时引导学生大胆的猜想,让学生在猜测中学会思考,在争论中学会倾听、学会交流、学会整合。
二、创设实践情境,引领学生深入理解。
(一)活动:报名参加学校组织的竞赛:足球和电子比赛
数一数,参加足球的有几位同学?(7人)参加电子的有几位同学?(5人)那么,参加比赛的一共有几位同学? 全班同学异口同声:“12人”
片刻,有少许声音:“不对,不是12人”
接着,有人举手:“老师,不是12人,是10人。”
争论声渐起:“就是12人,7+5=12,怎么会不是12人呢?”
“7+5是等于12,可这里不能这样加。”
“为什么呀?不用加法那用什么方法?”
“7+5,还要减掉2才对”
越来越多的学生点头表示赞同,但仍有一部分不解的声音:“为什么要减掉2?”“是啊,为什么还要减?”
更多的声音喊出来了:“因为有2个人重复了”、师:“同学们的发言真是精彩,报名参加比赛的一共有多少名同学呢?” „„
再次异口同声:“10人”
活动分析:通过组织报名参加校体育训练的活动,调动学生的学习积极性和参与的热情。学校每年都要举行运动会,都要从每个班级中选拔体育特长生,这样的活动是切合学生生活实际的,也是真真实实存在的,因此,学生非常愿意加入到这样的课堂中来。在活动中,学生七嘴八舌地说着,你一言我一语地争论着,在一场公说公有理,婆说婆有理的辩论中,学生们积极地参与着、聆听着、思考着、辩论着、理解着并整合着。“参加比赛的一共有多少人?”不是教师告诉学生的,也不是教师引导的学生去理解,而是学生与学生之间在争论中话越说越明,理越辩越清。在这样的氛围中学习,学生学得更轻松,更快乐,也理解得更深刻了。
(二)、画一画
1、谁能用画图的方法来表示一下刚才看到的情形?学生组内讨论,画出自己设计的图来。师一边观察并及时指导创作。
2、分组展示自己设计的图画,并介绍自己的创意或想法。
3、学生评价,进行整理和改进
“老师,我觉得左边的同学是代表参加足球的,应该圈在一起,右边的同学代表参加电子的,他们也应该圈在一起”
“不行,那中间的同学怎么办?”
“中间的同学再画一个圈,”
师:“这样的话,能不能让人家一看就知道中间的是参加了足球的,又参加了电子的,再想想,看还有没有更好的画法。”
“老师,中间的同学也应该和左边的圈在一起,因为他们也参加了足球的呀”
“那我还说中间的还可以圈到右边一起呢,他们还参加了电子啊”
师:“那就按你们说的试试吧”
学生动手试着画图,片刻,有同学欢呼起来了:“老师,我画出来了” 说着,高举着自己创作的画,向全班同学展示了起来。
4、向学生介绍韦恩图:像这样的图早在很多年前就有人发明了,他就是英国的数学家韦恩,所以就以“韦恩”来命名,叫韦恩图。也可以叫集合图。
“同学们,想想如果我们比韦恩更早出生的话,我们也能发明这样的图,那这图就该怎么命名了呀?”
活动分析:苏霍姆林斯基说了这样一句话,“ 当知识与积极的活动紧密联系在一起的时候,学习才能成为孩子精神生活的一部分 ”。在画一画的过程中,学生体脑结合,手脑并用,共同交流、思考,经历了创作韦恩图的过程,得到了成功的体验。也从中感受到了愉悦、轻松、快活。他们的兴趣、爱好和个性特长得以充分发挥,发现问题、解决问题的能力得以进一步发展。
5、明确“韦恩图”各部分表示的意思
看图,说说每一部分分别表示什么;
注意语言的表述:左边:只参加足球的右边:只参加电子的
中间:既参加足球的,又参加电子的
6、你能列式计算这两个小组的人数吗?
①5+2+3=10人 ②7+5-2=10人
活动分析:经历了创作韦恩图的过程,学生对其每一部分所表示的含义理解得更为深刻,更感受到其应用价值。当学生对韦恩图有了比较清晰的认识之后,再引导学生借助韦恩图来理解各种计算方法的意义,水到渠成。与其说很多话让学生去体会、去理解,何不让学生亲身参与、主动思考呢?
因此,本节课是在找准了学生的认知起点和困惑点的基础上,寻找到了一条符合学生学习的有效教学途径。首先从学生喜爱的脑筋急转弯出发导入新课,唤醒学生已有的知识经验,并激起学生学习和探究的欲望;在探究的过程中,设计一系列的数学活动,在活动过程中关注学生活动过程经验的积累,关注活动表面之下活动的内涵,让学生付诸思考,并获得真正意义上的理解。教师只有课前知学,然后才能知教。然而怎样去知学?又怎样去知教?是需要课前花足时间去思考的事。