第一篇:高一数学集合符号总结
高一集合符号总结
定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。任何集合是它自身的子集.元素与集合的关系:
元素与集合的关系有“属于”与“不属于”两种。
集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5}。那么因为A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。
无限集: 定义:集合里含有无限个元素的集合叫做无限集
有限集:令N+是正整数的全体,且Nn={1,2,3,……,n},如果存在一个正整数n,使得集合A与Nn一一对应,那么A叫做有限集合。
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)
注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}
空集也被认为是有限集合。
例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。
在信息技术当中,常常把CuA写成~A。
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集,真子集都具有传递性。
『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ⊆ B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,写作 A ⊂ B。
回答人的补充 2009-07-17 16:29 集合的表示方法:常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}
2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0 3.图式法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。 4.自然语言 常用数集的符号: (1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*) (3)全体整数的集合通常称作整数集,记作Z (4)全体有理数的集合通常简称有理数集,记作Q (5)全体实数的集合通常简称实数集,记作R (6)复数集合计作C 数学符号集锦 已知函数f(x)=1/2x2-(2a+2)x+(2a+1)lnx,对任意的a∈(3/2,5/2),已知o是锐角ΔABC的外接圆的圆心,且 已知存在实数a,满足对任意的实数b,直线y=-x+b都不是 已知直线tx+y+3=0与圆x2+y2=4相交于A、B两点,若 设函数f(x)=ax3+bx2+cx+d是奇函数,且当x=-√3/3时,f(x)取得极小值-2√3/9。(1)求函数f(x)的解析式;(2)求使得方程 已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0 设f(x)=x3+lg(x+√x2+1),则对任意实数a,b,已知函数f(x)=x(x-a)(x-b),点A(s,f(s)),点B(t,f(t)),(1)若a=0,b=3 已知函数f(x)=-x2+2ax,x≤1.f(x)=ax+1,x>1.若存在x1,x2∈R,x1≠x2 设函数f(x)=ex-1-x-ax2,若当x≧0时,f(x)≧0,求a的取值范围 若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数x1,x2,使得 设函数f(x)=x(1/2)x+1/x+1,A0为坐标原点,An为函数y=f(x)的图像上横坐标为n的点 在平面直角坐标系xoy中,设定点A(a,a),P是函数y=1/x(x>0)图像上一动点,若点P、A之间的最短距离 设等差数列{an}的前n项和为sn,且s4=4s2,a2n=2an+1,求数列{an}的通项公式 几何符号 ≱ ‖ ∠ ≲ ≰ ≡ ≌ △ 代数符号 ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶ 3运算符号 × ÷ √ ± 4集合符号 ∪ ∩ ∈ 5特殊符号 ∑ π(圆周率) 6推理符号 |a| ≱ ∸ △ ∠ ∩ ∪∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ &; § ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ Γ Δ Θ ∧ Ξ Ο ∏ α β γ δ ε δ ε ζ μ ν π ξ ζ η υ θ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∫ ∮ ≠ ≡ ‖ ∧ ≻ ≼ ∑ Φ η θ χ ψ ∣ ‖ ± ≥ ≤ ∨ Χ Ψ Ω ι κ λ ω ∨ ∩ ∪ ∧ ∴ ∵ ∶ ∷ ∸ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ≰ ≱ ⊿ ≲ ℃ 指数0123:o123 上述符号所表示的意义和读法(中英文参照) + plus 加号;正号 - minus 减号;负号 ± plus or minus 正负号 × is multiplied by 乘号 ÷ is divided by 除号 = is equal to 等于号 ≠ is not equal to 不等于号 ≡ is equivalent to 全等于号 ≌ is approximately equal to 约等于 ≈ is approximately equal to 约等于号 < is less than 小于号 > is more than 大于号 ≤ is less than or equal to 小于或等于 ≥ is more than or equal to 大于或等于 % per cent 百分之… ∞ infinity 无限大号 √(square)root平方根 X squared X的平方 X cubed X的立方 ∵ since;because 因为 ∴ hence 所以 ∠ angle 角 ≲ semicircle 半圆 ≰ circle 圆 ○ circumference 圆周 △ triangle 三角形 ≱ perpendicular to 垂直于 ∪ intersection of 并,合集 ∩ union of 交,通集 ∫ the integral of …的积分 ∑(sigma)summation of 总和 ° degree 度 ′ minute 分 〃 second 秒 # number …号 @ at 单价 数学符号一般有以下几种: (1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。 (2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。 (3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。 (4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—” (5)性质符号:如正号“+”,负号“-”,绝对值符号“‖” (6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C),幂(aM),阶乘(!)等。 符号 意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分 x助理 二级 11-9 10:49 ------------------ (1)数量符号 (2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶)等。 (3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。 (4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—” (5)性质符号:如正号“+”,负号“-”,绝对值符号“‖” (6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C),幂(aM),阶乘(!)等。 符号 意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分 xfloor(x)∫f(x)δx 不定积分 ∫[a:b]f(x)δx a到b的定积分 P为真等于1否则等于0 ∑[1≤k≤n]f(k)对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x)(x->?) 求极限 f(z) f关于z的m阶导函数 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n m⊥n m与n互质 a ∈ A a属于集合A #A 集合A中的元素个数 1、几何符号 ⊥(垂直)∥(平行)∠(角)⌒(弧)⊙(圆)≡; ≌(全等)△(三角形) 2、代数符号 ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶ 3、运算符号 如加号(+),减号(-),乘号(×或 ·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。 4、集合符号 ∪ ∩ ∈ 5、特殊符号 ∑ π(圆周率) 6、推理符号 |a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨ &;§ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω α β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ω Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮ ∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥ ⊿ ⌒ ℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,自然对数底e,圆周率π。 8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”)。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。 9、结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住) ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幂(A,Ac,Aq,x^n)等。 12、排列组合符号 C-组合数 A-排列数 N-元素的总个数 R-参与选择的元素个数 !-阶乘,如5!=5×4×3×2×1=120 C-Combination-组合 A-Arrangement-排列 13、离散数学符号 ├ 断定符(公式在L中可证) ╞ 满足符(公式在E上有效,公式在E上可满足) ┐ 命题的“非”运算 ∧ 命题的“合取”(“与”)运算 ∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算 A<=>B 命题A 与B 等价关系 A=>B 命题 A与 B的蕴涵关系 A* 公式A 的对偶公式 wff 合式公式 iff 当且仅当 ↑ 命题的“与非” 运算(“与非门”) ↓ 命题的“或非”运算(“或非门”) □ 模态词“必然” ◇ 模态词“可能” θ 空集 ∈ 属于(??不属于) P(A)集合A的幂集 |A| 集合A的点数 R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加 ≠)真包含 ∪ 集合的并运算 ∩ 集合的交运算-(~)集合的差运算 〡 限制 [X](右下角R)集合关于关系R的等价类 A/ R 集合A上关于R的商集 [a] 元素a 产生的循环群 I(i大写)环,理想 Z/(n)模n的同余类集合 r(R)关系 R的自反闭包 s(R)关系 的对称闭包 CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系 r 相容关系 R○S 关系 与关系 的复合 domf 函数 的定义域(前域)ranf 函数 的值域 f:X→Y f是X到Y的函数 GCD(x,y)x,y最大公约数 LCM(x,y)x,y最小公倍数 aH(Ha)H 关于a的左(右)陪集 Ker(f)同态映射f的核(或称 f同态核)[1,n] 1到n的整数集合 d(u,v)点u与点v间的距离 d(v)点v的度数 G=(V,E)点集为V,边集为E的图 W(G)图G的连通分支数 k(G)图G的点连通度 △(G)图G的最大点度 A(G)图G的邻接矩阵 P(G)图G的可达矩阵 M(G)图G的关联矩阵 C 复数集 N 自然数集(包含0在内)N* 正自然数集 P 素数集 Q 有理数集 R 实数集 Z 整数集 Set 集范畴 Top 拓扑空间范畴 Ab 交换群范畴 Grp 群范畴 Mon 单元半群范畴 Ring 有单位元的(结合)环范畴 Rng 环范畴 CRng 交换环范畴 R-mod 环R的左模范畴 mod-R 环R的右模范畴 Field 域范畴 Poset 偏序集范畴 上述符号所表示的意义和读法(中英文参照) + plus 加号;正号 - minus 减号;负号 ± plus or minus 正负号 × is multiplied by 乘号 ÷ is divided by 除号 = is equal to 等于号 ≠ is not equal to 不等于号 ≡ is equivalent to 全等于号 ≌ is approximately equal to 约等于 ≈ is approximately equal to 约等于号 < is less than 小于号 > is more than 大于号 ≤ is less than or equal to 小于或等于 ≥ is more than or equal to 大于或等于 % per cent 百分之… ∞ infinity 无限大号 √(square)root平方根 X squared X的平方 X cubed X的立方 ∵ since;because 因为 ∴ hence 所以 ∠ angle 角 ⌒ semicircle 半圆 ⊙ circle 圆 ○ circumference 圆周 △ triangle 三角形 ⊥ perpendicular to 垂直于 ∪ intersection of 并,合集 ∩ union of 交,通集 ∫ the integral of …的积分 ∑(sigma)summation of 总和 ° degree 度 ′ minute 分 〃 second 秒 # number …号 @ at 单价第二篇:数学符号集锦
第三篇:数学符号
第四篇:数学一般符号
第五篇:数学符号