第一篇:从数表中找规律教案 小学奥数三年级
从数表中找规律
教学目标:
1.在解决哥尼斯堡七桥问题的情景中掌握欧拉定理,并学会运用欧拉定理处理一笔画问题。
2.通过解决一笔画图形问题,使学生能够开发智力,培养思维的灵活性。教学重点:学会识别奇点,偶点,并会运用欧拉定理解决图形问题。教学难点:学会把其他的情景问题转化为一笔画问题。教学过程:
哥尼斯堡七桥问题:
集体讨论:你能解决哥尼斯堡七桥问题吗?能找到什么方法?
情景演示:在教室里用粉笔在地上简单画出哥尼斯堡七桥,让学生亲身体验解决问题的过程,培养学生解决问题的兴趣。分析与解释过程:
这个貌似简单的问题,经瑞士著名数学家欧拉证明这个问题是不可能完成的。欧拉解决问题的方法非常巧妙,他把岛和岸都看成一个点,而桥则可以看成连接这些点的一条线,如图(b)。这样,这个问题就转化为一个几何图形能否一笔画画出的问题了。
所谓一笔画,就是指从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复。另外我们把奇数条边相连得结点叫做奇点,把与偶数条边相连的点称为偶点。
学习例2:
集体讨论:请同学们先根据欧拉定理判断一下能不能一笔画画出,再亲自动手画。分析与解释:
学习例3:
集体讨论:先分成两组,一组代表A,另一组代表B,两组各找出一条到达C最短的路线,然后比较一下那组的路径最短。分析与解释:
学习例5:
集体讨论:你能一刀剪下图中的三角形和正方形吗?怎么剪? 分析与解答:
一次连续剪下途中的三个正方形和两个三角形,必须要求见到剪过图中所有的线.实质上是这个图能否一笔画出的问题.显然,图中有两个奇点,因此可以以一笔画出,剪刀所走的路线可以是:—A—B—C—D—E—F—G—E—I—G—H—A—I—C。这样就能使剪刀一次连续剪下三个正方形和两个三角形。
练习:
作业:P154
第二篇:三年级奥数教案 找规律
找 规 律
(一)竖列规律
按照一定次序排列起来的一列数,叫做数列。如自然数列:1、2、3、4……;双数列:2、4、6、8……。我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。善于发现数列的规律是填数的关键。
一、例题与方法指导
例1 在括号内填上合适的数。(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()
思路导航:(1)在数列3,6,9,12,(),()中,前一个数加上3就等于后一个数,相邻两个数的差都是3,根据这一规律,可以确定()里分别填15和18;
(2)在数列1,2,4,7,11,(),()中,第一个数增加1等于第二个数,第二个数增加2等于第三个数,也就是相邻两个数的差依次是1,2,3,4……这样下一个数应为11增加5,所以应填16;再下一个数应比16大6,填22。
(3)在数列2,6,18,54,(),()中,后一个数是前一个数的3倍,根据这一规律可知道()里应分别填162和486。
例2 先找出规律,再在括号里填上合适的数。(1)15,2,12,2,9,2,(),();(2)21,4,18,5,15,6,(),();
思路导航:(1)在15,2,12,2,9,2,(),()中隔着看,第一个数减3是第三个数,第三个数减3是第五个数,第二、四、六的数不变。根据这一规律,可以确定括号里分别应填6、2;
(2)在21,4,18,5,15,6,(),()中,隔着看第一个数减3为第三个数,第三个数减3为第五个数。第二个数增加1为第四个数,第四个数增加1是第六个数。根据这一规律,可以确定括号里分别应填12和7。
(二)图形规律
一、例题与方法指导
例:根据前面图形里的数的排列规律,填入适当的数。
路导航:(1)横着看,右边的比左边的数多5,竖着看,下面的数比上面的数多4。根据这一规律,方格里填18;
(2)通过观察可以发现,前两个图形三个数之间有这样的关系:4×8÷2=16,7×8÷4=14,也就是说中心数是上面的数与左下方数的乘积除以右下方的数。根据这个规律,第三个图形空格中的数为9×4÷3=12;
(3)横着看,第一行和第二行中,第一个数除以3等于第二个数,第一个数乘3等于第三个数。根据这一规律,36×3=108就是空格中的数。
第三篇:小学六年级奥数教案—16找规律
小学六年级奥数教案—16找规律
本教程共30讲
找规律
同学们从三年级开始,就陆续接触过许多“找规律”的题目,例如发现图形、数字或数表的变化规律,发现数列的变化规律,发现周期变化规律等等。这一讲的内容是通过发现某一问题的规律,推导出该问题的计算公式。
例1 求99边形的内角和。
分析与解:三角形的内角和等于180°,可是99边形的内角和怎样求呢?我们把问题简化一下,先求四边形、五边形、六边形„„的内角和,找一找其中的规律。
如上图所示,将四边形ABCD分成两个三角形,每个三角形的内角和等于180°,所以四边形的内角和等于180°×2= 360°;同理,将五边形ABCDE分成三个三角形,得到五边形的内角和等于180°×3=540°;将六边形ABCDEF分成四个三角形,得到六边形的内角和等于180°×4=720°。
通过上面的图形及分析可以发现,多边形被分成的三角形数,等于边数减2。由此得到多边形的内角和公式:
n边形的内角和=180°×(n-2)(n≥3)。
有了这个公式,再求99边形的内角和就太容易了。
99边形的内角和=180°×(99-2)=17460°。
例2 四边形内有10个点,以四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形?
分析与解:在10个点中任取一点A,连结A与四边形的四个顶点,构成4个三角形。再在剩下的9个点中任取一点B。如果B在某个三角形中,那么连结B与B所在的三角形的三个顶点,此时三角形总数增加2个(见左下图)。如果B在某两个三角形的公共边上,那么连结B与B所在边相对的顶点,此时三角形总数也是增加2个(见右下图)。
类似地,每增加一个点增加2个三角形。
所以,共可剪出三角形 4+ 2× 9= 22(个)。
如果将例2的“10个点”改为n个点,其它条件不变,那么由以上的分析可知,最多能剪出三角形
4+2×(n-1)=2n+2=2×(n+1)(个)。
同学们都知道圆柱体,如果将圆柱体的底面换成三角形,那么便得到了三棱柱(左下图);同理可以得到四棱柱(下中图),五棱柱(右下图)。
如果底面是正三角形、正四边形、正五边形„„那么相应的柱体就是正三棱柱、正四棱柱、正五棱柱„„
例3 n棱柱有多少条棱?如果将不相交的两条棱称为一对,那么n棱柱共有多少对不相交的棱?
分析与解:n棱柱的底面和顶面都是n边形,每个n边形有n个顶点,所以n棱柱共有2n个顶点。观察三棱柱、四棱柱、五棱柱的图形,可以看出,每个顶点都与三条棱相连,而每条棱连接 2个顶点,所以n棱柱共有棱 2n×3÷2=3n(条)。
进一步观察可以发现,n棱柱中每条棱都与4条棱相交,与其余的3n-4-1 =(3n-5)条棱不相交。共有3n条棱,所以不相交的棱有 3n×(3n-5)(条),因为不相交的棱是成对出现的,各计算一遍就重复了一遍,所以不相交的棱共有
3n×(3n-5)÷2(对)。
例4 用四条直线最多能将一个圆分成几块?用100条直线呢?
分析与解:4条直线时,我们可以试着画,100条直线就不可能再画了,所以必须寻找到规律。如下图所示,一个圆是1块;1条直线将圆分为2块,即增加了1块;2条直线时,当2条直线不相交时,增加了1块,当2条直线相交时,增加了2块。由此看出,要想分成的块尽量多,应当使后画的直线尽量与前面已画的直线相交。
再画第3条直线时,应当与前面2条直线都相交,这样又增加了3块(见左下图);画第4条直线时,应当与前面3条直线都相交,这样又增加了4块(见右下图)。所以4条直线最多将一个圆分成1+1+2+3+4=11(块)。
由上面的分析可以看出,画第n条直线时应当与前面已画的(n—1)条直线都相交,此时将增加n块。因为一开始的圆算1块,所以n条直线最多将圆分成
1+(1+2+3+„+n)
=1+n(n+1)÷2(块)。
当n=100时,可分成
1+100×(100+1)÷2=5051(块)。
例5 用3个三角形最多可以把平面分成几部分?10个三角形呢?
分析与解:平面本身是1部分。一个三角形将平面分成三角形内、外2部分,即增加了1部分。两个三角形不相交时将平面分成3部分,相交时,交点越多分成的部分越多(见下图)。
由上图看出,新增加的部分数与增加的交点数相同。所以,再画第3个三角形时,应使每条边的交点尽量多。对于每个三角形,因为1条直线最多与三角形的两条边相交,所以第3个三角形的每条边最多与前面2个三角形的各两条边相交,共可产生3×(2×2)= 12(个)交点,即增加12部分。因此,3个三角形最多可以把平面分成 1+1+6+12= 20(部分)。
由上面的分析,当画第n(n≥2)个三角形时,每条边最多与前面已画的(n—1)个三角形的各两条边相交,共可产生交点
3×[(n—l)×2]=6(n—1)(个),能新增加6(n-1)部分。因为1个三角形时有2部分,所以n个三角形最多将平面分成的部分数是
2+6×[1+2+„+(n—1)]
当n=10时,可分成2+3×10×(10—1)=272(部分)。
练习16
1.求12边形的内角和。
2.五边形内有8个点。以五边形的5个顶点和这8个点为三角形的顶点,最多能剪出多少个小三角形?
3.已知n棱柱有14个顶点,那么,它有多少条棱?
4.n条直线最多有多少个交点?
5.6条直线与2个圆最多形成多少个交点?
6.两个四边形最多把平面分成几部分?
答案与提示练习16
1.1800°。
2.19个。
提示:与例2类似可得5+2×(8-1)=19(个)。
3.21条棱。提示:n棱柱有2n个顶点,3n条棱。
4.n(n-1)÷2。
解:1+2+3+„+(n-1)=n(n-1)÷2。
5.41个。
解:6条直线有交点6×(6-1)÷2=15(个),每条直线与两个圆各有2个交点,两个圆之间有2个交点,共有交点15+6×4+2=41(个)。
6.10部分。
提示:见右图。与例5类似,当画第n(n≥2)个四边形时,每条边应与已画的(n-1)个四边形的各2条边相交,共可产生交点
4×[(n-1)×2]=8(n-1)(个),新增加8(n-1)部分。因为1个四边形有2部分,所以n个四边形最多将平面分成2+8×[1+2+„+(n-1)]=2+4n(n-1)(部分)。
第四篇:三年级奥数教案之找规律
三年级奥数教案
(一)专题一 找规律
教学目标 培养学生的观察与逻辑推理能力 教学重难点 找规律的方法和技巧
找规律是小学奥数中的经典,是经常出现的一种类型题,它考的是学生的观察力和逻辑推理能力,充分的寻找两者之间的联系,为以后的学习打下基础。一.数
按一定规律排列的一列数叫做数列,例如 1,2,3,4,5,6,7,8,9,10,......就是自然数排成的数列,每个数比前一个大1,第n个数就是n。数列中的每一个数叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项......通过观察数列,可以发现它的内在规律,填出所缺的数,这里的规律应力求简单明了。寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。善于发现数列的规律是填数的关键。
例1 在括号内填上合适的数。(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()
解析:(1)在数列3,6,9,12,(),()中,前一个数加上3就等于后一个数,相邻两个数的差都是3,根据这一规律,可以确定答案;
(2)在数列1,2,4,7,11,(),()中,第一个数增加1等于第二个数,第二个数增加2等于第三个数,也就是相邻两个数的差依次是1,2,3,4……这样下一个数应为11增加5,再下一个数应比刚刚那个数大6,所以答案就出来了。
(3)在数列2,6,18,54,(),()中,后一个数是前一个数的3倍,根据这一规律可知道答案。
例2 先找出规律,再在括号里填上合适的数。(1)15,2,12,2,9,2,(),();(2)21,4,18,5,15,6,(),();
解析:(1)在15,2,12,2,9,2,(),()中隔着看,第一个数减3是第三个数,第三个数减3是第五个数,第二、四、六的数不变。根据这一规律,可以确定答案。
(2)在21,4,18,5,15,6,(),()中,隔着看第一个数减3为第三个数,第三个数减3为第五个数。第二个数增加1为第四个数,第四个数增加1是第六个数。根据这一规律,可以确定答案。
练习题 找规律,在()内填数:
1.130,125,120,115,(),105,().2.10,13,16,19,(),25,().3.0,3,6,9,(),(),().4.1,4,9,16,(),(),().5.1,3,9,27,81,(),().6.1,2,4,8,16,(),().7.0,2,2,4,6,10,(),().8.1,3,4,7,11,18,(),().9.1,1,1,3,5,9,(),().10.0,1,2,3,6,11,(),().11.75,70,65,60,(),(),45().12.320,160,80,40,(),(),().13.把由1开始的自然数依次写下来:***……,重新分组,按三个数字为一组:123,456,789,101,112,131,……,问第10个数是几?
二. 在前面学习了数列找规律的基础上,这一讲将从数表的角度出发,继续研究数列的规律性。
例1 下图是按一定的规律排列的数学三角形,请你按规律填上空缺的数字.例2 用数字摆成下面的三角形,请你仔细观察后回答下面的问题:
① 这个三角阵的排列有何规律?
② 根据找出的规律写出三角阵的第6行、第7行。
③ 推断第20行的各数之和是多少?
例3 将自然数中的偶数2,4,6,8,10…按下表排成5列,问2000出现在哪一列?
学习的目的不仅仅是为了会做一道题,而是要学会思考问题的方法.一道题做完了,我们还应该仔细思考一下,哪种方法更简洁,题目主要考察的问题是什么…这样学习才能举一反三,不断进步。
练一练
就例 3而言,如果把偶数改为奇数,2000改为 1993,其他条件不变,你能很快得到结果吗?
第五篇:四年级奥数 找规律(教案含答案)
雅智教育 立德树人 传道解惑 启发思维 成就英才
第一讲:规律性问题
教学目标
1、学会从简单问题入手找规律
2、能够利用数论、几何等专题解周期性问题
3、归纳找规律问题的解题思想
知识点拨
一、知识点说明
同学们在探索某一类事物的性质或它们之间的关系的时候,经常从观察具体事物入手,通过分析、猜测、验证,找出这类事物的一般属性。这种“从特殊到一般的推理方法”,叫做归纳法,或者称之为找规律,很多人也称之为周期问题。
二、考点总结
找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。这是为了考验我们是否能在最短时间里找到数字间的奥秘,即是在考察我们的数感和归纳能力,这种能力不是与生俱来的,是和我们日常积累分不开的,正所谓见多识广吧。所以找规律这类题目,需要同学们养成细观察、勤思考的习惯,不断提高归纳能力。找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.三、提炼思想
找规律是奥数里最重要的思想之一,很多难题都是靠这种方法解决的,要求我们能够观察数列或数表中每一个数自身的特征(如奇偶性,整除性,是否为质或者合数等等)、相邻数之间的差或商的变化特征(常见的有等差数列,等比数列,斐波那契数列,复合数列等等),有时候还需要考虑连续多个数之间的和差倍关系,甚至对于某个自然数的余数数列等等,所以同学们要好好的体会这种思想方法,争取在奥数的学习中能够克服难题,取得进步。
例题精讲
模块
一、数论部分
【例 1】 下面各列数中都有一个“与众不同”的数,请将它们找出来:
(1)3,5,7,11,15,19,23,„„
(2)6,12,3,27,21,10,15,30,„„(3)2,5,10,16,22,28,32,38,24,„„(4)2,3,5,8,12,16,23,30,„„ 雅智教育 立德树人 传道解惑 启发思维 成就英才
【解析】 这四个与众不同的数依次是:15,10,5,16。因为:(1)除了15其余都是质数;(2)除了10其余都是3的倍数;(3)除了5其余都是偶数;(4)相邻两数之间的差依次是1,2,3,4,5,6,„„,成等差数列。注:本题答案不唯一,只要学生说明白道理就算正确。
【例 2】 在下面的一串数中,从第五个数起,每个数都是它前面四个数字之和的个位数字,那么在这串数中,能否出现相邻的四个数依次是2,0,0,8 ?
1,9,9,9,8,5,1,3,7,6,7,3,3,9,2,7,1,9,9,6,„„
【解析】 运用奇偶性进行分析,这些数的奇偶性依次是:奇,奇,奇,奇,偶,奇,奇,奇,奇,偶,奇,奇,奇,奇,偶,奇,奇,奇,奇,偶,……四个奇数一个偶数循环出现,而2,0,0,8均为偶数,必定不会出现在相邻的位置上。
【例 3】 数列1,1,2,3,5,8,13,21,34,„„一共2005项,其中共有多少个是6的倍数?
这串数从第三个起,每个数都是它前面两个数的和,所以这是一个菲波那契数列,这串数除以6的余数依次是:1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,„„,注意:计算余数的时候不用把原数计算出来,可以直接用菲波那契数列的规律计算余数,如前两个数是5,2,则下一个数是(5+2)÷6的余数为1。余数数列从第一个起,每24个循环一次,每一次循环中有两个数是6的倍数,而2005 =24×83+13,所以这2005个数中一共有2×83+1=167个是6的倍数
模块
二、几何部分
【例 4】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
【解析】 横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【例 5】 观察下面的图形,按规律在“?”处填上适当的图形.?
【解析】 本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【巩固】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。(1)(2)(3)(4)(5)雅智教育 立德树人 传道解惑 启发思维 成就英才
【解析】 观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:
【巩固】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】 第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:
练习1.观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出 “?”处应是圆形.练习2.观察下面由点组成的图形(点群),请回答:
(1)方框内的点群包含多少个点?
(2)第(10)个点群中包含多少个点?(3)前十个点群中,所有点的总数是多少?
【解析】(1)数一数可知:前四个点群中包含的点数分别是:1,4,7,10.可以看出,在每相邻的两个数中,后一个数都比前一个数大3.因为方框内应是第(5)个点群,它的点数应该是10+3=13(个).(2)列表,依次写出各点群的点数,可知第(10)个点群包含有28个点.雅智教育 立德树人 传道解惑 启发思维 成就英才
(3)前十个点群,所有点的总数是:1+4+7+10+13+16+19+22+25+28=14
5(个)
练习3.下面是两个按照一定规律排列的数字三角形,请根据规律填上空缺的数:
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 10 10 5 1 1 6 15 15 6 1(1)
3 6 9 4 8 12 16 5 10 15 25 6 12 18 24 30 36 7 21 28 35 42 49(2)
【解析】(1)这个是著明的“杨辉三角”,其最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。()处分别填上5、20。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
(2)每行第k个数等于该行第一个数的k倍,故上、下空缺的数分别为20和14。