苏教版数学六年级下册教案 按比例分配应用题

时间:2019-05-15 04:56:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《苏教版数学六年级下册教案 按比例分配应用题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《苏教版数学六年级下册教案 按比例分配应用题》。

第一篇:苏教版数学六年级下册教案 按比例分配应用题

教学目标1.使学生理解按比例分配问题的意义。2.使学生掌握按比例分配应用题的结构及解答方法。3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。教学重点和难点1.理解按比例分配问题的意义。2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。教学过程设计(一)复习准备1.复习比的有关知识,为学习新知识做准备。已知六年级1班男生人数和女生人数的比是3∶4。男生人数与全班人数的比是()∶()。女生人数与全班人数的比是()∶()。2.创设情境,提出课题。(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)提问:妈妈是怎样分的?(平均分)(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)提问:这样分还是平均分吗?日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。(二)学习新课1.讲解例2。例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?(2)分析思考:看到播种大豆和玉米面积的比是3∶2这句话你想到了哪些倍数关系?小组讨论。④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。(3)解答例2。①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?②说说你是怎样做的?方法a:3+2=5播种大豆的面积 10053=60(公顷)播种玉米的面积 10052=40(公顷)方法b:总面积平均分成的份数为3+2=5③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)2.练习:第62页中的做一做(1)。六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?(1)弄懂题意。(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)(3)独立完成。组员之间互相检验。3.学习例3。例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?(3)请你在练习本上独立完成。①三个班的总人数:47+45+48=140(人)②一班应栽的棵数:③二班应栽的棵数:④三班应栽的棵数:答:一班、二班、三班分别栽树94棵、90棵、96棵。(4)同组同学互相检验。4.练习:第62页中的做一做(2)。一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?(1)在练习本上独立完成。(2)同组同学互相检验。(三)课堂总结今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。(四)巩固反馈1.填空练习:①把35千克苹果平均分成7份,每份()千克,2份()千克,5份是()千克。2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?3.第62页的做一做(3)。一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?与练习题2有什么区别?如果求它的最短边、最长边怎么求?4.判断练习:(正确举,错误举)一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?(五)布置作业第63页第1,2,3,4题。课堂教学设计说明本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例

2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。

第二篇:六年级数学下册——按比例分配应用题教学设计

六年级数学下册——按比例分配应用题教学设计

教学目标:

1、在自主探索学习中理解按比分配的意义,掌握按比分配应用题的结构特点以及解题方法,能正确解答按比分配应用题。

2、培养学生分析问题、解决问题的能力。

3、创设民主和谐的学习氛围,在关注培养学生主动的探索意识的过程中形成积极的学习情感,通过对多种方法之间联系的探究,渗透数学的转化思想。

教学重点:进一步沟通倍数、份数、分数、比之间的本质联系,理解按比例分配应用题的结构特征和解题方法。教学难点:运用按比分配的知识解决实际问题。

一、复习意义

1、六年级二班有30人,六年级三班有24人,你想到了什么? 预设: 30+24=

30—24= 差 30÷24=

倍数

30:24= 5:4 你们看,我们可以把一个分数转化成份数和比,看来分数、份数、比之间存在着紧密联系,它们可以相互转化。

二、出示情景,设计分配方案。

1、学校为六年级二班、三班学生配备了课外书,已知二班有学生30人,三班有学生24人,你认为应怎样分配比较合理? 学生讨论分配方案(1)预设:平均分。

按人数的多少分配比较合理(2)讨论:你认为哪种方案更公平?

(3)按人数分,也就是按几比几分呢? 30:24 是最简比吗? 30∶24= 5∶4

【在日常生活中很多分配问题并不是平均分,常常需要把一个数量按照一定的比进行分配,这就是按比分配。】 板书课题:按比分配

2、出示例题:如果学校准备了这种儿童读物90本,二班和三班人数的比是5:4,每个班级各应分配多少本?

3、学生试做。要求:

(1)自己动笔试算,画出简单的分析图或用文字说明你的思路。(2)想办法验算。

(3)组内交流你是怎么想的。

4、课堂反馈 预设:

① 5+4=9

90÷9×5=50

90÷9×4=40

说明:学生验证时可能出现,只是把结果相加得90,就认为是对的,遇到这种情况要组织学生讨论。

② 5+4=90 90×5/9=50

90×4/9=40 ③

90÷(1+4/5)=90×5/9=50 90-50=40

或 90÷(1+5/4)=90×4/9=40 90-40=50

5、沟通联系。

1)比较两种解题思路有什么不同呢?

分别想一想,5/

4、4/

5、4/9等分数分别表示的什么关系?(小组讨论)

反馈:5/

4、4/5表示的是两个班份数与份数之间的关系,4/

9、5/9表示的是六(2)(3)班与总份数之间的关系,不管哪种方法都是求9份中的4份、5份是多少?

第一种算法实际上是把比转化成了份数,先算出1份数,再分别算出几份数,第二种算法实际上是把比转化成了分数,先找出各部分量分别占总量的几分之几,再用求一个数的几分之几是多少的方法进行计算。

三、巩固方法、完善认知。

1、我校合唱队共有学生48人,男,女生人数的比是1∶3,男生、女生各多少人?

2、用200立方厘米的橡皮泥捏等底等高的圆柱和圆锥各一个,捏之前怎么分配橡皮泥呢?圆柱、圆锥各需要橡皮泥多少立方厘米

3、上个月支出的3600元中,用于伙食费、还房贷和其他方面的钱数的比是5:4:3,伙食费和还房贷一共要用多少元?

A、3600×+3600× B、3600÷(5+4+3)×(5+4)

C、3600×

D、3600÷

4、用长120厘米的铁丝做一个长方体的框架。长、宽、高的比是3:2:1。这个长方体的长、宽、高分别是多少?体积是多少?

5、世界三大饮料茶叶、咖啡和可可消费总量的 比是8∶12∶7,全世界茶消费总量大约是400万吨,其他两种饮料的消费量各是多少万吨?

【提示:先自己读一读题目。想一想此题与前几道题的区别。

【找准所给已知量与它相对应那个份数(分率)。】 作业:12周岁的儿童头部与以下部分的高度比一般是2:13回家测出你的身高,算算自己头部的长度,看看你估计得准不准。

四、谈谈这节课你的收获(数学思想等)。

板书设计:

按比分配

4+5=9

90÷9×5=50(本)(本)

90÷9×4=40(本)

答:六年级二班应分配50本,三班应分配

4+5=9

90×=50

90×=40(本)40本。

第三篇:按比例分配应用题教案

按比例分配应用题

教学内容:人教版小学数学六年级上册49-50页。教学目标:1、理解什么是按比例分配。

2、会用多种方法解答按比例分配应用题。

3、体会转化的思想。

4、培养学生多种方法钥匙的能力,培养学生创新意识和创新能力。教学过程:

一、创设情景:

同学们,老师想了解一下,你们喜欢上体育课还是数学课,这节课我们就来研究一个体育课上的问题,体育老师把学生分成男女两队练习拍球,现在有40个蓝球,要分给男女两个队,你觉得应该怎样分呢?(平均分),那每个队分到多少个球,体育老师数了一下,男队有学生45人,女队有学生27人,那么按平均分,你们女生高兴吗?你们男生同意吗?那这可怎么办呢?按人数的多少来分,球只有40个,人数却有70多名,也不够分啊,(按人数的比来分),马上算一算男、女两个队人数的比是多少?(5:3)。这种不再是平均分了,是按一定的比来分配,当然,平均分实际上也是按比来分配的一种特殊形式,它是按1:1的比来分配的,这节课我们就来研究按比来分配的有关问题。(板书课题:比的应用。)

二、新授

1、例题:现在有40个球,按5:3分配给男女两个队,每个队各应分到多少个球?

(1)从5:3这个比你想到哪些信息?

同学们分解决这个问题吗?先请同学们独立思考,然后把解题方案写到练习本上。(2)抽生板演,法1:男:40÷(5+3)×5=25个

女:40÷(5+3)×3=15个

法2:男:40×=25个

女:40×=15个

8看黑板上的解法,还有不同的做法吗?

(3)交流:A,第一种解法,大家能看明白吗?那你给大家讲讲看,每一步是什么意思,谁再来讲讲看,同桌之间互相讲一讲。A,第二种解法,大家有不明白的地方吗?不明白的像老师刚才那样问问他?谁再来讲讲看?

(4)总结:刚才同学们积极开动脑筋,想出了不同的方法,一种是把比转化为人数来做的,(板书:份数),另一种是把比的问题转化为我们学过的分数应用题再来解决的(板书:分率),这种把新知识(转化)为已经学过的旧知识再来解决的思想我们以后会经常用到。那我们从份数的角度思考,解决关键是什么?(题目告诉了总数,就要找到总数所对应的份数,从而求出一份有多少?)再看第二种方法,由于题目告诉了总数,所以我们要先找到什么?(两个队人数分别占总数的几分之几)。(5)检验。

三、练习

(1)校园里有杨树、柳树一共有35棵,杨树棵树与柳树的比是2:5,杨树、柳树各有多少棵?

方法一(份数):告诉杨树、柳树一共的棵数,就要找一共的棵数所对应的(),从而求出()。杨树: 柳树:

方法二(分率):告诉杨树、柳树的总数,就要找到()。杨树: 柳树:

(2)只列式不计算(两种方法)。

①一杯奶茶里牛奶与水的比是1:8,一杯奶茶有270ML,牛奶与水各有多少毫升?

②鸡鸭鹅共有180只,鸡鸭鹅只数的比是2:3:5,鸡鸭鹅各多少只?(4)课堂练习,完成在1号本上。(5)综合练习

① 男队分到25个球,男、女队分到球的比是5:3,女队分到多少个球?一共有多少个球?

② 男队比女队多分到10个球,男、女队分到球的比是5:3,男、女队各分到多少个球?一共有多少个球? ③ 蛋糕店师傅用糖、奶油、面粉按2:3:7制作蛋糕,其中奶油用了600克,面粉比糖多用多少克?(6)拓展练习

黑兔和白兔共有120只,黑兔只数是白兔的23,黑兔、白兔各有多少只?

第四篇:按比例分配应用题

《按比例分配应用题》教学设计

【教学目标】

1.使学生理解按比例分配的意义,掌握按比例分配应用题的特征和基本解题方法。

2.培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力。

3.培养初步的合作意识,学会评价他人,欣赏他人。

【教学重点】掌握按比例分配应用题的基本解题方法

【教学流程】

一、创设情境,激趣引入

1.谈话引入:星期天,小明和小华相约来到一家儿童文具店,他们先来到铅笔专柜,小华拿出4元,小明也拿出4元,合买了1盒(20支)铅笔。想一想,他们各自可分得多少支铅笔?

2、小结:刚才两位同学由于拿的钱相同,所以他们分得的铅笔支数相同,我们把这种分配方式叫做平均分。

3、PPT出示:他们又来到笔记本专柜,小华拿出9元钱,小明拿了3元钱,一共买了24本同样的笔记本。

师:他们应该怎么分这些笔记本?是平均分吗?如果不平均分,那又该如何分?(同桌讨论,并阐明理由。)

师:这里的笔记本要按拿出钱数的比进行分配比较合理。下面就请同学们帮他俩算一算,他们各应分得多少个笔记本?

二、探索交流

1.活动组织:先自己独立尝试着解答,然后把你的想法告诉你们小组内的伙伴,说说你是怎么想的,比比谁的方法更好。

2.学生活动:

(1)独立探索解题方法。

(2)小组合作讨论,教师参与并适当指导,同时收集各种方案的解法,以备展示。

3.集体交流。

师:发言人先介绍一下你们组的解法。其他的同学来当一回“小记者”:如果有不同的解法可以补充交流;当然也可以向发言人提问

(1)学生发言

方法一:先算出每个笔记本的价钱,用(9+3)÷24=0.5(元),再算出小华和小明各应分得的笔记本个数.9÷0.5=18(本)

3÷0.5=6(本)

方法二: 24÷(9+3)=2(本)

小华:9×2=18(本)小明:3×2=6(本)

方法三(分数乘法):你是怎么想的?用乘法做的依据是什么?(小华和小明拿出的钱的比是9:3,化简后是3:1,小华出的钱占总钱数的3÷3+1 ,分得的本数也应该是总本数的3÷3+1。把总本数看作单位“1”,求小华分得的本数,就是求总本数的3÷3+1,用乘法做。)

方法四:3+1=4

24÷4=6(本)

小华:6×3=18(本)小明:6×1=6(本)

(2)你们觉得哪种方法更好?为什么?

4.分析归纳

像刚才这样,把 一个数量按照一定的比例来进行分配,我们把这种分配方法叫做按比例分配。(揭示课题:按比例分配)

5、你见到过、听说过类似的情况吗?学生举例。(如学生无法举例,则出示图片介绍在生活、生产中的应用:混凝土、农药配比等。)

三、知识应用

1.只要你做个有心人,一定会发现很多按比例分配的例子。下面,我们来做个实验,看看你对自己有多了解。说说你的身高,猜猜自己头部的高度大约是多少?

老师曾经看到这样一条信息:12周岁的儿童头部与头以下的高度的比一般是2:13。

结合这条信息,请你算一算自己的头部的长度,看看你估计得准不准?注意,结果保留整数。

2.你们见过野生丹顶鹤吗?它可是国家一级保护动物,我国和其他国家拥有丹顶鹤的数量约是1:3。2001年全世界也大约只有2000只。我国和其他国家各有多少只丹顶鹤?(你有什么感想?)(进行思想教育,并发出倡议)

四、情境延续

1.师:买完了笔记本之后,小华和小明又在文具店蹓跶了一圈,恰好碰到了小强,于是他们三人商量决定一起凑钱去买一套故事书(一共18本)。小华拿出5元,小明拿出10元,小明拿出15元钱,聪明的小朋友,请你再帮他们算一算,他们各自可分得多少本故事书?

2.尝试解答,同桌互相讨论。

3.展示交流各种方法,你打算如何检验?

4.这题与刚才做的题有什么相同点和不同点?

五、综合运用

1.像这种连比,在我们生活中还有很多。

例如:在学生的营养餐的食物中,除了主食(米饭)外,还包括瓜果蔬菜类、豆制品类、鱼肉禽蛋类,它们的比为13:2:5较为适宜。像你们这种年龄所需要的营养中除了主食外,还需100克这样的食物。现在请你算算,你们的营养餐中所需的瓜果蔬菜类、豆制品类、鱼肉禽蛋类各占多少克?

师:同学们,你们平时的餐点是否这样合理搭配了呢?

(出示课件)师:有这样一首诗是来称赞营养餐的“少年儿童成长快,合理营养体质强。鱼肉蛋奶豆制品,五谷杂粮有营养。瓜果蔬菜不可少,科学搭配保健康。不偏食、不挑食,饮食习惯要养好!”

师:所以我们平时更要注意合理饮食,这样才能有一个健康的身体,为以后的学习、工作打下扎实的基础!

2、(利润的分配)

张叔叔和李叔叔、王大伯三家合资办厂,由于他们齐心合力,经营有道,一年下来,除去缴纳税款、发工资和其他费用,获得利润14万元。该怎么分配这些利润。

三家投资者的情况如下表:

姓名

在厂工作人数

投资金额 张叔叔

李叔叔王大伯

现在同学们四人一组,也像他们一样围在一起,商量商量如何分配这14万元的利润。生1:我们小组认为按照人数来分配,14×2/7=4(万元)14×3/7=6(万元)14×2/7=4(万元)生2:我们小组有不同意见:我们认为应该按照投资金额来分。

14×20/40=7(万元)14×12/40=4.2(万元)14×8/40=2.8(万元)生3:我们小组认为一半按照人数来分,另一半按照投资金额来分

张叔叔:7×2/7=2(万元)7×20/40=3.5(万元)2+3.5=5.5(万元)李叔叔:7×3/7=3(万元)7×12/40=2.1(万元)3+2.1=5.1(万元)王大伯:7×2/7=2(万元)7×8/40=1.4(万元)2+1.4=3.4(万元)生4:我们小组认为先留下4万元,作为发展再生产用,再按照投资金额来分配。

(14-4)×20/40=5(万元)(14-4)×12/40=3(万元)(14-4)×8/40=2(万元)

生5:我们认为先留下一半,再按人数的多少来分。

生6:老师,我认为应该按协议来分配。因为现在合资办厂的,事先都签订了协议,所以按协议上规定的来分配是最合理合法。

师:同学们,真是既能干,又有个性,想到了这么多的分配方案,了不起!

四、小结

第五篇:按比例分配应用题_8

按比例分配应用题

教学目标

1.使学生理解按比例分配问题的意义。

2.使学生掌握按比例分配应用题的结构及解答方法。

3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。教学重点和难点

1.理解按比例分配问题的意义。

2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。教学过程设计

(一)复习准备

1.复习比的有关知识,为学习新知识做准备。已知六年级1班男生人数和女生人数的比是3∶4。

男生人数与全班人数的比是()∶()。

女生人数与全班人数的比是()∶()。

2.创设情境,提出课题。

(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)提问:妈妈是怎样分的?(平均分)(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)提问:这样分还是平均分吗?

日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

(二)学习新课 1.讲解例2。

例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

(2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系?小组讨论。

④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的

各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。

(3)解答例2。

①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

②说说你是怎样做的?

方法a:3+2=5 播种大豆的面积 100÷5×3=60(公顷)播种玉米的面积 100÷5×2=40(公顷)方法b:总面积平均分成的份数为

3+2=5

③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)2.练习:第62页中的“做一做”(1)。

六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?

(1)弄懂题意。

(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)(3)独立完成。组员之间互相检验。3.学习例3。

例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?(3)请你在练习本上独立完成。

①三个班的总人数:

47+45+48=140(人)②一班应栽的棵数:

③二班应栽的棵数:

④三班应栽的棵数:

答:一班、二班、三班分别栽树94棵、90棵、96棵。

(4)同组同学互相检验。

4.练习:第62页中的“做一做”(2)。

一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

(1)在练习本上独立完成。

(2)同组同学互相检验。(三)课堂总结

今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。

(四)巩固反馈

1.填空练习:

①把35千克苹果平均分成7份,每份()千克,2份()千克,5份是()千克。

2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭? 3.第62页的“做一做”(3)。

一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?

与练习题2有什么区别?

如果求它的最短边、最长边怎么求?

4.判断练习:(正确举√,错误举×)一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

(五)布置作业

第63页第1,2,3,4题。

课堂教学设计说明

本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例

2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。

本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。

下载苏教版数学六年级下册教案 按比例分配应用题word格式文档
下载苏教版数学六年级下册教案 按比例分配应用题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学六年级数学按比例分配教案

    教学要求:使学生了解比在生活中的应用,能合理、灵活地解答按比例分配的问题。在解决实际问题的过程中,引导学生主动探索,勤于实践,勇于发现,合作交流。教学准备:课件。教学过程:一、......

    苏教版六年级数学——按比例分配应用题教学设计

    苏教版六年级数学——按比例分配应用题教学设计 教学目标: 1.在自主探索学习中理解按比例分配的意义,掌握按比例分配应用题的结构特点以及解题方法,能正确解答按比例分配应用题......

    按比例分配应用题教学设计

    按比例分配应用题教学设计 教学目标: 1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法; 2、培养学生应用所学......

    按比例分配 (教案)

    教学内容 : 青岛版五年级上册第P84-85 的内容 教学目标: 1、使学生理解按比例分配的意义。 2、掌握按比例分配应用题的特征及解题方法。 3、培养学生应用所学知识解决实际问......

    六年级数学按比例分配教学设计

    教学目标1.使学生理解按比例分配的意义. 2.掌握按比例分配应用题的特征及解题方法. 3.培养学生应用所学知识解决实际问题的能力. 教学重点 掌握按比例分配应用题的特征及解题......

    《按比例分配应用题》教学反思5篇

    《按比例分配应用题》教学反思 这一周我们学习了化简比、求比值和按比例分配应用题,教材上对按比例分配应用题的解答方法是先求出总份数,再求出各部份量占总份数的几分之几,然......

    “按比例分配的应用题”教学设计

    “按比例分配的应用题”教学设计 荆林中心校杨春仙 教学内容:苏教版数学第十一册第58-59页,例2、例3 教学要求: 1、联系生活实际,使学生理解按比例分配问题的意义。 2、使学生......

    按比例分配应用题的教学反思

    按比例分配应用题的教学反思按比例分配的应用题是小学六年级的一个教学内容。学生在学习此内 容前已经学习了分数乘法应用题、比的知识,这些知识是学生解决按比例分配的应用......