(冀教版)六年级数学上册教案 按比例分配的意义

时间:2019-05-15 04:56:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《(冀教版)六年级数学上册教案 按比例分配的意义》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《(冀教版)六年级数学上册教案 按比例分配的意义》。

第一篇:(冀教版)六年级数学上册教案 按比例分配的意义

2016-2017学年最新版

按比例分配的意义

教学目标:

1.知识目标:使学生理解按比例分配的意义。

2.能力目标:掌握按比例分配应用题的特征及解题方法。

3.情感目标:培养学生应用所学知识解决实际问题的能力。

教学内容:

教师可以先让学生做一道平均分的问题,然后告诉学生,在实际生活中,并不都是把一个数量平均分配,有很多时候是按一定的比来分配的,这就是按比例分配的问题。由此引出课题。接着教学幼儿园分水果的例子。

教师出示:幼儿园买来了一筐水果,按3:4分给小班和大班。提问:按3:4分给小班和大班是什么意思?通过学生的回答总结出:小班分得的水果占这筐水果的3份,大班分得的水果占这筐水果的4份,这筐水果一共有7份。

●教学例1。

1.出示例题,理解题意,弄清楚分配的是什么,按怎样的比分配。

2.学生自己试着做题。

3.交流。

(1)说一说自己是怎样想的。

葡萄糖药粉和水的比是1:9,就是说可以把350千克葡萄糖注射液看成一共是10份,葡萄糖药粉占1份,即1/10,水占9份,即9/10。

(2)说一说是怎样做的。用乘法求出葡萄糖药粉和水各有多少千克。葡萄糖药粉:

350×1/10=35(千克)

水:

350×9/10=15(千克)

●试一试。

学生自己做,并同桌交流做题的过程和结果。

●练一练。

第1~5题与例1相似,由学生独立完成。

2017.3.1 2016-2017学年最新版

第6题是长方形知识和按比例分配问题的综合运用,是一道开放题,供学有余力的学生练习。可以这样想:长方形的周长是84厘米,它的长与宽的和就是84÷2=42(厘米)。把长和宽按比例分配后,就可以围出不同的长方形,即:

要使围成的长方形面积最大,就要使长和宽最接近,即:围成正方形。边长就是:84÷4=21(厘米)。

●课后练习。

完成练习一的第7、8、10题。

●教学例2。

1.出示例题,分析题意。

2.自己试着做。

3.交流自己做题的过程和结果。

根据“2份水泥、3份沙子和5份石子”可以算出这种混凝土的总份数是2+3+5=10,也就知道了水泥、沙子和石子分别占混凝土的2/10,3/10和5/10.再用乘法算出水泥、沙子和石子各有多少千克。

●试一试。

第1题给出了三种水果糖的比,根据它们的比可以求出什锦糖的总份数,再用乘法求出三种糖各有多少千克。第2题和例题相类似。试一试中的题目先让学生独立完成,再交流做题的过程和结果,教师对学习有困难的学生要及时指导。

●练一练。

第1~3题由学生独立解答。

第4题可师生共同分析后,由学生独立解答。参考答案:

36×3=108(千克)

4+3+2=9

108×4/9=48(千克)

108×3/9=36(千克)

108×2/9=24(千克)

思考题解答过程:

如果把两个长方形重叠部分看作1个面积单位。则大长方形的面积为:

2017.3.1 2016-2017学年最新版

1÷1/6=6(6个面积单位)

小长方形的面积为:

1÷1/4=4(4个面积单位)

大长方形和小长方形面积的比为: 6:4=3:2

●课后练习。

完成练习一的第9、12题。

2017.3.1

第二篇:小学六年级数学按比例分配教案

教学要求:使学生了解比在生活中的应用,能合理、灵活地解答按比例分配的问题。在解决实际问题的过程中,引导学生主动探索,勤于实践,勇于发现,合作交流。教学准备:课件。教学过程:

一、导入1.情景导入老师这儿有一些图片,我们一起来看一看。(电脑出示:拉萨路小学学生学习计算机信息技术的图片)计算机教育是我们学校的特色,作为拉小的一员,你们想不想了解学校的电脑房是怎一步一步发展起来的呢?【评析:从生活中引入按比例分配,让学生感到数学就在自己身边。】2.复习铺垫我们学校1996年只有一个计算机室。提问:请你们猜猜看当时有多少台学生电脑和教师电脑?是不是这样的呢?我们一起来看一看。(电脑出示:1996年计算机房的条形统计图,48台学生电脑和3台教师电脑。)提问:你们能不能用我们刚刚学过的知识来表示它们之间的关系呢?学生可能会回答:(学生电脑和教师电脑台数的比是16比1。48:3=16:1教师电脑和学生电脑台数的比是1比16。3:48=1:16学生电脑的台数占教师电脑台数的16倍。483=16教师电脑的台数占学生电脑台数的。348=学生电脑的台数占总台数的。48(48+3)=教师电脑的台数占总台数的。3(48+3)=学生电脑和教师电脑台数的比是16:1。(电脑出示)学生电脑的台数占总台数的。(16/16+1)教师电脑的台数占总台数的。(1/16+1)这两种表示方法有什么共同点?(都是把总台数看作单位1。)小结:学生电脑和教师电脑台数的比是16:1,也就是说在电脑总台数中,学生电脑占16份,教师电脑占1份,一共是17份,学生电脑占总台数的,教师电脑占总台数的。【评析:为后面学习按比例分配做铺垫。】

二、新授1.教学例1(改编)1998年我们面对四~六年级全体学生,开设了信息技术普及课,这时学校为了满足学生的需求,又购进了一批电脑。(1)出示1998年的条形统计图。(电脑出示:学生电脑104台,教师电脑8台。)提问:一个计算机房能不能放下104台学生电脑?(生:放不下了)对!因此学校又建立了第二机房。你们说说看,每个机房可能有多少台电脑?你们是怎么分的?我们学校没有平均分,而是根据需要,把第一机房和第二机房学生电脑台数按照6:7来分配。(电脑出示:第一机房和第二机房学生电脑台数的比是6:7)。提问:你们能不能算算两个机房分别有多少台学生电脑?想不想自己先试试?学生尝试练习。根据学生回答,板书不同的算法。104(6+7)6=48(台)104(6+7)7=56(台)提问:你是怎么想的?突出板书:104 =104 =48(台)104 =104 =56(台)提问:你是怎么想的?提问:这两种解法之间有什么联系?小结:第一机房和第二机房学生电脑台数的比是6:7。第一机房电脑台数占学生电脑总台数的,第二机房电脑台数占学生电脑总台数的。把学生电脑的总台数看作单位1,用学生的总电脑 =第一机房学生电脑的台数,用学生电脑的总台数 =第二机房学生电脑的台数。这题可以怎样检验?根据学生回答,板书:48+56=104(台)48:56=6:7通过检验,说明我们学校第一机房有学生电脑48台,第二机房有学生电脑56台。我们求出了两个机房的学生电脑台数后,可以用这样的统计图来表示。(电脑出示相应的条形)【评析:在现实情境中学习比的应用,让学生感受到数学的实用性。放手让学生尝试,通过对多种解法的比较,帮助学生进一步加深对按比例分配的理解。】(2)小结并揭题说明:我们刚刚解答的这个问题是把一个数量按照一定的比来进行分配,这种分配的方法通常叫做按比例分配。(出示课题:按比例分配)(指第二种解法)解答这类问题可以根据已知的比表示的份数关系,找出各种数量占总数的几分之几,也就是把这个比转化为分数关系。(在课题下板书:比分数),可以根据求一个数的几分之几是多少进行解答。【评析:在学习例题的基础上揭示课题,自然、流畅。】2.教学例2(改编)随着信息技术的发展,2000年我校开始让学生运用计算机网络进行学习,这时又对原有的计算机房进行了改造。(电脑出示:2000年学校计算机台数情况的条形统计图。共有176台电脑。其中教师电脑20台。)提问:看到这些数据,你能知道些什么?(学生电脑有156台。)剩下来三个机房的学生电脑我们是这样分配的。(电脑出示:第一机房、第二机房、第三机房学生电脑台数的比是12:14:13。)看到这些信息,你想进一步知道什么呢?那么三个机房分别有多少台学生电脑呢?自己算算看。学生尝试练习。板书:176-20=156(台)156 ==156 =48(台)(指第一步)为什么这步求出的是第一机房的学生电脑?156 ==156 =56(台)156 ==156 =52(台)答:第一机房有学生电脑48台,第二机房有学生电脑56台,第三机房有学生电脑52台。(机动,如有学生提出其它解法,如第二机房:48 =56(台)等,要及时表扬,并进行讲解。)【评析:解答方法多样化,培养学生思维的多向性,以及灵活解决实际问题的能力。】(电脑出示:相应的条形。)提问:这道题要先把什么给求出来?强调:当分配的总量没有直接告诉我们的时候,要先把分配的总量给求出来。3.补充题(1)今年暑假我们学校先把第一机房的学生电脑捐给希望小学,然后又购进了一些学生电脑。并将机房的设施进行了更新。我们来看看具体情况。(电脑出示题目)出示:学校原有156台学生电脑,2002年学校先捐给希望小学48台学生电脑,又购进了57台学生电脑。然后计算机信息中心将三个机房的学生电脑按照1: 1:1进行分配。每个机房各有多少台学生电脑?提问:这题可以怎样解答呢?根据学生回答,电脑出示算式:156-48+57=165(台)165 ==165 =55(台)答:三个机房各有55台学生电脑。提问:165 实际上就是求什么?(165的 是多少?)提问:按照1:1:1进行分配就是相当于把学生电脑怎样分?(电脑出示三个机房的条形统计图)说明:平均分也是一种按比例分配。提问:这题是平均分还可以怎么求?(1653)【评析:对所学知识进行了拓展,让学生了解平均分也是一种按比例分配。】4.延伸提问:知道了三个机房分别有55台学生电脑,总共有165台后,你们还想知道什么?电脑出示: 学生电脑 教师电脑165 ?现在我们知道学生电脑和教师台数的比是33:7。你能不能求出学校有多少台教师电脑吗?电脑出示: 学生电脑 教师电脑165 ?33 : 7根据学生回答,板书算式:166 =35(台)答:学校有35台教师电脑。提问:这里我们已经知道了学生电脑的台数,所以要求教师电脑有多少台实际就是求什么?因此,要把谁看作单位1?【评析:这个延伸练习,是为了防止学生思维定势,引导学生学会选择合适的方法解决问题。】5.比较在刚才解决问题的过程中,同学们对1996年2002年间学校计算机房的情况也有了一定的了解,我们一起来看看这个汇总情况吧。(电脑出示:各年段学生电脑和教师电脑总台数的复式条形统计图。)提问:看了这张统计图,你有什么想法?对!从这张统计图中,我们也可以清楚地看到1996年2002年间学校电脑总台数在不断增加,呈上升趋势,说明学校对信息技术教育越来越重视。让我们一起来回首这几年学校计算机房的变化吧。(配音乐,电脑出示:各阶段的机房照片。)【评析:结合本节课的学习,让学生感受到信息技术的迅速发展,同时激发学生热爱学校的感情。】

三、拓展1.调查学生家庭有电脑的情况。人类已经跨入21世纪,以计算机和网络技术为主的信息技术,已在社会各个领域中得到广泛应用,并逐步改变着我们的工作、学习和生活方式。那么随着信息社会的来临,我们的家庭对计算机教育是否也越来越关注的呢?下面我们一起做一个小调查,好不好?请五年前,也就是你们上一年级的时候,家里有电脑的同学站起来。(统计人数)那么,家庭里没电脑的有多少人?用我们学过的知识怎样表示这一情况?(我们班家庭里有电脑的人数和没电脑的人数的比是几比几。)它们的关系还可以用这样一个统计图来表示。(电脑出示:1996年统计情况的扇形统计图)请现在家里有电脑的同学站起来。(统计人数)那么,家庭里没电脑的有多少人?现在我们班家庭里有电脑的人数和每电脑的人数的比是几比几?(电脑出示:改成2002年情况的扇形统计图)看到这些变化,你们有什么想法?【评析:让学生通过观察扇形统计图,强烈感受到信息技术教育在学校、家庭、社会中的不断发展。】2.补充练习老师这儿还有这么一个问题,你们会解决吗?(电脑出示:学校把122张软盘按照两个计算机兴趣小组的人数分配给各组。第一兴趣小组有30人,第二兴趣小组有31人。两个兴趣小组各应分得软盘多少张?)提问:用今天的知识能不能求出两个兴趣小组各应分得软盘多少张?学生练习,电脑出示算式。提问:这题的比没有直接告诉你们?你们是怎么想的?小结:两个计算机兴趣小组分别有30人和31人,两个组人数的比就是30:31。把122张软盘按照两个小组的人数分配给各班,就是把122按照30:31来分配。【评析:引导学生学会没有直接出示比的情况下,如何来解决比的应用的问题。】

四、课后练习(设计方案)今天我们共同学习了按比例分配,生活中比的应用还是比较广泛的。那么你们能不能运用我们所学的知识来解决一些实际问题呢?我这儿有一个我们学校的计算机信息中心拟订的规划,准备将来再投资30万元,购进一批电脑。(电脑出示:投资30万元,购进一批电脑)感兴趣的同学课后可以自愿组成小组,去了解我们本部、分部、分校的电脑配置情况。再根据今天学习的知识,帮助学校设计一个分配方案,根据需要,分配一下每部分可能需要多少钱?大约能买多少台电脑?并简要地说明分配的理由,提出合理化的建议。【评析:数学来源于生活,又应用于生活。引导学生学以致用。】【总评】:本节课改变了原有的教材内容,结合学校特色,在学校电脑房电脑台数的变化这一素材中引发按比例分配的问题。让学生在解决实际问题的过程中探索了解决问题的策略,学习有价值的数学。解题方法多样化,让学生选择喜欢的、合适的方法,让每个学生都得到了发展。同时也改变了学习内容的呈现形式,以条形统计图的方式出示,激发学生的学习兴趣,同时也形象直观地展示了学校电脑房的发展情况。在解决问题的同时,让学生学会分析统计图,并做出一定的预测,了解信息技术教育的发展。

第三篇:六年级数学上册《按比例分配》学案设计

六年级数学上册《按比例分配》学案设

教学流程:

一、炫我两分钟

六(1)班安排40名学生进社区敬老院做义务劳动。其中3/8的同学打扫厨房,/8的同学打扫宿舍。

(1)打扫厨房、宿舍的同学各有多少人?

(2)写出打扫厨房、宿舍的人数比,并化成最简单的整数比。

二、尝试小研究

(一)上尝试小研究

(一)了一块984平方米的菜地,计划按3:种茄子和西红柿。

以小组为单位动手操作:把一张长方形纸看作984平方米的菜地,把这张纸按3:进行划分,种植茄子和西红柿。

并交流讨论:

、3:的意义是什么?

2、如果要求茄子和西红柿各多少平方米,可以怎么求?

(三)上尝试小研究

(二)建筑工人用水泥、沙子、石子配制一种混凝土,水泥、沙子和石子质量的比是2:3:,要配制XX千克这样的混凝土,需要水泥、沙子和石子各多少千克?

交流讨论:、本题有哪些已知条和问题?

2、2:3:是什么意思?

3、要配制XX千克这样的混凝土,需要水泥、沙子和石子各多少千克?

4、这个问题和菜地问题有何异同?

、归纳解题步骤。

三、小组合作交流

(一)交流上尝试小研究

(一)。

出示小组合作交流建议:1出示小组合作交流时的注意事项。2学生独立完成。3组长组织组内成员进行交流。

(二)探究上尝试小研究

(二)、找出已知条和问题。

2、说一说2:3:是什么意思?

3、小组交流,解决问题,形成小组意见。

四、班级展示汇报、同组内交流完了吗,哪个小组先来和大家一同分享你们的研究结果?

要求:下面的同学也要认真听,看看你同不同意他们的研究方法。一会说出你想问他们的问题,或者对他们的研究方法做出自己的评价。或者对他们的研究方法进行补充。

2、组长带领全组同学,对老师指定的尝试小研究的内容进行交流汇报。

在交流汇报的基础上,组长组织全班同学进行评价、补充、质疑。

在学生汇报时教师适时点拨:两个问题有何异同?

(1)第一个题已知的比是两个数的比,第二个题的已知比是三个数的比;

(2)都是已知比和一个总量,求其中的一部分是多少;

(3)都要先求份数的和再求其中的一部分。

五、巩固提高

一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3:1。两种作物各播种多少公顷?

分什么?()

怎样分?()

豆:()公顷

米:()公顷

六、自我挑战。

、填一填

某小学共有40位教师,男教师人数和女教师人数比是1:7,男教师有()位,女教师有()位。

在一份满分为100分的试卷中,基础题、综合题、提高题的分值比通常为6:3:1,基础题占()分,综合题占()分,提高题占()分。

2、淘气一家三口和笑笑一家四口到餐馆用餐,餐费总共是140元。两家决定按人数分摊费用,两家各付多少元?

3、有一块长方形的菜地,这块菜地的周长是100米,且长与宽的比是3∶2,这块菜地的长和宽各是多少米?

4、小明今天的早餐表

面包鸡蛋牛奶

00g0g200g

(1)小明今天早餐是按怎样的比搭配的?

面包∶鸡蛋∶牛奶=()∶()∶()

(2)如果小明的妈妈用同样的比准备420g早餐,算算各种食物分别需要多少克?

七、盘点收获

现在请大家想想今天这节有什么收获?还有什么疑惑?

八、拓展延伸

用一根长是192厘米的铁丝焊成一个长方体框架,使得长方体长、宽、高的比为3:2:1。这个长方体的体积是多少立方厘米?

第四篇:按比例分配 (教案)

教学内容 : 青岛版五年级上册第P84-85 的内容 教学目标:

1、使学生理解按比例分配的意义。

2、掌握按比例分配应用题的特征及解题方法。

3、培养学生应用所学知识解决实际问题的能力。教学重点: 掌握按比例分配应用题的特征及解题方法。教学难点: 按比例分配应用题的实际应用。教学过程:

一、复习引入

1、填空

已知六年级1班男生人数和女生人数的比是:3:2。(1)男生人数是女生人数的()

(2)女生人数是男生人数的(),女生人数和男生人数的比是()(3)男生人数占全班人数的(),男生人数和全班人数的比是()(4)全班人数是男生人数的(),全班人数和男生人数的比是()(5)女生人数占全班人数的(),女生人数和全班人数的比是()(6)全班人数是女生人数的(),全班人数和女生人数的比是()

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗? 这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)

二、讲授新课

1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

2、提问:分谁?(100平方米)怎么分?(按3 :2分)

求的是什么?(求二年级1班的保洁区是多少平方米?六年级1班的保洁区是多少平方米?)

3、思考:由“如果按3 :2分配”这句话你可以联想到什么?(1)六年级的保洁区面积是二年级的3/2倍(2)二年级的保洁区面积是六年级的2/3(3)六年级的保洁区面积占总面积的3/5(4)二年级的保洁区面积占总面积的2/5 … … 小组汇报结果

4、尝试解答:用你学过的知识解答例题,并说一说怎么想的? 方法

一、3+2=5

100÷5=20(平方米)20×3=60(平方米)

20×2=40(平方米)方法

二、3+2=5 100× 3/5=60(平方米)100× 2/5=40(平方米)

方法

三、100÷(1+2/3)=60(平方米)60× 2/3=40(平方米)或100-60=40(平方米)方法

四、100÷(1+3/2)=40(平方米)40× 3/2=60(平方米)或100-40=60(平方米)

5、比较思路:这几种方法中,你认为哪种方法好?为什么?(第二种,思路简捷,计算简便)说说第二种方法的思路? ①求出总份数

②各部分数占总份数的几分之几?

③按照求一个数的几分之几是多少的方法解答。

6、这道题做得对不对呢?我们怎么检验? ①两个班级的面积相加,是否等于原来的总面积。

②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

7、练习

一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3 :2。两种作物各播种多少公顷?

(学生独立完成,集体订正,演示课件“比的应用”)下载

8、教学例3 学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)讨论:这道题与前面所做的题有什么区别? 分配什么?按照什么来分?

怎样计算各班栽的棵数占总棵数的几分之几?(2)学生独立解题

①三个班的总人数:47+45+48=140(人)②一班应栽的棵数:280× 47/140=94(棵)③二班应栽的棵数:280×45/140 =90(棵)④三班应栽的棵数:280× 48/140=96(棵)答:一班、二班、三班各应栽94棵、90棵、96棵。

9、小结:观察我们今天学习的两个例题有什么共同特点?(已知总数量、各部分量的比,求各部分量)怎么解答?

(先求总份数,各部分量占总数量的几分之几,最后求各部分量)

我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题,板书(补充课题):按比例分谁?怎么分? 板书:把一个数量按照一定的比来进行分配。

三、巩固练习

1、六年级(2)班共有42人,男、女人数的比是3:4,男、女生各有多少人?

2、一个三角形三条边的长度比是3 :5 :4。这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

(1)还是按比例分配问题吗?(2)如果是四个数的连比你还会解答吗?

3、一个长方形周长是20厘米,长与宽的比是7 :3,求长与宽各是多少厘米? 7+3=10

20×7/10=14(厘米)20×3/10=6(厘米)【错,要分的不是20厘米】

4、思考:平均分是不是按比例分配的应用题?按照几比几分配的?

四、课堂小结

今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?

五、课后作业 练习十三2、3、4、6

第五篇:六年级数学按比例分配教学设计

教学目标

1.使学生理解按比例分配的意义.

2.掌握按比例分配应用题的特征及解题方法.

3.培养学生应用所学知识解决实际问题的能力.

教学重点

掌握按比例分配应用题的特征及解题方法.

教学难点

按比例分配应用题的实际应用.

教学过程

一、复习引入

(一)填空

已知六年级1班男生人数和女生人数的比是3∶2.

1.男生人数是女生人数的()

2.女生人数是男生人数的(),女生人数和男生人数的比是(3.男生人数占全班人数的(),男生人数和全班人数的比是(4.全班人数是男生人数的(),全班人数和男生人数的比是(5.女生人数占全班人数的(),女生人数和全班人数的比是(6.全班人数是女生人数的(),全班人数和女生人数的比是((二)口答应用题).).).).). 六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

1.学生口答:100÷2=50(平方米)

2.教师提问

这是一道分配问题,分谁?(100平方米)怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?

这样分还是平均分吗?

3.谈话引入

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)

二、讲授新课

(一)把复习题2增加条件“如果按3∶2分配,两个班的保洁区各是多少平方米?”

(二)教师提问

1.分谁?(100平方米)

2.怎么分?(按3∶2分)

3.求的是什么?(两个班的保洁区各是多少平方米?)

(三)思考:由“如果按3∶2分配”这句话你可以联想到什么? 1.六年级的保洁区面积是二年级的 倍

2.二年级的保洁区面积是六年级的

3.六年级的保洁区面积占总面积的

4.二年级的保洁区面积占总面积的

… …

(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?

方法一:

3+2=5 100÷5=20(平方米)20×3=60(平方米)20×2=40(平方米)

方法二:

3+2=5 100× =60(平方米)100× =40(平方米)

方法三:

100÷(1+)=60(平方米)60× =40(平方米)或100-60=40(平方米)

方法四:

100÷(1+)=40(平方米)40× =60(平方米)或100-40=60(平方米)

(五)比较思路:这几种方法中,你认为哪种方法好?为什么?

(第二种,思路简捷,计算简便)

1.说说第二种方法的思路?

(1)求出总份数

(2)各部分数量占总量的几分之几?

(3)按照求一个数的几分之几是多少的方法解答.

(六)这道题做得对不对呢?我们怎么检验?

1.两个班级的面积相加,是否等于原来的总面积.

2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.

(七)练习

一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?

(八)教学例3

学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?

1.讨论:这道题与前面所做的题有什么区别?

分配什么?按照什么来分?

怎样计算各班栽的棵数占总棵数的几分之几?

2.学生独立解题

(1)三个班的总人数:47+45+48=140(人)

(2)一班应栽的棵数:280× =94(棵)

(3)二班应栽的棵数:280× =90(棵)

(4)三班应栽的棵数:280× =96(棵)

答:一班、二班、三班各应栽94棵、90棵、96棵.

(九)小结

1.观察我们今天学习的两个例题有什么共同特点?

已知总数量和各部分量的比,求各部分量.

2.怎么解答?

先求总份数,各部分量占总数量的几分之几,最后求各部分量.

3.我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题.

板书(补充课题):按比例

4.教师提问:分谁?怎么分?

板书:把一个数量按照一定的比来进行分配.

三、巩固练习

(一)六年级(2)班共有42人,男、女生人数的比是3∶4,男、女生各有多少人?

(二)一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

1.还是按比例分配问题吗?

2.如果是四个数的连比你还会解答吗?

(三)判断

一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

7+3=10 20× =14(厘米)20× =6(厘米)【错,要分的不是20厘米】

(四)思考:平均分是不是按比例分配的应用题?按照几比几分配的?

四、课堂小结

今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?

五、课后作业

(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7.这两种拖拉机各有多少台?

(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?

(三)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5.这个三角形三条边各是多少厘米?

(四)一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?

六、板书设计

按比例分配

下载(冀教版)六年级数学上册教案 按比例分配的意义word格式文档
下载(冀教版)六年级数学上册教案 按比例分配的意义.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    苏教版数学六年级下册教案 按比例分配应用题

    教学目标1.使学生理解按比例分配问题的意义。2.使学生掌握按比例分配应用题的结构及解答方法。3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。教学重点和难点1......

    冀教版六年级数学上册《比和比例》教案

    教学内容 教科书第95~96页的内容和“做一做”的题目,练习十九的第1、3、5、6、8题. 教学目的 1.使学生掌握比和比例的意义,比例的基本性质,会解比例. 2.使学生能够应用比例的知识,求......

    按比例分配教案5篇

    《按比例分配》教学设计 —— 油田六小 何英 教学内容:青岛版五年级数学上册第84—85页,按比例分配。 教学目标: 1、 结合具体情境,理解按比例分配的意义。 2、引导学生在理......

    按比例分配教案(五篇)

    青岛版六年级数学上册第43—44页,按比例分配 教学目标: 1、 结合具体情境,理解按比例分配的意义。 2、在具体情境中,通过自学自探、合作交流等学习方式,探索按比例分配的方法;在解......

    按比例分配应用题教案

    按比例分配应用题 教学内容:人教版小学数学六年级上册49-50页。 教学目标:1、理解什么是按比例分配。 2、会用多种方法解答按比例分配应用题。3、体会转化的思想。 4、培养学生多种方......

    按比例分配教后反思

    本节课的教学设计体现了如下的教学思想,给我们带来的启示是多方面的。1.高屋建瓴,运筹帷幄。 “两种量之间的倍数关系,可以用分数表示,也可以用比来表示,即它们之间是可以相互的......

    六年级按比例分配教学反思

    《按比例分配》教学反思 1、故事导入,激发学生探究知识的欲望,调动学习的兴趣 。故事是儿童最爱听的,也是最能激发学生兴趣的。我根据教学内容,从课件中的情境图导入新课,让学生......

    苏教版六年级数学——按比例分配教学设计1

    教学目标: 1、使学生理解按比例分配的意义。 2、掌握按比例分配应用题的特征及解题方法。 3、培养学生应用所学知识解决实际问题的能力。教学重点: 掌握按比例分配应用题的......