《导数的概念》第一课时的教学反思6

时间:2019-05-15 04:57:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《导数的概念》第一课时的教学反思6》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《导数的概念》第一课时的教学反思6》。

第一篇:《导数的概念》第一课时的教学反思6

《导数的概念》第一课时的教学反思

陈吾婷

在备《导数的概念》第一课时,对课本内容作了一定的调整,设计了这样的过程:由芝诺著名的一个悖论“飞矢不动”引入,然后利用瞬时速度来解释飞矢在某一点的速度是存在的,然后再转到曲线切线的讨论上来。

应该说,这样的思路很自然,也很有趣。但是在第一节课实际的实施过程中,出现一些问题,使得学生在芝诺悖论之后,就慢慢地变成了“无声”的状态,这主要是一些推导中复杂的符号使然。第一节下课后,很快地做了一个反思,总结了如下几点:

1.在推导瞬时速度时,应该先讲清楚牛顿的思路,即求位移的增量,求平均速度,再求极限。这样再进行推导,学生就有了方向,而不会象第一节课那样,听得慢,看着复杂的符号就头晕。

在学习理论中,有个“先行组织者”的概念,“先行组织者”是先于学习任务本身呈现的一种引导性材料,它要比原学习任务本身有更高的抽象、概括和包容水平,并且能清晰地与认知结构中原有的观念和新的学习任务关联。可能在对于这样牵涉到复杂符号的推导时,更需要有这样的一个前提准备。要不然学生就弄不清方向,从而被符号所困。

2.也是在推导瞬时速度时,应该做一个图解,使学生更清楚地看到增量的意义。第一节课正是没有给出图解,虽然对增量做了一定的强调,但是学生对增量的理解依然是抽象而非具体的。

3.推导完瞬时速度后,应该点出对“飞矢不动”悖论的反驳,即在某一点是有速度的。第一节课中忘了说明这一点了,就使得学生不知道“飞矢不动”这个情境有什么用,也不知道与瞬时速度有什么联系。

4.在介绍完曲线的切线后,给出一个很好的例子,即y=|x|在x=0处有没有切线,可以先增加另一个变式——求x=1处的切线,这会使学生认识得更深刻一点。最后最好能指出正如某一点的瞬时速度只有一个一样,某一点的切线也应该只有一条。

经过课间几分钟的反思与调整,第二节课果然清晰了许多,也生动了许多。学生听得也饶有兴致。

课后,有两个学生也分别提出了两个很好的问题。第一个问题是在刚才这一例子中,没有斜率难道就没有切线吗?第二个问题是如果切线垂直于x轴,按导数的解释,如果斜率无穷大——即以前通常所说的极限不存在,那么切线不是也不存在吗?

当时给出了这样的解释:导数不存在,切线就不存在;导数无穷大实际上还是存在的,只不过是无穷大,而上面的例子中的在x=0的导数是真的不存在,这是有区别的。回家路上想了一下,并不敢保证这样的解释的正确性,尤其是导数不存在,切线就不存在。到家一查,同济大学应用数学系主编的《高等数学》(第五版上册)第82页中就有切线的定义,包括了导数无穷大时的切线情况,在第85页中就有y=|x|在x=0处切线不存在的例子。放心了!但是依然在思考的一个问题是:怎样才能更加直观地说明上例中的切线不存在呢?它又哪里去了呢?

第二篇:导数的概念第一课时教案

数学归纳法第二课时教案(2010年4月7日)

课题 导数的概念第一课时

授课人

康玉梅

学校

三河市第二中学

1、知识目标:掌握数学归纳法的定义,理解数学归纳法原理的两个步骤,教学目标: 会用数学归纳法证明简单的与自然数有关的等式

2、能力目标:培养学生的观察能力、理解能力和分析能力。

3、情感目标:从理解学习数学归纳法的必要性和重要性激发学生的求知欲

教学重点 教学难点 教学方法 教师活动

1、复习引入 明确数学归纳法的两个原理缺一不可 对原理的准确理解 讲练结合

生活动

回顾 理解 记忆 记笔记

思考并回答问题

教具:多媒体

问题圆的切线与圆的关系

问题

2能否将圆的切线的概念推广为一般曲线的切线:直线与曲线有唯一公共点时,直线叫曲线过该

点的切线?如果能,请说明理由;如果不能,请举出反例。

问题

3为什么与抛物线对称轴平行的直线不是抛物线的切线? 11111n12121223n(n1)n1

三、布置作业。练习册 P337.338

四、板书设计

第三篇:“导数及其应用”第一课时的教学反思

“导数及其应用”第一课时的教学反思

浙江省衢州高级中学 何豪明

导数是微积分的核心概念之一,它有及其丰富的实际背景和广泛的应用。文[1]中说:“虽然函数的导数可以用极限概念‘纯数量’地去定义,但在中学里我们强调在实际背景下直观地、实质地去给出导数的描述,因而我们宁愿把这个概念看成是数形结合的产物。”把定性的结果变成定量的结果,把存在的东西具体表示出来——曲线的切线斜率用导数表示等。因此,本章内容课堂教学的主线是渗透其中蕴涵的逼近思想、以直代曲思想、数形结合思想等,将切线的斜率和导数相联系,发现导数的几何意义,并具体应用。其中,第一课时“变化率问题”的教学也不例外。

1.反思“导数及其应用”整章教材的编写意图

文[2]第一章“导数及其应用”,整章内容设计精妙,始终以导数概念这条主线贯穿着。有主线、有中心的文章是好文章。有主线、有中心的数学教科书更是一本好书。因为教科书在编写时要做到这一点,似乎比写文章更难。因此,我们的课堂教学必须是在理解课程标准的要求(通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;通过函数图像直观地理解导数的几何意义),把握教材编写的意图(以导数概念为主线编写教材),创造性地使用教材的过程中实施(每节课都要把握住本章教材的中心和主线——导数的概念)。因此,在本章内容教学的第一节课里,我们也需要强调对导数概念的初步认识,把它作为一种重要的思想、方法来学习。因为对一种思想、方法的学习,不是几节课就能完成的,这需要一个过程,可能过程还很长。对导数概念的理解,也需要一个过程,一个螺旋上升的过程。作为一线教师,我们必须在理解课程标准的要求,把握教材“主线”的基础上,再去创造性地使用教材。这样的课堂教学才能收到事

半功倍的效果。

研读两位教师关于“变化率问题”的教学设计,其中舒老师确定的教学重点是函数平均变化率的概念;而吴老师确定的教学重点是平均变化率、瞬时变化率的理解。结合课堂教学实际,我们发现吴老师能更好地把握教材编写的意图——以导数概念为主线串联着整章内容,因而其课堂教学效果明显。2.反思“变化率问题”课堂教学的整体思路

教学过程设计以“问题串”方式呈现为主。所提出的问题应当注意适切性,对学生理解数学概念和领悟数学思想方法有真正的启发作用,达到“跳一跳摘果子”的效果。根据“对一种生活现象的数学解释”是教科书介绍数学知识的切入角度,不仅可以激发学生深入探究的兴趣,而且让学生感到数学是有用的思想,设计如下课堂教学的整体思

路。

首先,以文[2]第一章的章头图“高台跳水”为背景资料,结合文[2]的问题2:“高台跳水”及其探究的学习,使学生认识到高度关于时间的导数就是运动员的瞬时速度,给出函数

图像,同时给出在某一点处的切线,并说明在这点处的切线斜率的几何意义,从而了解导数的概念。

其次,结合文[2]的问题1:“气球膨胀率”,让两个学生(男女生各一名)吹气球,在吹气球的过程中体验“随着气球内空气容量的增加,气球的半径增加得越来越慢”。感受气球膨胀率大小的变化,从而体会到平均膨胀率可以刻画气球半径变化的快慢,体会气球半径关于体积的导数就是气球的瞬时膨胀率。

再次,为了从具体情境的变化率问题抽象出导数概念,提出如下问题:如果将上面两个变化率问题中的函数用

表示,那么函数

在的瞬时变化率怎样表

瞬时变化率的示?目的是引导学生从两个具体问题的实际意义中抽象出一般函数表示,抽象出导数概念,这是学习的一个难点,也是思维的又一次上升过程。两位上课老师中,其中吴老师提出了瞬时速度,而舒老师却没有。这样,吴老师的课堂教学抓住了本章的核心概念——“导数的概念”,符合教材编写的意图。因而,课后反映良好。至于让学生吹气球的问题,课后,有人支持,有人反对。但我认为,让学生在吹气球的过程中体验“随着气球内空气容量的增加,气球的半径增加得越来越慢”,从而感受气球膨胀率大小的变化,这符合新课程的理念。

3.反思“变化率问题”课堂教学的新课引入

导数的几何意义就是切线的斜率,因此贯穿“导数及其应用”的主线是切线的斜率。下面通过比较“变化率问题”的两节课,就新课的引入谈点想法。舒老师的课以体会微积分的创立与人类科技发展之间的紧密联系导入新课,以实例“经营问题”引入新课。上课不到两分钟,就使学生明确本节课要揭示的核心问题——

平均变化率问题。

舒老师还从学生的生活经验出发,如菜的价格问题(那几天菜价正涨)、经营问题等,激发学生的学习兴趣。这种新颖的课堂设计,简洁有趣的导入,为整个教学环节的展开作了良好的铺垫。

美中不足的是作为引例的“经营问题”的科学性值得商榷。但其具有教学性。学生通过对引例的思考、讨论,获取平均变化率的信息,从而形成平均变化率的数学结论。同时联系有实际背景的当时菜的价格问题等,所有这些符合教材知识结构和学生认知规律的实例,能使学生在短时间内对平均变化率有个大致的了解。

吴老师的课,以微积分的创立与自然科学中四类问题的处理导入新课,以老师自己吹气球引入新课(这不是新课程提倡的)。这节课的核心问题就是“变化率问题”,它是学习导数的基础,是理解导数概念的根本。如果这节课能在把握整章教材的核心问题——“导数概念”的基础上,把握这节课的核心问题——“变化率问题”,恰到好处地给出瞬时变化率和切线的斜率,那么,自然水到渠成。

新课导入是整个课堂教学活动中的热身活动,目的是让学生在最短的时间内进入课堂学习的最佳状态。在这种教学环境和师生关系极为特殊,而且缺乏平常教学中的师生默契的情况下,如何以简洁、生动的教学案例来消除师生之间的陌生感,从而创设和谐的课堂气氛?如何以新颖的方法把教学内容自然地呈现在学生的面前?如何在上课伊始的几分钟内吸引学生的注意力,激发学生的求知欲?如何使新旧知识有机地结合起来,并溶入导入活动之中?等等,都是教师应深入思考的问题。

4.反思“变化率问题”课堂教学的课堂语言

舒老师说:“令

”。这里的“令”,应该说成“习惯上用即

”。

表示,关于气球膨胀率问题,应该补充说明:“我们把气球近似地看成球体”.这一点,两位教师都没有说明。

应该补充例题:“已知两点图像上,求经过

两点的直线的斜率,在函数的”。因为它是联系平均变化率和导数概念的枢纽,同时,还有利于学生在亲身体验数学的文字语言、符号语言和图形语言的相互转化中理解平均变化率的概念、切线斜率的概念和导数的概念等。

5.反思“变化率问题”课堂教学中对计算问题的处理

在课堂教学中,对计算问题的处理,要注意避免两种极端:过分强调学生的计算;

以计算机代替学生的计算。

既要培养学生的运算能力,又要提高单位时间的教学效率,可选择两个地方让学生计算。其一,计算0~1秒或1~2秒的平均速度问题。因为计算时花费的时间不多,同时,既能促进学生对平均速度的理解,又能为理解瞬时速度做好充分的准备。其二,计算0-平均速度问题。因为学生通过这一问题的计算,既能发现问题:“用平均速度表示这段时间内运动员的运动情况存在问题”,又能促进学生思考问题:“用什么东西才能更好地描述运动员在这个时间段的运动状态?”自然学生会想到物理中学过的瞬时速度。这样的处理省时,能够提高单位时间的效率,同时,不影响主体知识(平均速度、平均变化率、导数的概念)的学习。6.反思“变化率问题”中气球的膨胀率问题

有些教师在反思的时候认为这个例题太难,教学时可以删去,只讲高台跳水问题。还有些教师建议教材再版时去掉气球膨胀率问题,只留高台跳水问题。笔者不赞成这些观点,基于对以下两个方面的问题的思考。其一,这是一个难得的好案例,学生对它的熟悉程度远远超过高台跳水,几乎每个学生都有过吹气球的体验,而对高台跳水,大多数学生只是从电视画面上看到。好的案例,应该是大家都熟悉的案例,因为它能够有效地集中学生的注意力,学生乐意去思考,去研究,也才能使学生有所收获,有所提高。其二,课堂教学的目的是把学生不懂的教懂,不会的教会,但并不是说,每节课的教学内容都要求学生在这一节课里全部搞懂、全部掌握。这需要给学生更多的思考时间和思考空间。这样,反而能够培养学生的思考、探究的能力。所以膨胀率问题不仅不能从教材中删去,而且还应该在课堂教学中实施。

作为新概念引入的案例,关键应该选择学生熟悉的,简单的,如高台跳水问题,但熟悉的,不简单的也好,如气球的膨胀率问题。因为学生熟悉,最起码学生去想过这一问题,通过教学,不一定学生对这一问题的理解会很清楚,很深刻,但肯定的是在原来的基础上,对其理解会更进一步,它符合思维最近发展区原理。如果课堂教学能够把两个案例结合起来,先讲高台跳水,再讲气球的膨胀率问题,那么效果会更好。因为高台跳水让学生理解平均速度、瞬时速度等,而气球的膨胀率问题,则能够促使学生去思考。

这样自然引入导数的概念。

第四篇:导数的概念教学设计

《导数的概念》教学设计

1.教学目标

(1)知识与技能目标:掌握导数的概念,并能够利用导数的定义计算导数.(2)过程与方法目标:通过引入导数的概念这一过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想;提高类比归纳、抽象概括的思维能力.

(3)情感、态度与价值观目标:

通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.

2.教学重、难点

重点:导数的定义和利用定义如何计算导数. 难点:对导数概念的理解.

3.教学方法

1.教法:引导式教学法

在提出问题的背景下,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念的形成.

2.教学手段:多媒体辅助教学

4.教学过程

(一)情境引入

导数的概念和其它的数学概念一样是源于人类的实践。导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)在研究力学与几何学的过程中建立起来的。

17世纪数学家遇到的三类问题:

一是光的反射问题。光的反射和折射在17世纪是一个十分盛行的研究课题,早在公元1世纪,古希腊数学家海伦(Heron)就已经证明了光的反射定律:光射向平面时,入射角等于反射角。海伦还将该定律推广到圆弧的情形,此时,入射光与反射光与圆弧的切线所成角相等。那么,对于其他曲线,光又如何反射呢?这就需要确定曲线的切线。

CBCBAA

图 1 光在平面上的反射 图 2 光在球面上的反射

二是曲线运动的速度问题。对于直线运动,速度方向与位移方向相同或相反,但如何确定曲线运动的速度方向呢?这就需要确定曲线的切线。

三是曲线的交角问题。曲线的交角是一个古老的难题。自古希腊以来,人们对圆弧和直线构成的角——牛头角(图3中AB弧与AC构成的角)和弓形角(图4中AB与ACB弧所构成的角)即有过很多争议。17世纪数学家遇到的更一般的问题是:如何求两条相交曲线

所构成的角呢?这就需要确定曲线在交点处的切线。(二)探索新知

问题1 已知:匀加速直线运动方程为:s(t)v0t刻(t0[0,T])的瞬时速度。

问题解决:设t为t0的邻近时刻,则落体在时间段[t0,t](或[t,t0])上的平均速度为

12at,t[0,T],求:物体在t0时2v若tt0时平均速度的极限存在,则极限

s(t)s(t0)

tt0vlimtt0s(t)s(t0)

tt0为质点在时刻t0的瞬时速度。

问题2已知:曲线yf(x)上点M(x0,y0),求:M点处切线的斜率。

下面给出切线的一般定义;设曲线C及曲线C上的一点M,如图,在M外C上另外取一点N,作割线MN,当N沿着C趋近点M时,如果割线MN绕点M旋转而趋于极限位置MT,直线MT就称为曲线C在点M处的切线。

问题解决:取在C上M附近一点N(x,y),于是割线PQ的斜率为

tanyy0f(x)f(x0)(为割线MN的倾角)xx0xx0当xx0时,若上式极限存在,则极限

ktan为点M处的切线的斜率。

导数的定义

定义

设函数yf(x)在x0的某邻域内有定义,若极限limxx0f(x)fx(0)(为割线MT的倾角)limxx0xx0f(x)f(x0)存在,则称函数

xx0

f在点x0处可导,并称该极限为f在点x0处的导数,记作f'(x0)。

即 f'(x0)(2)

也可记作yxx,of(x)fx(0)

limxx0xx0dydx,xxodf(x)。若上述极限不存在,则称f在点x0处不可导。

dxxxof在x0处可导的等价定义:

设xx0x,yf(x0x)f(x0),若xx0则等价于x0,如果 函数f在点x0处可导,可等价表达成为以下几种形式:

f'(x0)limxx0yf(x)f(x0)

f'(x0)limx0xxx0f'(x0)limx0f(x0x)f(x0)

x单侧导数的概念

在函数分段点处或区间端点等处,不得不考虑单侧导数:

定义

设函数yf(x)在点x0的某右邻域(x0,x0)上有定义,若右极限

x0limf(x0x)f(x0)ylim(0x)xx0x存在,则称该极限为f在点x0的右导数,记作f'(x0)。

左导数

f'(x0)ylim。x0x左、右导数统称为单侧导数。

导数与左、右导数的关系:若函数yf(x)在点x0的某邻域内有定义,则f'(x0)存在f'(x0),f'(x0)都存在,且f'(x0)=f'(x0)。

(三)知识巩固

2例题1 求f(x)x在点x1处的导数,并求曲线在点(1,1)处的切线方程。

解:由定义可得:

yf(1x)f(1)(1x)21f'(1)limlimlim

x0xx0x0xx2xx2limlim(2x)2 x0x0x附注:在解决切线问题时,要熟悉导数的定义,并能通过导数的几何意义来解决一般问题

例题2设函数f(x)为偶函数,f(0)存在,证明:f(0)0。

'f(x)f(x)f(x)f(x)

f(0x)f(0)f(x)f(0)lim x0xxf(x)f(0)f[0(x)]f(0)limf(0)

x0xx 又f(0)lim x0 limx0f(0)0

附注:需要注意公式f'(x0)limxx0f(x)f(x0)的灵活运用,它可以变化成其他的形式。

xx0例3 证明函数f(x)|x|在x0处不可导。

证明

x0limf(x)f(0)xf(x)f(0)xlim1limlim1,x0x0x0x0xx0xlimx0f(x)f(0)极限不存在。

x0故f(x)|x|在x0处不可导。

附注:判断一个函数在某点处是否可导,只需要考虑该点处的左右导数是否相等即可。

(四)应用提高 求曲线yx在点(-1,-1)处的切线方程为(A)x2A.y=2x+1 B.y=2x-1 C.y=-2x-3 D.y=-2x-2

(五)小结

本节课主要学习导数的基本概念,在经历探究导数概念的过程中,让学生感受导数的形成,并对导数的几何意义有较深刻的认识。

本节课中所用数学思想方法:逼近、类比、特殊到一般。

(六)作业布置

1.已知f'(1)2012,计算:

f(1x)f(1)f(1x)f(1)(2)lim

x0x0xxf(1)f(1x)f(12x)f(1)(3)lim(4)lim

x0x04xx(1)lim2.计算函数f(x)2x3在点(1,1)处切线的方程。2

第五篇:第一课时教学反思

——第一课时教学反思

《可贵的沉默》是人教版义务教育教科书三年级下册第五组的一篇精读课文,是上海着名美育特技老师王圣民的一次课堂日记,文章语言朴实,情感真挚。当知道自己要执教第一课并且是第一个上场的时候,我的心就已经“砰砰砰”直跳了,因为自己一直是个很胆小很怯场的人,所以想到要面对众多双眼睛的注视,心里就发毛。但害怕归害怕,硬着头皮也还是要上,于是从那时起我就海量的收集信息,频繁地观看他人的教学视频,由此确定第一课时的教学内容。在课上我主要的教学目标是:

一、解决本课生字词;

二、能正确、流利地朗读课文;

三、读懂课文内容。

根据以上的教学目标,我按部就班地开展教学,所有的教学环节都按照计划实施下来。我觉得自己这节课有些地方还是做得比较成功的,至少比我预想的要好很多。那就是我的教态很自然,我不再怯场,能从容地面对十来双审视的眼睛,心理素质提高了,这可以说是我的一大进步,也为以后更好地上好公开课打下最直接的基础。其次,在教授生字、新词的时候抓得比较牢固,采用多种形式,如学生带读、跟读、开火车读的方法开展。

不过,虽然设计时花了很多心思,教学时也稳扎稳打,但是教学终归是遗憾的艺术。上完课的第一感觉就是在教学过程中出现头重脚轻的状况,前面讲授生字词时花的时间足足超过2/3,而后面进行对课文理解部分则因时间不足而作草草收场了,而且教学目标亦未能很好地达到。如果从教学细节上说,问题更是突显。第一,没有让学生做预习,这让学生在读通课文上花了大量的时间,以至于让学生读课文的时候,根本达不到准确、流利的预期目标。第二,仅仅以课文的两幅图片进行导入,不能有效地激起学生学习的兴趣。第三,讲解生字词的时候不够深入,难读的字怎样读没指导好,难写的该怎样写没指导到位。第四,让学生朗读课文的时间少了,特别是从一开始的时候采用让学生默读的方式不能很好地检验学生对生字词的掌握情况,而且这样容易导致学生注意力不够集中,如果一开始就让学生读,那对下面开展教学或许会更顺畅。第五,教学过程中没有做到“以学定教,顺学而导”的教学理念,整节课都好像是学生按着老师设计好的路子走,而老师却没能根据学生的实际情况来开展教学或者说改变一下教学策略。第六,评价语言单薄,对于学生的评价是一直的肯定,没有适当的点出他们的不足。

从存在的诸多不足可知,今后我在各方面还需要加倍的努力。首先要求自己认真对待每一篇课文,认真的备好每一节课,对于教学准备的每一个环节都要仔细的检查,详细的列出每一个环节。充分理解课文内容,紧紧围绕教学目标,牢固教学中的重难点,明白一堂课首先考虑的是教什么,再想用什么方法来实现这个目标。其次多向其他的老师学习,多听他们的课,多看些课外的书籍。比如:名师课堂、课堂实录……最后在教学设计做到更加的符合学生,不仅考虑到文本还要充分为学生考虑。

痛定思痛,在今后的教学中,我必须完全以学生为中心,以学生的思维方式去看待文本,以学生的需求为中心,要切实做到关注学生的全面发展。

通过这次研讨课,我深刻地感受到了自己在教学方面的不足,需要自己改正和努力的有很多很多。我将吸取失败的教训,在以后的教学中更加虚心地向老师们请教,踏踏实实、认认真真的做好每一件事情,使自己的教育教学水平再上一个台阶。

下载《导数的概念》第一课时的教学反思6word格式文档
下载《导数的概念》第一课时的教学反思6.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    导数的概念教案

    【教学课题】:§2.1 导数的概念(第一课时) 【教学目的】:能使学生深刻理解在一点处导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数在......

    识字6第一课时教学设计

    识字6第一课时教学设计 教学目标: 1、认识“海、鸥”等9个生字,会写“沙、海”2个生字。 2、能正确流利地朗读课文1、2两小节,初步感知数量词的用法。3、能留心观察周围事物,尝......

    练习6 第一课时 教学设计

    练习6 主备教师:教学目标: 1、 认识表示天气的几种图标。会看天气预报。2、 照样子,练写铅笔字。 3、 熟记四条成语和古诗《长歌行(节选)》。 4、 知道所收集标志的意思。 5、......

    《四季》第一课时教学设计6

    《四季》是人教社义务教育课程标准实验教材小学语文一年级上册第二课。这是一首儿歌。课文通过对一年四季具有代表性事物的描述,表现了春、夏、秋、冬四季的不同景色。儿歌采......

    《识字6》 第一课时 教学设计

    识字6 教学目标: 1、学会本课生字,认识由生字组成的动物名称。 2、观察图画,了解十二种动物的样子,建立起名称与实物的联系,丰富学生的知识,激发学习兴趣,同时进行保护珍稀动物的教......

    练习6第一课时教学设计

    练习6教学设计 六年级 李萍 第一课时 教学目标: 1.学习阅读“拟人化描写”的诗歌,并能仿写句子。学会分类积累词语。 2.诵读与欣赏《马诗》,学会体会诗歌本身和诗人的思想感情,有......

    识字6 第一课时 教学设计

    识字6 主备教师:教学目标: 1、学会本课生字和由这些生字组成的词语。 2、能有顺序地观察图画,认识图上描绘的事物。 3、了解大成都市里现代化的建筑和设施,体会祖国现代化建......

    《数列概念》(第一课时)教案

    数列概念学案 学习目标:设计人:李九根 了解数列的概念和数列几种常见表示方法(列表、图像、通项公式)并能根据一定条件求数列的通项公式。 学习重点:数列概念 学习难点:根据条件求......