第一篇:机器人概论 论文
机器人概论论文
题目:机器人的控制系统
作者:王宜晖
单位:物理与信息科学学院
09物理四班 学号:291040435 电话:***
摘要:在当今社会中,机器人越来越受到人们的广泛关注,本论文就是为了让大家在了解有机器人的同时可以了解到机器人是怎样运行的。他是由什么控制的和不同的机器人所用的不同的编程系统。
关键词:机器人控制 控制系统 机器人编程 G语言 乐高机器人 工业机器人
正文:
在当今社会中,机器人从不为人所知到现在越来越受到人们的重视和喜爱,机器人走过了一个艰辛而又漫长的发展过程,机器人从最初的只可以像小车一样前进,到现在基本可以像人一样直立行走,机器人的发展是坎坷的,但是就因为有很多喜爱机器人的人的共同努力,机器人在不断的进步。
其实大多人都不是很了解机器人,认为机器人就应该和人类一样,其实这个观点是错误的,一般在定义方面,只要有人工智能的机器一般都可以算作是机器人。
其实并不是人们不想给机器人一个完整的定义,自机器人诞生之日起人们就不断地尝试着说明到底什么是机器人。但随着机器人技术的飞速发展和信息时代的到来,机器人所涵盖的内容越来越丰富,机器人的定义也不断充实和创新。
下面我想重点介绍一下机器人的控制系统。
机器人和真正的人不同,他们没有思想,只有在一个环境中接受环境并且不断地接受环境给他传递的信息并且通过编写的程序去运算这个信息中可以给他活动的命令和条件。
而在机器人控制系统中编程就成了必不可少的工具,如果说控制器是机器人的大脑的话,那控制系统中的编程就是脑容量,负责机器人的宏观调控。
而控制机器人完成各项任务的东西就是控制器,可以说每个机器人控制器是必不可少的东西,但是每个控制器都不同。
比如说,乐高机器人,他的控制器就是一个像盒子一样的东西,如图所示,这就是在小学初中和高中组机器人大赛中常见到的控制器,这个控制器看起来像个玩具,但是,就因为这样,才可以让很多人学会和了解机器人的运行,让自己做机器人变得可能,并且让复杂的东西简单化,图中的这个控制器中深色的地方就是控制所有地方的发出点,有点像人体的突触,发出电信号,让做好的机器人干人类要求的一些事情。
乐高机器人的好处就在于大家可以尽可能的发挥自己的想象,做出自己喜欢的机器人,而不受到其他条件的约束。比如说我们曾经比赛过的机器人:
我们可以通过自己的想象,按照自己的意志去做这款机器人,不需要多好看,只要可以完成我们所要完成的任务就可以。(图中所示为我们高中自己拼装的灭火救人机器人)
而正因为如此,我们的发挥的空间也就更大。
但是怎样才能让我们做出来的机器人随着我们的意志去做我们要求机器人做的事情呢?这个问题就要交给上面那个盒子和我们编的程序来完成了。
乐高之所以简单,就是因为他们开发的一款专用编程软件:ROBOLAB2.5。
提到编程语言,人们最多的反应可能是C语言。然而,我们大家都知道,C并不是最早的编程语言,也不是唯一的。
伴随着计算机硬件的发展,计算机编程语言也经历了不同的发展阶段。第一代编程语言是机器语言(机器指令);第二代编程语言为汇编语言,属于低级语言。第三代编程语言是面向对象或面向问题的语言,是应用型的语言,属于高级语言,如早期的FORTRAN、到C、VB以及目前网络方面应用较多的JAVA、Delphi等。目前世界上的高级语言大概有几百种之多,比较通用的也有几十种。但是,这些高级编程语言也要经过系统漫长的学习,甚至是专业人士才能熟练使用。为了适合更为广泛的非专业人群的需要,另一种更直观易学的编程语言——图形化编程语言得到越来越多的关注。图形化编程语言——G语言又称为可视化编程语言,被称为第四代编程语言。
如图,就是G语言,他看似简单,但是如果深入了解的话,可以干成很多别的程序很难做到的事情,换句话说就是可以吧复杂的东西简单化。
比如说,我在网上看到这样的一个例子:诺贝尔获奖者也使用G-语言!正文如下:
为乐高机器人编写程序的ROBOLAB软件是一个低起步,高发展,直观易学的图形化编程环境,是以美国国家仪器公司的LabVIEW为基础开发的。1997年诺贝尔物理奖获得者William D.Phillips博士选用LabVIEW作为编程环境, 控制他发明的全新原子冷却实验。
LABVIEW语言是一个划时代的图形化编程系统,它提供了一种全新的程序编写方法。目前,全球上万名工程师、科学家和技术人员都在使用LabVIEW软件, 包括诺贝尔获奖的科学家。
为了让更多的学生在很小的年龄, 和付出非常少价格就开始学习最先进的编程技术, 乐高公司等企业和高校开发了ROBOLAB,它就是一套适合中小学教学,又具有专业版本LabVIEW多种功能的图形化语言编程环境。
下图是LabVIEW 帮助福特汽车公司测试汽车的各种性能。LabVIEW采用图形化编程方式,产生的程序是框图的形式,对于使用者来说,编程就像设计流程图一样,在很短的时间内就能够学会。由于 LABVIEW明显提高了科研和生产效率, 它在航天航空、通信、汽车、半导体和生物医学等众多领域很快得到广泛应用.乐高公司通过和美国国家仪器公司,美国TUFTS大学的友好合作,开发了基于LabVIEW的机器人编程软件ROBOLAB,使机器人更容易进入中小学课堂,使我们的学生在很小的年龄就可以开始编写程序,体会计算机的威力。
ROBOLAB有200多个编程模块,可以完成常见编程语言,如C/C++或VisualBasic等软件的功能。学生在计算机上为机器人编写好程序,程序一旦下载到RCX,机器人就脱离计算机,根据程序指令,按照周围环境的输入信息来行动,完全智能化。当然,如果机器人未按预先设计的行动,即程序编写不够完善时,可以在计算机上修改原程序,再下载,运行机器人进行测试,直到机器人完全按要求工作为止。
这就是G语言和乐高机器人的好处,不过有很多人认为乐高机器人只能算是一个高级玩具,其实不然,在G语言中,有两种级别:一种为导航者级别,属于初学者所用的,比较简单,而另一种为发明家级别,用的时候就要一定的基础才可以把程序编写的很完美了。
发明家级别用得好意味着什么?举例来说,LabVIEW是一个工程师和科学家使用的功能强大的编程环境,帮助他们完成如制造、质量测试、数据采集分析等任务,他是图形化的开发工具,允许他们建造强大的软件应用程序,以帮助他们的研究和工作。在1997年NASA的火星任务中,在探索这个星球表面时,LabVIEW用于监测Sojourner Rover的位置和状态。
不过,如果我们要做出这么庞大的系统出来,那就要在下很多功夫了。
肯定有很多人要问了,那有了程序,怎么才能完成机器人的各项动作呢?这个可以放心,因为这就要用到了机器人的大脑:控制器!
控制器是机器人的大脑,控制机器人的动作。它通常是一个机器人的某些类型的计算机是用来存储信息操作机器人和工作环境,存储和执行程序的。该控制系统包含程序,数据算法,逻辑分析以及其他各种加工活动,使机器人执行。
下面的图片是一个AARM运动控制系统。AARM代表高级架构机器人和机械运动,它是一个商业产品机运动控制从美国机器人工业。工业控制器要么不伺服,点至点或连续伺服舵机的路径。阿非伺服移动机器人通常从一个地区到另一个地区,被称为是“取放”的机器人。非伺服机器人的运动是由控制器启动和停止开关用机械停止。停止开关发出一个信号重新启动控制器的下一项议案。阿点至点伺服精确点移动到路径停止所以只有在被编程。连续伺服是一个适当的路径时,机器人必须在一开始指定的路径在不断运动平稳。
更复杂的机器人有更精密的控制系统。该火星车在火星索乔纳大脑是由两个柔性电缆的电子电路板,是相互关联。一个董事会被称为“中央处理器”董事会和其他的“权力”包含的项目,每个董事会负责处理用于发电,功率调节,功率分配和控制,模拟和数字I / O控制,并计算(即中央处理器)和数据存储(即内存)。
移动机器人可以通过遥控操作或自主。一个遥控机器人操作员的指示接收人。在直接远程控制的情况下,机器人继电器环境和经营者经营有关的资料,然后发送远程机器人信息的基础上得到的指示。这个顺序可能会发生立即(实时)或时间延迟。自主机器人进行编程,了解他们的环境,并采取独立行动的基础上拥有他们的知识。有些机器人能够自主“学习遇到”从他们的过去。这意味着它们可以识别的情况,进程取得成功的行动产生了成功/失败的结果和修改他们的行为优化。这项活动需要放置在机器人控制器。
而对于乐高来说,因为乐高机器人本来就象是一种商品,所以他有成品的控制器:只要你将编写好的G语言程序用红外传输的形式传入这个小盒子中就可以了,这个小盒子叫RCX,他就是乐高机器人的大脑,程序在这个RCX中运行后,就可以指挥机器人做各项工作了。而对于这个控制器来说,灰色的部分就是输入,黑色的部分是输出,这是什么意思呢?比如说,我要沿着一条黑线走下去,那么我就可以在灰色的地方安装一个光感传感器,而在黑色的地方装一个马达一样的东西和车轮,这下好了,我们可以编一个程序让光杆传感器感受黑线和其它部分光的不同,让光感只采集黑线传递的光,这样,如果超出黑线,程序就不再发出走的指令。这样下来,我们的机器人就可以很听话的按照我们所画的黑线来走,一个简单的机器人就这么诞生了„„ 有的人会问了,那一般控制机械或机器人的东西不是单片机吗?那RCX是不是也是一个单片机呢?对于这个问题,我在网上查找过,最后再乐高的官网中找到了答案,实际上,它们是有很大区别的。而最主要区别就是单片机仅仅包含硬件,没有操作系统软件。
设想如果世界上没有操作系统„„
让我们先假设出现这种情况:你电脑里的操作系统(例如Windows98)被病毒损坏,无法启动机器,而你身边有没有可以启动机器的软盘。那么,就算你拥有再强大的电脑,也不能完成任何的操作,只能望机兴叹。这时,也许你才真正理解操作系统的存在意义,体会到为什么世界上最大的公司微软就是以操作系统兴旺发达的。
RCX的操作系统
在使用ROBOLAB软件,我们注意到,主菜单显示三个按钮,按钮1为“administrator”,点击该按钮,进入下一级菜单,这个窗口显示的五个按钮中,第2个按钮“Download Firmware”,我们称为“下载固件或固化”,Firmware即固件。那么,什么是固件呢?为什么要下载固件呢。打个比方:我们使用的计算机,在刚刚组装起来时,我们称为裸机,我们必须为裸机安装操作系统,如Windows,NT,然后才可以根据使用需要,安装合适的软件。如Word, Excel,VB,IE, Photoshop 等等。这里计算机的操作系统可以认为是计算机的固件。未固化的RCX类似于计算机的裸机,只有硬件,没有软件,虽然有着强大的处理器,存储器,和输入和输出端口等,但使用起来十分困难。下载RCX的固件就是将RCX的操作系统软件和配合ROBOLAB使用的程序输入RCX。有了固件,RCX就能完成实时和多任务操作,让使用者用高级语言对RCX进行编程,完成复杂的机器人设计。
而所有单片机仅仅包含硬件,没有如何操作系统软件。
前面我们已经讲到,没有操作系统的计算机系统称为裸机。要控制裸机就必须使用针对某种处理器的汇编语言。我们强调使用针对某种处理器的汇编语言是因为不同的微处理器使用不同的汇编语言,而且它们之间的差别非常大,甚至同系列但不同型号的微处理器使用的汇编语言也不一样。为了优化硬件结构,在不同的系统中,我们往往需要选择不同的微处理器,这样就要求学会许多不同的汇编语言。由于汇编语言一般非常难懂,老师的教学和学生的学习都比较困难,通常单片机系统开发完成后,我们会发现大量的时间花费在语言的学习和枯燥的程序调试,而不是在功能的完善和创新中。
RCX和其软件系统带我们走出以上的困境。我们下载的固件包括了RCX硬
件的细节和底层的编程指令,ROBOLAB软件也将难懂的汇编语言表达为一个个图标。编程时我们只需要选择所需的功能图标,像画流水线一样有逻辑性地将图标连起来,这样就可以完成程序编写,实现复杂的软件设计。
下面,我们用单片机的汇编语言来与ROBOLAB做个比较。同样是完成RCX赋值,直接对RCX的微处理器H8编写程序要复杂许多,编写时不但要注意语句顺序,甚至标点符号也不能错。而通过RCX操作系统使用ROBOLAB,你只需要懂得怎样使用几个图标:
这就是乐高机器人的控制器和控制系统,其实,我们也不一定就要一直依赖于乐高这种编程系统和控制器,上面我们就说过,可以运用很多语言去完成自己喜欢的事情,也有很多人用其他方式完成了自己的想法。
我们先说说工业机器人的控制系统吧!
以下是我在网上找到的对于工业机器人来说的编程和控制系统。
1.机器人的示
用机器人代替人进行作业时,必须预先对机器人发出指示,规定机器人进行应该完成的动作和作业的具体内容。这个过程就称为对机器人的示教或对机器人的编程。对机器人的示教有不同的方法,要想让机器人实现人们所期望的动作,必须赋予机器人各种信息,首先是机器人动作顺序的信息及外部设备的协调信息;其次是与机器人工作时的附加条件信息;再次是机器人的位置和姿态信息。前两个方面很大程度上是与机器人要完成的工作以及相关的工艺要求有关,所以我们重点介绍一下有关机器人位置和姿态的示教。
位置和姿态的示教大致可有以下几种:
(1)直接示教
就是我们常说的手把手示教,由人直接搬动机器人的手臂对机器人进行示教,如示教盒示教或操作杆示教等。在这种示教中,为了示教方便及获取信息的快捷而准确,人们可选择在不同的坐标系下示教,可在关节坐标系、直角坐标系(基坐标系)以及工
具坐标系、工件坐标系或用户自定义的坐标系下示教。
(2)离线示教
不对实际作业的机器人直接进行示教,而是脱离实际作业环境生成示教数据,间接地对机器人进行示教。在离线示教法(离线编程)中,通过使用计算机内存储的模型(CAD模型),不要求机器人实际产生运动,便能在示教结果的基础上对机器人的运动进行仿真,从而确定示教内容是否恰当及机器人是否按人们期望的方式运动。
2.机器人语言及其分类
机器人软件的类型大致有三种:(1)伺服控制级软件;(2)机器人运动控制级软件,用于对机器人轨迹控制插补和坐标变换等;(3)周边装置的控制软件。
为了让机器人产生人们所期望的动作,实现上述三类软件的功能,就必须设计机器人的运动过程和编制完成这种运动过程的先后顺序,这与计算机编制程序的概念是一样的。于是使用一种形式语言来描述机器人的运动,这种形式语言叫做机器人语言(Robot Language)。以机器人语言为线索,利用机器人语言对机器人编程,实现对机器人及其周边装置的控制。机器人语言的含义是,机器人语言是在人与机器人之间的一种记录信号或交换信息的程序语言。
关于机器人语言的分类,从不同的方面考虑有很多种分类方法,通常人们根据作业描述水平的高低分为三级:
(1)动作级
动作级语言是以机器人的运动作为描述的中心,由一系列命令组成,一般一个命令对应一个动作,语言简单,易于编程,缺点是不能进行复杂的数学运算。
(2)对象级
对象级语言是以描写操作物之间的关系为中心的语言。(3)任务级
任务级是比较高级的机器人语言,这类语言允许使用者对工作任务要求达到的目标直接下命令,不需要规定机器人所做的每一个动作的细节。只要按某种原则给出最初的环境模型和最终的工作状态,机器人可自动进行推理计算,最后生成机器人的动作。
3.机器人语言系统的构成
如果我们从模块化的思想考虑,机器人语言系统主要包括以下几种模块
主控程序模块
l)对来自示教盒/面板的请求给予相应的服务。2)任务的调度安排。
运动学模块:此模块是机器人运动的关键,包括机器人运动学的正解、逆解及轨迹规划,完成机器人的关节、直线、圆弧等插补功能。
·外设控制模块:实现对机器人系统有关的外围设备的控制。·通信模块:支持主机和示教盒、PLC及伺服单元的通信。
·管理模块:提供方便的机器人语言示教环境;支持对示教程序的示教、编辑(插入、删除、拷贝)、装入、存储等操作;完成系统各功能之间的切换。
·机器人语言解释器模块:对机器人语言的示教程序进行编译、扫描及语言法检查,最后解释执行。
·示教模块:利用示教盒来改变操作机未端执行器的位置和姿态。·报警模块:对出错信息的处理及响应。
4.机器人语言系统的功能
·使用机器人语言对机器人的运动加以控制,机器人运动轨迹的控制方式有两种:①CP控制方式;②PTP控制方式。无论采用何种控制方式,目前的工业机器人语言大多数以动作顺序为中心,通过使用示教这一功能,省略了作业环境内容的位置姿态的计算。详细他讲,对机器人运动控制的功能可分为如下几种:
速度(speed)设定;
轨迹插补(关节插补、直接插补及圆弧插补)动作定时(pause,delay)定位精度(coarse,fine)手爪控制(open,close)
·环境定义功能:机器人语言中的主要运算是环境数据之间进行的运算,但是现有的机器人语言是以基本动作级的实时系统为中心的,所以有关环境定义功能及其运算功能还不充分,往往用示教功能来代替。
·数据结构及其运算的功能:在通用的数据结构中,一般有文字符号和矩阵等形式,而在结构化的机器人语言中,采用更为通用的数据结构。机器人本身专用的数据结构是坐标变换矩阵、三维向量等。向量的运算包括加、减运算,内积与外积运算。
·程序控制的功能:在逐步执行的通用程序语言中,设计有程序控制语言,以便选定后进入运行的分支或转入循环运行。在机器人语言中,动作顺序的描述是重要的,为强调这种描述的可读性,采用结构化编程方式,有GOTO功能、主程序和子程序。
·数值运算的功能:机器人语言的数值运算功能大致有以下几种: 四则运算(+、-、×、/等)计数运算(1NC、DEC等)
位运算功能(NOT、AND、OR、XOR等)
三角函数运算功能(SIN、COS、TAN、ARCTAN2)
·输入、输出和中断的功能:在进行顺序的程序中,与外部传感器进行信息交互的功能和中断功能是最为重要的功能。
·文件管理的功能:机器人所处理的文件有程序本身和与位姿有关的数据集,在许多机器人语言中,都有从磁盘读出程序(LOAD)和往磁盘里写入程序(SAVE)等功能。
·其他功能:进行工具变换、基本坐标设置和初始值的设置、作业条件的设置等。
以上就是对工业机器人的编程,而对于其他机器人也有不同的编程方法: 机器人编程【robot programming】 为使机器人完成某种任务而设置的动作顺序描述。机器人运动和作业的指令都是由程序进行控制,常见的编制方法有两种,示教编程方法和离线编程方法。其中示教编程方法包括示教、编辑和轨迹再现,可以通过示教盒示教和导引式示教两种途径实现。由于示教方式实用性强,操作简便,因此大部分机器人都采用这种方式。离线编程方法是利用计算机图形学成果,借助图形处理工具建立几何模型,通过一些规划算法来获取作业规划轨迹。与示教编程不同,离线编程不与机器人发生关系,在编程过程中机器人可以照常工作。工业上离线工具只作为一种辅助手段,未得到广泛的应用。
用EDIT指令进入编辑状态后,可以用C、D、E、I、L、P、R、S、T等命令来进一步编辑。如:
C命令:改变编辑的程序,用一个新的程序代替。
D命令:删除从当前行算起的n行程序,n缺省时为删除当前行。
E命令:退出编辑返回监控模式。
I命令:将当前指令下移一行,以便插入一条指令。
P命令:显示从当前行往下n行的程序文本内容。
T命令:初始化关节插值程序示教模式,在该模式下,按一次示教盒上的“RECODE”按钮就将MOVE指令插到程序中。
3)列表指令
DIRECTORY指令:此指令的功能是显示存储器中的全部用户程序名。
LISTL指令:功能是显示任意个位置变量值。
LISTP指令:功能是显示任意个用户的全部程序。
4)存储指令
FORMAT指令:执行磁盘格式化。
STOREP指令:功能是在指定的磁盘文件内存储指定的程序。
STOREL指令:此指令存储用户程序中注明的全部位置变量名和变量值。
LISTF指令:指令的功能是显示软盘中当前输入的文件目录。
LOADP指令:功能是将文件中的程序送入内存。
LOADL指令:功能是将文件中指定的位置变量送入系统内存。
DELETE指令:此指令撤销磁盘中指定的文件。
COMPRESS指令:只用来压缩磁盘空间。
ERASE指令:擦除磁内容并初始化。
5)控制程序执行指令
ABORT指令:执行此指令后紧急停止(紧停)。
DO指令:执行单步指令。
EXECUTE指令:此指令执行用户指定的程序n次,n可以从–32 768到
767,当n被省略时,程序执行一次。
NEXT指令:此命令控制程序在单步方式下执行。
PROCEED指令:此指令实现在某一步暂停、急停或运行错误后,自下一步起继续执行程序。
RETRY指令:指令的功能是在某一步出现运行错误后,仍自那一步重新运行程序。
SPEED指令:指令的功能是指定程序控制下机器人的运动速度,其值从0.01到327.67,一般正常速度为100。
6)系统状态控制指令
CALIB指令:此指令校准关节位置传感器。
STATUS指令:用来显示用户程序的状态。
FREE指令:用来显示当前未使用的存储容量。
ENABL指令:用于开、关系统硬件。
ZERO指令:此指令的功能是清除全部用户程序和定义的位置,重新初始化。
DONE:此指令停止监控程序,进入硬件调试状态。
2.程序指令
1)运动指令
指令包括GO、MOVE、MOVEI、MOVES、DRAW、APPRO、APPROS、DEPART、DRIVE、READY、OPEN、OPENI、CLOSE、CLOSEI、RELAX、GRASP及DELAY等。
这些指令大部分具有使机器人按照特定的方式从一个位姿运动到另一个位姿的功能,部分指令表示机器人手爪的开合。例如:
MOVE #PICK!
表示机器人由关节插值运动到精确PICK所定义的位置。“!”表示位置变量
MOVET 已有自己的值。
<位置>,<手开度>
功能是生成关节插值运动使机器人到达位置变量所给定的位姿,运动中若手为伺服控制,则手由闭合改变到手开度变量给定的值。
又例如:
OPEN [<手开度>]
表示使机器人手爪打开到指定的开度。
2)机器人位姿控制指令
这些指令包括RIGHTY、LEFTY、ABOVE、BELOW、FLIP及NOFLIP等。3)赋值指令
赋值指令有SETI、TYPEI、HERE、SET、SHIFT、TOOL、INVERSE及FRAME。
4)控制指令
控制指令有GOTO、GOSUB、RETURN、IF、IFSIG、REACT、REACTI、IGNORE、SIGNAL、WAIT、PAUSE及STOP。
其中GOTO、GOSUB实现程序的无条件转移,而IF指令执行有条件转移。IF指令的格式为
IF <整型变量1> <关系式> <整型变量2> <关系式> THEN <标识符>
该指令比较两个整型变量的值,如果关系状态为真,程序转到标识符指定的行去执行,否则接着下一行执行。关系表达式有EQ(等于)、NE(不等于)、LT(小于)、GT(大于)、LE(小于或等于)及GE(大于或等于)。
5)开关量赋值指令
指令包括SPEED、COARSE、FINE、NONULL、NULL、INTOFF及INTON。
6)其他指令
其他指令包括REMARK及TYPE。
SIGLA语言
SIGLA是一种仅用于直角坐标式SIGMA装配型机器人运动控制时的一种编程语言,是20世纪70年代后期由意大利Olivetti公司研制的一种简单的非文本语言。
这种语言主要用于装配任务的控制,它可以把装配任务划分为一些装配子任务,如取旋具,在螺钉上料器上取螺钉A,搬运螺钉A,定位螺钉A,装入螺钉A,紧固螺钉等。编程时预先编制子程序,然后用子程序调用的方式来完成。
IML语言
IML也是一种着眼于末端执行器的动作级语言,由日本九州大学开发而成。IML语言的特点是编程简单,能人机对话,适合于现场操作,许多复杂动作可由简单的指令来实现,易被操作者掌握。
IML用直角坐标系描述机器人和目标物的位置和姿态。坐标系分两种,一种是机座坐标系,一种是固连在机器人作业空间上的工作坐标系。语言以指令形式编程,可以表示机器人的工作点、运动轨迹、目标物的位置及姿态等信息,从而可以直接编程。往返作业可不用循环语句描述,示教的轨迹能定义成指令插到语句中,还能完成某些力的施加。
IML语言的主要指令有:运动指令MOVE、速度指令SPEED、停止指令STOP、手指开合指令OPEN及CLOSE、坐标系定义指令COORD、轨迹定义命令TRAJ、位置定义命令HERE、程序控制指令IF…THEN、FOR EACH语句、CASE语句及DEFINE等。
任务程序员能够指挥机器人系统去完成的分立单一动作就是基本程序功能。例如,把工具移动至某一指定位置,操作末端执行装置,或者从传感器或手调输入装置读个数等。机器人工作站的系统程序员,他的责任是选用一套对作业程序员工作最有用的基本功能。这些基本功能包括运算、决策、通讯、机械手运动、工具指令以及传感器数据处理等。许多正在运行的机器人系统,只提供机械手运动和工具指令以及某些简单的传感数据处理功能。
1.运算
在作业过程中执行的规定运算能力是机器人控制系统最重要的能力之一。
如果机器人未装有任何传感器,那么就可能不需要对机器人程序规定什么运算。没有传感器的机器人只不过是一台适于编程的数控机器。
装有传感器的机器人所进行的一些最有用的运算是解析几何计算。这些运算结果能使机器人自行做出决定,在下一步把工具或夹手置于何处。
2.决策
机器人系统能够根据传感器输入信息做出决策,而不必执行任何运算。按照未处理的传感器数据计算得到的结果,是做出下一步该干什么这类决策的基础。这种决策能力使机器人控制系统的功能更强有力。
3.通讯
机器人系统与操作人员之间的通讯能力,允许机器人要求操作人员提供信息、告诉操作者下一步该干什么,以及让操作者知道机器人打算干什么。人和机器能够通过许多不同方式进行通讯。
4.机械手运动
可用许多不同方法来规定机械手的运动。最简单的方法是向各关节伺服装置提供一组关节位置,然后等待伺服装置到达这些规定位置。比较复杂的方法是在机械手工作空间内插入一些中间位置。这种程序使所有关节同时开始运动和同时停止运动。用与机械手的形状无关的坐标来表示工具位置是更先进的方法,而且(除X-Y-Z机械手外)需要用一台计算机对解答进行计算。在笛卡儿空间内插入工具位置能使工具端点沿着路径跟随轨迹平滑运动。引入一个参考坐标系,用以描述工具位置,然后让该坐标系运动。这对许多情况是很方便的。
5.工具指令
一个工具控制指令通常是由闭合某个开关或继电器而开始触发的,而继电器又可能把电源接通或断开,以直接控制工具运动,或者送出一个小功率信号给电子控制器,让后者去控制工具。直接控制是最简单的方法,而且对控制系统的要求也较少。可以用传感器来感受工具运动及其功能的执行情况。
6.传感数据处理
用于机械手控制的通用计算机只有与传感器连接起来,才能发挥其全部效用。我们已经知道,传感器具有多种形式。此外,我们按照功能,把传感器概括如下:
(1)内体感受器用于感受机械手或其它由计算机控制的关节式机构的位置。
(2)触觉传感器用于感受工具与物体(工件)间的实际接触。
(3)接近度或距离传感器用于感受工具至工件或障碍物的距离。
(4)力和力矩传感器用于感受装配(如把销钉插入孔内)时所产生的力和力矩。
(5)视觉传感器用于“看见”工作空间内的物体,确定物体的位置或(和)识别它们的形状等。传感数据处理是许多机器人程序编制的十分重要而又复杂的组成部分。
这就是不同机器人的编程,其实,虽然看起来不太一样,但是最后结果都是一样的,就是让机器人做我们希望他们所做的工作而加大生产力或者是其他人类完成不了的任务。
在当今社会,机器人发展的越来越快,机器人也越来越深入到我们的工作和学习中去,从最早的木制机器人到现在的美女机器人,从最早的单一机械化到现在的智能化,从木牛流马到现在正在世博会展出的一个又一个仿真机器人,机器人在不断的进步,人类也在不断的运用我们自己的智慧创造出一个又一个的奇迹!
机器人的发展还在继续,只有我们不断的探索发现,才能让机器人更好地为我们服务!也是为了这个目标,开动脑筋,加油!相信我们可以创造出更多的奇迹!!
参考文献:书:《ROBOLAB 2.5编程指南》
网址:百度知道,搜搜问问,googl,中国机器人网,乐高机器人官
方网站
字数统计:10665个字
机器人概论论文
机器人的控制系统
学校:天水师范学院
学院:物理与信息科学学院
班级:09物理四班
姓名:王宜晖
学号:291040435
电话:***
第二篇:机器人概论论文
论机器人
摘要:简要回顾了机器人技术的发展历程,介绍了当今世界机器人技术。并预测了今后机器人技术的发展趋势及发展策略。
关键词: 机器人,机器人技术,发展
机器人的诞生与发展
1920年克作家卡雷尔.卡佩克发表了科幻剧本《罗萨姆的万能机器人》。剧情是这样的 :罗萨姆公司把机器人作为人类生产的工业产品推向市场,让它去充当劳动力,以呆板的方式从事繁重的劳动。后来,罗萨姆公司使机器人具有了感情,在工厂和家务劳动中,机器人成了必不可少的成员。该剧预告了机器人的发展对人类社会的影响。在剧本中,卡佩克把捷克语“Robota”(农奴)写成了“Robot”(机器人)。这也是人类社会首次使用“机器人”这一概念。
自动化技术的发展,特别是计算机的诞生,推动了现代机器人的发展。50年代是机器人的萌芽期,其概念是“一个空间机构组成的机械臂,一个可重复编程动作的机器”。1954年美国戴沃尔发表了“通用重复型机器人”的专利论文,首次提出“工业机器人”的概念;1958年美国联合控制公司研制出第一台数控工业机器人原型;1959年美国UNIMATION公司推出第一台工业机器人。60年代随着传感技术和工业自动化的发展,工业机器人进入成长期,机器人开始向实用化发 展,并被用于焊接和喷涂作业中。70年代随着计算机和人工智能的发展,机器人进入实用化时代。日本虽起步较晚,但结合国情,面向中小企业,采取了一系列鼓励使用机器人的措施,其机器人拥有量很快超过了美国,一举成为“机器人王国”。80年代,机器人发展成为具有各种移动机构、通过传感器控制的机器。工业机器人进入普及时代,开始在汽车、电子等行业得到大量使用,推动了机器人产业的发展。为满足人们个性化的要求,工业机器人的生产趋于小批量、多品种。90年代初期,工业机器人的生产与需求进入了高潮期:1990年世界上新装备机器人81000台,1991年新装备76 000台。1991年底世界上已有53万台工业机器人工作在各 条战线上。随后由于受到日本等国经济危机的影响,机器人产业也一度跌入低谷。近两年随着世界经济的复苏,机器人产业又出现了一片生机。90年代还出现了具有感知、决策、动作能力的智能机器人,产生了智能机器或机器人化机 器。随着信息技术的发展,机器人的概念和应用领域也在不断扩大。
机器人的现状
1、制造环境下作业的工业机器人
国际机器人联合会于1998年对世界上机器人的应用情况进行了调研,截止到1997年底,历年来世界上共销售工业机器人95万台,现役工业机器人总数为71.1万台。1997年世界上共 装备各种工业机器人85 000台,比1996年增长6.5%,销售额为48亿美元,比1996年减少4%。销售量上升而销售额下降主要是由于机器人单价下降和美元对其它货币之间的汇率变化造成的。预计1997~2002年世界机器人年平均增长9%,2001年销售量比1997年增长41%。在机械行业不景气的情况下,机器人能连续增长,也显示了机器人在工业生产中的重要性。
2、非制造环境下的特种机器人
随着机器人技术的发展,机器人智能程度在不断提高,这也拓宽了机器人的应用领域,出现了一些新的发展热点。
(1)仿人机器人 工业机器人是为工业大生产而设计的,为了适应各种不同的应用现场,其形状多种多样,但根本没有一点人模样,这也使很多机器人爱好者大失所望。为了使机器人更容易让人接受,也为了让机器人像人一样能完成各种工作,各国都在开发不同规格、不同 功能的仿人机器人。从仿人机器人的集成情况看,日本本田公司的P2、P3最先进。P2机器人于1996年问世,身高185 cm,体重210 kg。它能通过重力感应器和脚底的触觉感应器把地面的信息传到大脑(电脑),机器人的电脑再根据情况进行判断,进而平衡身体,稳步前进。它不仅可以走平路,而且可以爬台阶和在倾斜路面上行走;不仅可以推车,而且可以通过遥控拧螺钉。P3机器人是P2 机器人的改进型,它比P2更先进。P3身高160 cm,体重130 kg,与人类 更加接近。为了进一步推动仿人机器人的发展,日本于1998年推出了人型机器人计划。该计划为期5年,共分两个阶段:第一阶段为1998~1999年;第二阶段为2000~2002年,总投资200亿日元,这也是它的第三个机器人计划。日本的第一个机器人计划是1983年启动的“极限作业机器人”计划,为期8年,总投资155亿日元;第二个机器人计划是1991年启动的为期10年的“ 微机械技术”开发计划,总投资250亿日元,目前仍在执行中。
(2)军用机器人 随着武器系统的不断发展,士兵在战场上的生存条件越来越差。为了保护士兵的生命,无人作战系统的应用越来越广泛。军用无人作战系统按不同的应用空间分为水下机器人系统、地面机器人系统、无人机(空中机器人)和空间机器人系统。其中无人机发展最快,已得到广泛的应用。在北约对南联盟的空袭过程中就曾大量使用了无人机,其中有多驾被击落。微型无人机是90年代中期出现的一个新生事物,由于微型无人机在战场侦察、生化探测等诸多方面有着巨大的应用潜力,所以发展特别快。现在微型无人机还处于研究阶段,其飞行方式,有像飞机一样采用固定翼的,有像昆虫一样采用扑翼的,也有像直升飞机一样采用旋翼的。微型飞机遇到的主要困难有动力问题、空气动力学问题、通讯与控制问题、侦察传感器问题等。地面军用机器人很多人认为是很遥远的事情,对现在的战争影响不大,其实不然,美国从1999~2005财年计划投入4.586亿美元,2005年以前将有一大批遥控及半自主地面军用机器人装备美国陆海空三军。
(3)水下机器人和空间机器人 现在的水下机器人已能下潜到世界上最深的海底,空间机器人索杰纳也已成功地登上了火星。国家高技术研究发展计划(863计划)支持研制的6000 m自治水下机器人于1997年圆满完成了太平洋洋底调查任务,获得了大量数据和资料。这次应用调查任务的完成不但表明了我国已掌握研制水下机器人的高技术能力和手段,而且已经进入洋底多金属结核资源的探测应用的实用阶段,海底作业型机器人如探测、取物、救险、埋缆正在研制之中。
(4)服务机器人 这是指能在工业、农业生产中代替人的工作,从事家庭服务和社会服务的机器人。目前在非制造领域中已开发出多种实用化的服务机器人,如在农业中的收获机器人、嫁接机器人、除草机器人,在建筑业中的钢构架焊接、涂覆、检查、测量机器人,在电力工业 中的检查、清扫、除污、高空高压作业机器人,在石油、煤气行业中的管道和贮罐的检查、修补机器人,等等。
世界机器人之父恩格尔伯格认为,服务机器人与人们生活密切相关,服务机 器人的应用将不断改善人们的生活质量,这也正是人们所追求的目标。一旦服务机器人和其它机电产品一样被人们接受,走进千家万户,其市场将不可限量。恩格尔伯格创建的TRC公司的第一个服务机器人产品是医院用的“护士助手”机器人,它于1 985年开始研制,1990年开始出售,目前已在许多国家几十家医院投入使用,且市场前景看好。现在世界各国都在积极研制各种用途的服务机器人:智能轮椅、机器人病房、移动病人等助老助残机器人,火灾侦察、人员营救、灭火等消防机器人,高楼清洗、飞机清洗等保洁机器人,等等。
(5)微型机器人 微型机器人技术是正在兴起的机器人新领域,包括微机械及其基础材料、微电子、微驱动与控制技术、微测量技术、微传感器、微能源、微系统设计等。微小型机器人在民用、军用、科学实验中将大有用武之地。尽管其实用化还在研究之中,但已显现出远大前程。微小型机器人技术将会对机器人引发一场革命,并将对社会各方面产生重大影响。
机器人技术发展预测及策略
随着人类活动领域的不断扩展和对快捷舒适生活方式的要求,同时随着计算机技术的快速发展和人工智能研究的逐步深入,在本世纪机器人技术仍将保持高速的发展态势,并将呈现以下几方面的趋势:
1、开发具有高智能的智能机器人将成为机器人技术的一个发展重点。智能机器人具有较高的思维判断能力,语言理解和表达能力,能够较好地与人类交流,并能够完成比较复杂的任务。
2、较强的自适应性将成为未来机器人的一个重要发展方向。自适应性强意味着机器人能够自发调整自己的行为状态来适应外部环境的变化,从而提高了机器人工作的稳定性。
3、在工业机器人大力普及的同时,服务性机器人将快速走进人类生活的方方面面,而且拥有较强的语言交流能力,仿人形的外部特征的仿人机器人将极大拉近人类与机器人之间的距离。
4、多机器人协作以发挥群体智能的多机器人系统将越来越受到重视。虽然随着机器人技术的发展,机器人的能力不断提高, 机器人应用的领域和范围也在不断扩展,但是对于一些复杂的任务,单个机器人不再是最好的解决方案,而由是多个机器人组成的系统。
机器人技术将是决定一个国家现代化程度的重要标志。一个国家的机器人技术要发展首先需要国家的大力扶植,即国家从政策和资金上支持本国机器人产业的发展。在日本机器人产业发展的初期,日本出台了一系列支持本国机器人发展的政策,如购买本国机器人的公司会在税收上得到优惠,大力鼓励购买国产机器人,为机器人的发展提供了良好的环境;同时国家也在科研经费上支持机器人技术的研究,并以经费引导本国机器人技术的发展方向,为以后日本成为机器人行业最大的生产国和出口国奠定了基础。其次,各科研机构应勇于创新,大胆改革,依据“需求牵引、技术驱动”的方针,闯出一条适合国情的科研、生产、销售一体化的道路,使我国成为新的机器人王国。
在21 世纪,技术的发展将加快,市场的竞争将更加激烈,如何快速发展我国的机器人技术和产业已迫在眉睫。因此,为了我国未来机器人的发展,各科研机构应当改变过去各自为政的局面,加强彼此的技术交流与合作。我们一定能够完全自主制造出自己的工业机器人,并且将工业机器人推广应用到制作与非制造等广大的行业中,提高我国劳动力成本,提高我国企业的生产效率和国际竞争力,从整体上提高我国社会生产的安全高效,为实现伟大祖国的复兴贡献力量。
郑州轻工业学院
《机 器 人 概 论》论 文
题
目:论机器人
姓
名:樊
学
号:541101010108
所在学院:电气信息工程学院
年级专业:自动化11-01
第三篇:《机器人概论》教学大纲
《机器人概论》教学大纲
课程编号:
开课院系:机械工程学院机电系 课程类别:专业选修
适用专业:机械工程及自动化等 课内总学时:32
学分:4 实验学时:4
课内上机学时:0
先修课程:理论力学、自动控制原理
执笔:刘鸿飞
审阅:
一、课程教学目的
通过本课程的学习,了解和掌握工业机器人的基本原理、基础理论和工程应用方法。
二、课程教学基本要求
1.课程重点:
工业机器人运动学、动力学、轨迹规划和轨迹控制等内容。
2.课程难点:
齐次坐标变换及其在机器人运动学和动力学中的应用。
3.能力培养要求:
熟练掌握6自由度机器人的运动学分析,了解动力学分析的基本方法和轨迹规划和轨迹控制的基本原理。了解工业机器人的应用场合和应用方法。
三、课程教学内容与学时
课堂教学(28学时)
1. 工业机器人概论(4学时)
了解工业机器人的基本概念、工业机器人的基本结构及其组成部分、工业机器人的性能指标、工业机器人的应用概况等
2. 工业机器人运动学分析(8学时)
2.1齐次变换的概念
2.2相邻杆件间的变换矩阵的推导 2.3 运动学正解方程 2.4 运动学逆解方程 2.5 实例分析
3. 工业机器人动力学分析(4学时)
3.1速度和加速度分析
3.2静力和动力分析
4. 工业机器人轨迹规划和轨迹控制(4学时)
4.1作业规划和轨迹规划
4.2工业机器人的控制系统组成及其控制原理 5. 工业机器人应用工程(8学时)5.1在生产中引入机器人系统的方法
5.2工业机器人工作站的构成及设计方法 5.3 工业机器人生产线的构成及设计方法 5.4 机器人应用中的辅助装置 5.5 机器人应用实例分析
实验教学(4学时)
1.熟悉工业机器人的结构及工作原理。
(2学时)2.熟悉机器人工作站的组成及主要附件的结构。(2学时)
四、教材与参考书
教材
1.余达太、马香峰等编,《工业机器人应用工程》,冶金工业出版社,1999年,第1版 2.马香峰编,《机器人机构学》,机械工业出版社,1991年,第1版
参考书
1.蔡自兴编,《机器人学》,清华大学出版社,2000年,第1版
2.严学高、孟正大编,《机器人原理》,东南大学出版社,1992年,第1版
3.付京逊编,《机器人学》,中国科学技术出版社,1989年,第1版
五、作业
1.查资料写论文:国内外工业机器人的发展概况,1000字左右,安排在第一章结束 2.6自由度机器人运动学正解分析,安排在第2章运动学正解讲完
六、说明
采用多媒体教学。
课程编号:
课程名称:机器人概论
开课学院:机械工程学院机电系 学时:32 学分:4 类别:专业选修
先修课程:理论力学、自动控制原理 课程简介:本课程主要讲述工业机器人及其应用概貌;机器人操作机的机构、运动学方程、工作空间和灵活度等基本理论;工业机器人运动控制的基本概念和实用关键技术;机器人应用中的示教方法、外设控制、安全措施等。在此基础上结合实例讲述机器人工作站和生产线的构成、设计原则和方法,以及末端执行器、变位机和机器人移动台架的选型和设计。
Course Code: Name of Course: Summary of Industrial Robotic
School: Mechanical Engineer Institute Credit Hours: 36 Credits: 4 Required or Elective: Elective Prerequisite: Mechanism Principle;Automatic Control Principle Syllabus: This course is a monograph, which mainly contains the engineering application of robotic technology and also the necessary theoretical analysis.It introduces industrial robot and its general picture of application engineering in broad outline.It gives detailed analysis of the basic theory of the mechanism structure of robot manipulator, motion equation, working space, dexterity, ect.It provides basic knowledge and practical key techniques of industrial robot motion control.Besides, the teaching methods, external equipment control ,safety measures and some other problems in operations are also discussed in a special chapter.The course expounds, with wide coverage and combine with actual examples, the structure of robot working station and production line, designing
principle and method as well as end effector,positioner and the model selection and design of robot moveable support.It gives brief analysis to some successful operational examples and prospects for the application of robot technology.
第四篇:工业机器人论文
走进科技论文
0903030409
颜卫勤
工业机器人论文
在科技界,科学家会给每一个科技术语一个明确的定义,但机器人问世已有几十年,机器人的定义仍然仁者见仁,智者见智,没有一个统一的意见。原因之一是机器人还在发展,新的机型,新的功能不断涌现。根本原因主要是因为机器人涉及到了人的概念,成为一个难以回答的哲学问题。就像机器人一词最早诞生于科幻小说之中一样,人们对机器人充满了幻想。也许正是由于机器人定义的模糊,才给了人们充分的想象和创造空间。其实并不是人们不想给机器人一个完整的定义,自机器人诞生之日起人们就不断地尝试着说明到底什么是机器人。但随着机器人技术的飞速发展和信息时代的到来,机器人所涵盖的内容越来越丰富,机器人的定义也不断充实和创新。
在此,我仅根据自己的所学及课本给出的定义概述一下有关机器人的定义。机器人(Robot)是1920年 捷克斯洛伐克作家卡雷尔·恰佩克在他的科幻小说《罗萨姆的机器人万能公司》的剧本中,塑造的一个具有人的外表、特征和功能,愿意为人服务的机器奴仆“Robota”一词衍生出来的。根据这个定义,我们可以这样说:机器人是一个在三维空间中具有多自由度的,并能实现诸多拟人动作和功能的机器;而工业机器人(Industrial Robot)则是在工业生产上应用的机器人。
而美国机器人工业协会(U.S.RIA)提出的工业机器人定义为机器人是“一种用于移动各种材料、零件、工具或专用装置的,通过可编程序动作来执行种种任务的,并具有编程能力的多功能机械手(manipulator)或者通过不同程序的调用来完成各种工作任务的特种装置”。日本机器人协会(JIRA)的定义则是:工业机器人是“一种装备有记忆装置和末端执行器(end effector)的,能够转动并通过自动完成各种移动来代替人类劳动的通用机器”。可见美国机器人协会和日本机器人协会给出了相类似的定义。国际标准化组织(ISO)的定义:“机器人是一种自动的、位置可控的、具有编程能力的多功能机械手,这种机械手具有几个轴,能够借助于可编程序操作来处理各种材料、零件、工具和专用装置,以执行种种任务”。而我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。在我国,在工业领域内应用的机器人我们称为工业机器人。通常人们对工业机器人的定义是:工业机器人是一种能模拟人的手、臂的部分动作, 按照预定的程序、轨迹及其它要求, 实现抓取、搬运工件或操作工具的自动化装置。
工业机器人的最显著的特点简单概述为可编程、拟人化、通用性、机电一体化。
工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。
工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。
示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。
具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作;如具有识别功能或更进一步增加自适应、自学习功能,即成为智能型工业机器人。它能按照人给的“宏指令”自选或自编程序去适应环境,并自动完成更为复杂的工作。
清洁机器人的涵盖范围广泛,依照IFR World Robotic的分类,可分为产业型与家用型两大类,在产业型方面例如地板清洁(吸尘与洗地)、风管空调系统清洁、除草、大楼窗户清洗、水箱清洁等。目前为止应用最成功的仍属地板清洁型机器人,包括机场、大卖场、工厂、饭店大厅等大范围面积的场所,原因在于地板属于2-D几何平面,技术相对较为单纯。而家用型的地板清洁机器人(吸尘器)在近年来则快速窜起,成为市场主流产品,根据IFR World Robotics 2005的统计数据显示,服务型机器人中,清洁机器人仍是主要应用。其中家用清洁机器人更占整体服务型机器人的95%以上,其中2005-2008年更可高达447万台。
家用型清洁机器人受到热烈欢迎的主要原因在于已开发与开发中国家多以双薪家庭为主,并逐渐走向少子化与高龄化的趋势,在家庭人口结构变少的情况下,清洁工作的替代便成为新兴市场发展的重要需求,遂使的清洁机器人成为各国争相投入的技术研发重点。
随着自动化技术与人工智能的快速发展,机器人在人类的环境中扮演越来越重要的脚色。传统上机器人的应用层面多集中于工业化的生产系统与制造流程上,专门应付长时间作业、大量重复性动作、系统复杂且需要精密控制、高危险性等工作上。而近年来的演进则渐渐朝向服务型机器人的方向快速蓬勃发展。那么在我们身边有什么样的机器人呢? 生活中常见的工业机器人有如下几种:
点焊机器人,这主要是针对汽车生产线,提高生产效率,提高汽车焊接的质量,降低工人的劳动强度的一种机器人。它的特点是通过机器人对两个钢板进行点焊的时候,需要承载一个很大的焊钳,一般在几十公斤以上,那么它的速度要求在每秒钟一米五到两米这样的高速运动,所以它一般来说有五到六个自由度,负载三十到一百二十公斤,工作的空间很大,大概有两米,这样一个球形的工作空间,运动速度也很高,那么自由度的概念,就是说,是相对独立运动的部件的个数,就相当于我们人体,腰是一个回转的自由度,我们大臂可以抬起来,小臂可以弯曲,那么这就三个自由度,同时腕部还有一个调整姿态来使用的三个自由度,所以一般的机器人有六个自由度,就能把空间的三个位置,三个姿态,机器人完全实现,当然也有小于六个自由度的,也有多于六个自由度的机器人,只是在不同的需要场合来配置。
弧焊机器人也是工业机器人中一个最重要的方面,像我们汽车的后桥,进行焊接的时候,它连续焊接,所以它的特点是连续轨迹控制,所以它要求的轨迹精度要求非常高,一般来说也是五到六个自由度,由于它焊枪比较小,所以在五到十公斤就可以了,这个方面是在国际和国内应用非常大的一类机器人,在另一方面像搬运和铆接,这些工作场合下,像搬运,主要是要求机器人有很高的速度,承载能力很多、很强,像日本的大库机器人,它可以承载三百公斤,抓取、来进行搬运和码垛。
医疗机器人,是近五年来发展比较迅速的一个新的应用领域,那么这个也可以看到几个方面,包括人是一个非常珍贵的生物,那么包括人的眼球、神经、血管都很精细,那么如果人手术的时候,医生来手术,一个是疲劳,另一个人手操作的精度还是有限的,那么这是在德国,一些大学里面,面向人的脊椎,如腰间盘突出这种病,进行识别以后,能够自动地用机器人来辅助进行定位,进行操作和手术。还有一类叫康复机器人,康复机器人像比方说,现在发病量比较大的是偏瘫和半身不遂这种病患,当他恢复治疗完以后,需要对他的肢体进行锻炼和恢复,那么如果医生是有限的,不可能一个医生,天天给一个病人进行按摩或牵引这样的工作,那么家庭的人员都上班,没有时间照顾,那么用一个机器人,可以对他的手进行牵动,天天强迫他进行锻炼,使人的肌肉的恢复达到最好,更为精细的工作像很多大学和一些医院在开发像人的脑手术,这个是很危险的事情,但是,已经得到了很好的例证,包括北航开发出了对人脑的定位和钻孔这样的工作,还包括像美国已经有一千多例机器人对人眼球进行手术,这样的机器人,还包括通过遥控操作的办法,实现对人的胃肠这种手术,大家在电视里边看到,一个机械手,大概有手指这样粗细的一个机械手,通过插入腹脏以后,人在屏幕上操作这个机器手,同时对它用激光的方法对病灶进行激光的治疗,这样的话,人就不用很大幅度地破坏人的身体,这实际对人的一种解放,是非常好一种机器人,医疗机器人它也很复杂,一方面它完全自动去完成各种工作,是有困难的,一般来说都是人来参与,这是美国开发的一个林白手术这样一个例子,人通过在屏幕上,通过一个遥控操作手来控制另一个机械手,实现通过对人的腹腔进行手术,前几年我们国家展览会上,美国已经成功的实现了对人的心脏瓣膜的手术和搭桥手术,这已经在机器人领域中,引起了很大的轰动,还包括,AESOP的这种外科手术机器人,它实际上通过一些仪器能够对人的一些病变进行检查,通过一个机械手就能够实现对人的某些部位进行手术,还包括遥操作机械手,以及多个医生可以在机器人共同参与下进行手术,包括机器人给大夫医生拿钳子、镊子或刀子来代替护士的工作,同时把照明能够自动的给医生的动作联系起来,医生的手到哪儿,照明就去哪儿,这样非常好的,一个医生的助手。
由此可见,工业机器人是人类的得力助手,随着社会的发展,大量的工业机器人把人们从繁重的体力和危险的环境中解放出来,使人们有更好的岗位去工作,去创造更好的精神财富和文化财富,机器人来做这些危险环境的工作,展望21世纪工业机器人将是一个与20世纪计算机的普及一样,会深入地应用到各个领域,有人说在21世纪的前20年是机器人从制造业走向非制造业的发展一个重要时期,也是智能机器人发展的一个关键时期,目前国际上很多国家,也对机器人对人类社会的影响的估计提出了新的认识,同时,我们也可以看到机器人技术,涉及到多个学科,机械、电工、自动控制、计算机测量、人工智能、传感技术等等,它是一个国家高技术实力的一个重要标准。所以,作为当代大学生,作为一名机械专业的学生,我们的使命任重而道远。
第五篇:纳米机器人论文
纳米机器人在生物学上的应用
学号:34 姓名:100821234 学院:生命科学技术学院 班级:1008212
摘要:纳米技术与分子生物学的结合将开创分子仿生学新领域。分子仿生学模仿细胞生命过程的各个环节,以分子水平上的生物学原理为参照原型,设计制造各种各样的可对纳米空间进行操作的“功能分子器件”———纳米机器人。纳米机器人的研制和开发将成为21世纪科学发展的一个重要方向。关键字:纳米技术 纳米机器人 分子马达 1前沿:纳米机器人的研究属于分子仿生学的范畴,它根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”。纳米生物学的近期设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。合成生物学对细胞信号传导与基因调控网络重新设计,开发“在体”(in vivo)或“湿”的生物计算机或细胞机器人,从而产生了另种方式的纳米机器人技术。
2纳米生物学与纳米机器人
纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。涉及的内容可归纳为以下三个方面:
①在纳米尺度上了解生物大分子的精细结构及其与功能的联系。
②在纳米尺度上获得生命信息,例如,利用扫描隧道显微镜获取细胞膜和细胞表面的结构信息等。
③纳米机器人的研制。
纳米机器人是纳米生物学中最具有诱惑力的内容。
第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗。还可以用来进行人体器官的修复工作、作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行[1]。
第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置。
第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。
3纳米机器人不久将进入我们的生活
用不了多久,个头只有分子大小的纳米机器人将源源不断地进入人类的日常生活。它们将为我们制造钻石、舰艇、鞋子、牛排和复制更多的机器人。要它们停止工作只需启动事先设定的程序。表面来看,上述想法近乎不可思议:一项单一的技术在应用初期就能治病、延缓衰老、清理有毒的废物、扩大世界的食物供应、筑路、造汽车和造楼房?这并非天方夜谭,也许在21世纪中叶前就可以实现。全世界的研究机构都在想方设法将这些设想变成现实。美国总统克林顿曾经宣布成立美国国家纳米研究机构,承诺提供50亿美元进行这方面的尝试。
其实,纳米技术一词由来已久。理查德·费恩曼是继爱因斯坦之后最有争议和最伟大的理论物理学家,1959年他在一次题目为《在物质底层有大量的空间》的演讲中提出:将来人类有可能建造一种分子大小的微型机器,可以把分子甚至单个的原子作为建筑构件在非常细小的空间构建物质,这意味着人类可以在最底层空间制造任何东西。从分子和原子着手改变和组织分子是化学家和生物学家意欲到达的目标。这将使生产程序变得非常简单,你只需将获取到的大量的分子进行重新组合就可形成有用的物体。事实上,每一个细胞都是一个活生生的纳米技术应用的实例:细胞不仅将燃料转化为能量,而且按照储存在DNA中的信息来建造和激活蛋白质和酶,通过对不同物种的DNA进行重组,基因工程家已经学会建造新的这类
纳米工具,例如用细菌细胞来生产医用激素。1990年 我国著名学者周海中教授在《论机器人》一文中预言:到二十一世纪中叶,纳米机器人将彻底改变人类的劳动和生活方式。
3纳米机器人结构与特点
米机器人警察不在理论上,纳米机器可以构建所有的物体。当然从理论到真正实现应用是不能等同的,但纳米机械专家已经表明,实现纳米技术的应用是可行的。在扫描隧道电子显微镜帮助下,纳米机械专家已经能将独立的原子安排成自然界从未有的结构。此外,纳米机械专家还设计出了只由几个分子组成的微小齿轮和马达。(切勿将这些齿轮和马达与那些由数以百万计分子组成的用传统技术构建的微小齿轮和马达相混淆,这些机器同未来制造的机器相比较实在是太巨大了)。
25年内,纳米技术学家期望实现这些存在于科学陈列室中的想法,创造出真实的、可以工作的纳米机器。这些纳米机器有微小的“手指”可以精巧地处理各种分子;有微小的“电脑”来指挥“手指”如何操作。“手指”可能由碳纳米管制造,它的强度是钢的100倍,细度是头发丝的五万分之一。“电脑”可能由碳纳米管制造,这些碳纳米管既能做晶体管又能做连接它们的导线。“电脑”也可能由DNA制造,用适当的软件和足够的灵巧性进行武装的纳米机器人可以构建任何物质。
纳米机器人执行任何任务包括自身复制都必须动用大量的纳米机器。血液里可能存在数以百万计的纳米机器人;在每一个有毒废物地点可能需要数以万亿计的纳米机器人,要制造一辆汽车可能要调动数以一百亿亿计的纳米机器人同时工作。然而没有一个生产线可以生产如此巨大数量的纳米机器人。
但是纳米科学家眼中的纳米机器可以做到这点。他们设计的纳米机器人可以完成两件事情:执行它们的主要任务和制造出它们自身完美的复制体。如果第一个纳米机器人能够制造出两个复制体,这两个复制体每个又可制造出两个自己的复制体,很快就可 以获得万亿个纳米机器人。但是,假如纳米
机器人忘记停止复制会发生什么?如果没有一些内建的停止信号,纳米机器人忘记停止复制这种灾难的可能后果将会是无法计算的。纳米机器人在人体内快速复制能够比癌症扩散还要快地布满正常组织;一个发疯的制造食物机器人能够把地球的整个生物圈变成一块巨大的奶酪。纳米技术学家没有回避危险,但是他们相信他们能控制灾难的发生。其中一个办法是设计出一种软件程序使纳米机器人在复制数代后自我摧毁。另一种办法是设计出一种只在特定条件下复制的机器人,例如只有在有毒化学物质以较高浓度出现时机器人才能复制,或者在一个很窄的温度和湿度范围内机器人才能复制。就像电脑病毒的传播一样,所有以上这些努力都无法阻止那些不怀好意的人有意释放某种纳米机器人作为害人武器。事实上,一些批评家指出纳米技术可能的危险要大于它的益处。然而,仅仅这些利益就已经太具诱惑力了,纳米技术必将超过电子计算机和基因制药而成为新世纪的技术发展方向。世界可能会需要一个纳米技术免疫系统,这个系统中纳断地在微观世界中同那些不怀好意的机器人进行战斗[2]
。纳米机器人的动力——分子马达
分子马达(molecular motor),是美国康奈尔大学研究人员在活细胞内的能源机制启发下,制造出的一种马达。这种微型马达以三磷酸腺苷酶为基础,依靠为细胞内化学反应提供能量的高能分子三磷酸腺苷(ATP)为能源。
美国科学家正在进行一项新研究,让纳米仪器利用为精子长距离游动提供能量的生物能为动力,用来释放药物,或者在人体内执行机械功能。
首先,这些研究人员针对精子的特殊部位,用一个可以粘贴在特殊的金表面的标签取代了己糖激酶(糖酵解的第一个酶)。这种酶即使在受到限制的时候,仍然能产生作用。接着,他们在糖酵解途经的第二个酶——葡萄糖-6-磷酸异构酶上作了标记。这种酶在受到限制后,还仍然具有活性。粘附在相同支撑物上的这些酶会依次产生作用,第一个反应的产物将会成为第二个反应的[2]李易 纳米技术取得进展【J】国外科技动态 1998.11
[3]李沐纯等.中国现代医学杂志,2003
[4]纳米机器人——分子仿生学新领基础[3]。
域《中国高新技术企业评价》2001
穆凯和特拉维斯表示,这只是在无机支撑物上复制整个糖酵解途径的最初几步,他们指出,他们的研究从原理上为精子中的糖酵解途径的组织如何在纳米设备上产生三磷酸腺甙提供了一个天然的工程学解决方案。我国在纳米机器人研究上的进展
一台能够在纳米尺度上操作的机器人系统样机由中国科学院沈阳自动化所研制成功,并通过了国家“863”自动化领域智能机器人专家组的验收。在一个演示中,沈阳自动化所的研究人员操纵“纳米微操作机器人”,在一块硅基片上1×2μm的区域上清晰刻出“SIA”三个英文字母(沈阳自动化所的缩写);另一个演示显示,在一个5×5μm的硅基片上,操作者将一个4μm长、100nm(纳米)粗细的碳纳米管准确移动到一个刻好的沟槽里。据介绍,由重庆科研人员开发的这种名为“OMOM胶囊内镜系统”的纳米机器人医生已经是第二次被列入国家“863计划”,前一次获得了该计划500万元基金支持,并于2004年获得“863计划”专家组验收,但这种机器人目前还只能钻进人的肚子里通过传输图像“瞧病”,还没有治病的本事。参考文献
[1]姜忠义 纳米生物技术【M】 北京 化学工业出版社 2003