第一篇:《一元一次不等式组》第二课时参考教案
9.3 一元一次不等式组(2)
教学设计:
一、出示学习目标 学习目标:
1、进一步学习一元一次不等式的解法.2、会按照要求求一元一次不等式组的特殊解.设计意图:明确的目标是学习前进的动力,通过明确的目标,激发学生学习的热情,培养学生学习的积极性.二、复习归纳
如果a>b,你能很快说出下面各式的解集吗?
xa
xbxa
xbxa
xbxa xb口诀:“同大取大,同小取小,大小小大取中间,大大小小无解集” 设计意图:从上节课的归纳,到本节课的用字母表示,提升学生的认识.三、探索新知 学习任务:
如何求一元一次不等式组的特殊解.x72教师布置学生以小组为单位讨论如何求一元一次不等式组的正整数
3x110解.在学生讨论之后,教师请同学们回答上面的问题.教师根据学生回答情况,予以归纳总结.求不等式组的正整数解时,可先求出此不等式组的解集,然后借助数轴确定出符合要求的正整数,也可以由不等式组的解集,直接求得符合要求的正整数.四、运用新知 教材129页例2
例2.x取哪些整数时,不等式
135x23(x1)与x17x都成立?
22分析:求出这两个不等式组成的不等式组的解集,解集中的整数就是x可取的整
/ 2
数值.解:解不等式组
5x23(x1)13 x17x225得 x4
2所以x可取的整数值是-2,-1,0,1,2,3,4.五、巩固练习
1.教材129页练习第2题.2.拓展练习
xa0不等式组的解集为x<4.求a的取值范围.3x25x6xa0.........(1)答案
3x25x6..(2)解不等式(1)得x 六、归纳小结 1.谈谈你对不等式组的特殊解的认识.2.教师归纳总结.七、布置作业习题9.3 第3、4题.2 / 2 一元一次不等式组教案 教学目标: 1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法; 2、经历知识的拓展过程,感受学习一元一次不等式的必要性; 3、逐步熟悉数形结合的思想方法,感受类比和化归思想。 4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。 5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点: 重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程: 呈现目标 目标一:创设情景,引出新知 (教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求? (教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨 数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1 2x+3≥x+11 -1<2-x 目标三:归纳总结 反馈矫正 解下列不等式组(1) 3x-15>0 7x-2<8x(2) 3x-1 ≤x-2-3x+4>x-2 (3) 5x-4≤2x+5 7+2x≤6+3x (4) 1-2x>4-x 3x-4>3 归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4 x>4 x<4 x>4 X<2 x>2 x>2 x<2 X<2 x>4 2<x<4 无解 教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高 知识拓展 《完全解读》第230页 已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。 探究合作 小组学习:各学习小组围绕目标 一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚; 教师引导:(1)什么是不等式组? (2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的? 展示点评 分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。 教师点评:教师推荐解不等式组口决。 巩固提高 教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。 9.3 一元一次不等式组(第1课时) 西吉三中 刘征兵 教学设计思想 准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。本节教学的重点是一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。在学习的过程中有问题引入新课,引导学生充分讨论,得出所要的不等式组,进而研究不等式组的解法及其用数轴的表示,通过练习来巩固如何解不等式组。最后学习的是不等式组在现实生活中的简单应用。 教学目标 1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集; 2.使学生逐步学会用数形结合的观点去分析问题、解决问题. 知识目标 经历通过具体问题抽象出不等式组的过程; 表述一元一次不等式组及其解集的意义,初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。 能力目标 体会运用不等式组解决简单实际问题的过程,提高学习热情和积极性,进一步发展符号感与数学化的能力。 情感目标 通过用数轴表示不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美,体会数形结合的思想。 重点:一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。难点:求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。解决办法:不等式组的解集通过数轴来表示简单明了,关于不等式组的应用要仔细审题以小组讨论的形式引导学生找出题中的不等关系,进而列出不等式组。 教学方法 引导发现法、小组讨论交流。 分即不等式组中未知数的可取值范围。 由不等式①解得x<13。由不等式②解得x>7。 从图9.3—2容易看出,x可以取值的范围为7 注:利用数轴可以直观形象地认识公共部分。这个公共部分是两端有界的开区间。这就是说,当木条c比7 cm长并且比13 cm短时,它能与木条a和b一起钉成三角形木框。 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。 注:这里正式给出不等式组的解集以及解不等式组的定义。例1 解下列不等式组: 解:(1)解不等式①,得x>2。解不等式②,得x>3。 把不等式①和②的解集在数轴上表示出来(图9.3—3)。 注:这个不等式组的解集是左端有界的开区间。 从图9。3—3可以找出两个不等式解集的公共部分,得不等式组的解集x>3。(2)解不等式①,得x≥8。 x45解不等式②,得 这两个不等式的解集没有公共部分(图9.3—4),不等式组无解。 9.3 一元一次不等式组(2) 文星中学唐波 一、教学目标 (一)知识与技能目标 1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。 2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。 (二)过程与方法目标 通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。 (三)情感态度与价值观 通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。 二、教学重难点 (一)重点:建立用不等式组解决实际问题的数学模型。 (二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。 三、学法引导 (一)教师教法:直观演示、引导探究相结合。 (二)学生学法:观察发现、交流探究、练习巩固相结合。 四、教具准备:多媒体演示 五、教学过程 (一)、设问激趣,引入新课 猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。) (二)、观察发现,竞赛闯关 1、比一比:填表找规律 (学生抢答,教师补充。)2利用发现的规律解不等式组 (学生解答,抽生演板。)你可以得到它的整数解吗? (抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶 数,则 c=__________。 (学生回答,教师补充更正。) (三)、欣赏图片,探究新知 1、欣赏“五岳看山”。 2、利用欣赏引出例题(教科书P139例2仿编) 例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张? 生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题: (1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的? (2)解决这个问题,你打算怎样设未知数? (3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。) 7x98 7(x3)98 解答完成后,学生自学课本例2。 3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤: (1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; . (4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。) (四)、闯关练习,巩固新知 1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。 教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。 比较列二元一次方程组和列一元一次不等式组解应用题的区别: (学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)? 学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。) (五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结: 1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。 2、具有多种不等关系的问题,可通过不等式组解决。 3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组; (4)、检验,根据题意写出答案。 (六)、课后演练,终极挑战 必做题:教材习题9.3第4、5、6题; 选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少? 六、板书设计 9.3一元一次不等式组(2) 解:设每个同学原计划每天拍x张,得 ① 310x500 310(x1)500② 1、分析题意,设未知数; 解得x <16 3 3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。 2 2、找不等关系,列不等式组; 3、解不等式组; 步骤 4、检验并根据题意写出答案。 《一元一次不等式组》说课稿 绥阳县坪乐中学:韩成友 尊敬的各位老师: 下午好! 我说课的课题是《一元一次不等式组》。 我将从教材分析、学情分析、教学目标、教学重难点、教学手段、教学过程这六个方面来进行说明。 一、教材分析 前面我们认识了一元一次不等式,学习了一元一次不等式的解法及应用,本节主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的关键,同时要求学生会用数轴确定解集。并且本课也通过一元一次不等式,一元一次不等式的解集,解不等式的概念来类推学习一元一次不等式组的一些概念,尝试对学生类比推理能力进行培养.在情感态度、价值观方面要培养学生独立思考的习惯,也要培养学生的合作交流意识与创新意识,为学生在今后生活和学习中更好运用数学作准备.二、学情分析 从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题 1 情境,让学生独立思考,合作交流,从而引导其自主学习。 基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。 三、教学目标分析 在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下: 1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。 2.了解一元一次不等式组及解集的概念。3.会利用数轴解较简单的一元一次不等式组。4.培养学生分析、解决实际问题的能力。 5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。 四、教学重、难点分析 教学重点: 1.理解有关不等式组的概念.2.会解由两个一元一次不等式组成的不等式组.教学难点:在数轴上确定解集.五、教学手段分析 本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。 六、教学过程 本节课的教学流程如下:实际问题——一元一次不等式组——解集— 2 —解法——应用。 本节课我设计了七个活动。 活动一 创设情境 导入新课 问题1: 现有两根木条a和b,a长10cm,b长3cm,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求? 教师提出问题,学生独立思考,回答问题。 教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。 设计意图:这是一个与三角形相关的问题,要求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。 活动二 引领学生 探索新知 1.一元一次不等式组 通过上面两个实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。 即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组。 c103c1032.一元一次不等式组的解集 x4x92xx1同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。 不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。 教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够对这个结论有所认识,但是未必能够全面得出结论。因此,教师要耐心加以引导。 通过学生的自主探究,合作交流,培养学生的总结归纳能力。 活动三 范例讲解 学以致用 例题:解下列不等式组 2x1x1x84x12x3x11(2)2x512x3师生活动:师生共同完成,教师板书。 (1)在对一元一次不等式意义理解的基础上,会解一元一次不等式组。(2)是对解一元一次不等式组的拓展延伸。 活动四:反馈练习巩固提高 出示课件 x20 ①求不等式组 的解集。x30 ②x60 ③ 师生活动:教师展示多媒体课件,学生独立完成。 设计意图:这两道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。 活动五 数形结合 总结规律 出示课件: 求下列不等式组的解集:你能发现有什么规律?x3,(1)x7.x2,(2)x5.x3,(3)x7.x2,(4)x5.x3,(5)x7.x2,(6)x5.x3,(7)x7.,x1(8)x4.师生活动:教师展示多媒体课件,学生独立完成。 设计意图:通过学生的自主探究,合作交流,培养学生的总结归纳能力。 活动六:反思小结,体验收获 这节课我们学到了什么?谈谈自己的体会? 我提出了二个问题: 1.通过本课的学习,你学到了哪些新的知识? 3.在学习这些知识的过程中,你的经验与教训是什么? 在学生回答的基础上,教师作如下的归纳总结: 1.学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要,不等式组的知识源于生活实际,要学会分析现实世界中量与量的不等关系,解一元一次不等式组。 2.将一元一次不等式组的解集在数轴上表示可以加深对一元一次不等式组解集的理解,也便于直观地得到一元一次不等式组的解集,体现了数形结合的数学思想方法。 在课堂小结的过程中,教师提出问题,学生回答,互相补充. 教学效果预估与对策:预计学生在利用本节知识解决所提出的问题的过程中,能够总结出经验和教训,有所收获。教师要加以引导,师生之间 5 相互加以完善。 设计意图:学生通过第一个问题,可以回顾出本节课所学到的知识;通过第二个问题,使学生在与一元一次不等式的对比中加深对一元一次不等式组的理解,并形成知识网络。通过第三个问题,培养学生克服困难的自信心、意志力,并获得成功的体验,有助于学生全面认识数学的价值。 活动七 知识反馈,布置作业 布置作业: 1、必做题:P教141页习题9.3 2(1)、(3)、(5) 2、选做题: P教141页习题9.3 7 教师布置作业,学生记录作业. 为了让不同的人有不同的收获,我把作业分为选做题和必做题.优等生做1,2题,上进生做1题.达到分层教学的目的.6第二篇:一元一次不等式组教案
第三篇:9.3一元一次不等式组教案
第四篇:9.3 一元一次不等式组教案
第五篇:一元一次不等式组说课稿