第一篇:二次根式的加减法初中数学教案
本节的重点有两个:
⒈同类二次根式的概念
⒉二次根式加减运算的方法
本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.二次根式的加减法运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点.
本节的难点 二次根式的加减法运算
二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是学生初次接触二次根式的加减法,在运算过程中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点.
本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.
(1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出二次根式的加减法和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和二次根式的加减法.两种处理方法各有优劣,教师在教学过程中可根据学生的实际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁.
(2)在教材例1的教学中,教师可以根据学生情况进行细分处理,例如分成几个小问题:①把被开方数都是整数的放在一个小题中,②把被开方数都是分数的放在一个小题中,③把被开方数带有简单字母的放在一个小题中,④把字母次数略高于2的放在一个小题中,……使问题的解决有一个由浅入深的渐进过程,便于学生参与其中,也容易使学生获得成就感.
(3)在组织学生进行二次根式的加减法教学中,同样将例题细分成几个层次进行教学,例如:①不需要化简能直接进行相加减的,②需要化简但被开方数都是简单整数的,③被开方数都是有理数但既有整数又有分数的,④被开方数含有字母的,等等.
(4)在二次根式加减法的组织教学中,虽然教材已经不要求二次根式加减法的法则,但可以组织学生自己总结法则,既有利于学生的参与,又能提高学生的观察、分析和归纳能力.
(5)在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:①不是最简二次根式就不是同类二次根式,②该化简的没有化简,或化简的不正确,③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况.教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固.教学设计示例1
一、素质教育目标
(一)知识教学点
1.使学生了解最简二次根式的概念和同类二次根式的概念.
2.能判断二次根式中的同类二次根式.
3.会用同类二次根式进行二次根式的加减.
(二)能力训练点
通过本节的学习,培养学生的思维能力并提高学生的运算能力.
(三)德育渗透点
从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.
(四)美育渗透点
通过二次根式的加减,渗透二次根式化简合并后的形式简单美.
二、学法引导
1.教师教法 引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.
2.学生学法 通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.
三、重点·难点·疑点及解决办法
1.教学重点 二次根式的加减法运算.
2.教学难点 二次根式的化简.
3.疑点及解决办法 二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.
四、课时安排
2课时
五、教具学具准备
投影片
六、师生互动活动设计
1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.
2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.
3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.
4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.
七、教学步骤
(-)明确目标
学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.
(二)整体感知
同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.第一课时
(-)教学过程
【复习引入】
什么样的二次根式叫做最简二次根式?(由学生回答)
与 的形式与实质是什么?
可以化简为 .
继续提问:,可以化简吗?,可以化简吗?
这就是本节课研究的内容——二次根式的加减法.
【讲解新课】
1.复习整式的加减运算
计算:
(1);
(2);
(3).
小结:整式的加减法,实质上就是去括号和合并同类项的运算.
2.例题
(1)计算 .
解: .
(2)计算 .
解: .
小结:
(1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算.
(2)如果所给的二次根式不是最简二次根式,应该先化简,再进行加减运算.
定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.
3.例题
例1 下列各式中,哪些是同类二次根式?,
第二篇:二次根式加减法教学反思
二次根式加减教学反思
鞍山市达道湾学校
康鑫 本课时内容是二次根式加减法的计算,教学方法上以类比法,讲练结合为主。通过引导学生自主探究,培养学生的数学探究能力及合作交流的意识.并运用法则运算,培养学生计算能力。
教学设想:
1.本节课开始时,首先让学生复习以前的知识,化简二次根式及同类项的相关知识,引导学生观察化简之后被开方数相同的根式如何进行二次根式的加减运算?类比合并同类项法则。从而得出两个二次根式求和的运算法则.这是本节课的重点。
2.之后安排两个例题,熟悉法则,准确计算。加深对法则的理解与应用.并运用新知识解决本节课引例,达到学以致用的目的。
3.为巩固法则进行行阶梯式练习,分为:随堂检测,拓展提高,链接中考。并对解题进行方法指导。培养学生简洁解题的能力,体会数学的简洁美.温故而知新以达到更好的学习效果。
教学反思:
1.引入新课用旧知识引入新知识不够新颖,不能更好的激发学生学习的兴趣。
2.本节课主要是训练学生计算能力,想法是习题配备有梯度,但在第一课时配备有些难度,使得部分学生有些吃力。如:已知
2x1y)(x5x)4x+y-4x-6y=-10,求(x9xy3yxx22的值.3新教材的知识点与旧教材有变化的地方,要妥善处理。如“同类二次根式”。
4新课程的理念还需深入,学生探究合作力度不够,还要继续更新教育理念。
努力方向:
1更新教育观念,深入挖掘新教材,新课标,学以致用,有的放矢。
2加强集备,资源共享.认真攥写教学日志,积累经验。3向有经验的教师学习,走出去,扩大视野,提高业务水平。
第三篇:二次根式加减法
二次根式加减法(3)
1、在下列各组二次根式中,化成最简二次根式后能够合并的一组是()A、3,18
B、3,1
3C、50,100
D、a21,a21
2、下列运算正确的是()A、571
2B、232
3C、131616
D、18240
3、下列计算正确的是()A、52B、83211
2C、45125
4D、a32a12a
4、下列根式中,与ab3是同类二次根式的是()①ab32 ②4ab ③2ab ④
b4b ⑤
4ab
A、1个 B、2个 C、3个 D、4个
4、在下列根式中,最贱二次根式是()A、0.125 B、7 C、12 D、212 5、24的同类二次根式有()①27 ②72 ③A、1个 B、2个 C、3个 D、4个
6、下列计算中正确的是()
A、aabaaba B、246227 ④
1150 ⑤180
832
C、188210 D、21881914131256
7、下列各式:27,112,112,其中与3是同类二次根式的个数为()
A、0个 B、1个 C、2个 D、3个
8、下列计算正确的是()A、3710 B、2323 C、4520 D、824
9、下列计算正确的是()A、m3n3m3n B、5a3b8ab C、7x3x10 D、12532525
10、下列运算正确的是()A、6a23a B、23223 C、a21aa D、1882
11、化简3
二、填空 1、18313的结果是()A、3 B、-3 C、3 D、3
8=____________ 2、751327_______________
3、最简二次根式3x1和4、674x9是被开方数相同的二次根式,则x=___________ 676127_______________
3x2是同类二次根式,则x=_______________
5、若最简二次根式32x1与
6、化简:48
三、计算 1、42-525、8、12、15、239x43363_______
7、计算:812___________
8、计算: 36-2=_________ 2 2、3283、18383321504、31223482
3151420-5445456、24322367、732732
12219、25110、3223233211、32051513
x42x1x13、1432a36aa183a22a14、2233622336
3131116、已知:x12,求6x223x的值17、12131575
第四篇:初中数学专题:二次根式
第十六章
二次根式
测试1
二次根式
学习要求
掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.
课堂学习检验
一、填空题
1.表示二次根式的条件是______.
2.当x______时,有意义,当x______时,有意义.
3.若无意义,则x的取值范围是______.
4.直接写出下列各式的结果:
(1)=_______;
(2)_______;
(3)_______;
(4)_______;
(5)_______;(6)
_______.
二、选择题
5.下列计算正确的有().
①
②
③
④
A.①、②
B.③、④
C.①、③
D.②、④
6.下列各式中一定是二次根式的是().
A.
B.
C.
D.
7.当x=2时,下列各式中,没有意义的是().
A.
B.
C.
D.
8.已知那么a的取值范围是().
A.
B.
C.
D.
三、解答题
9.当x为何值时,下列式子有意义?
(1)
(2)
(3)
(4)
10.计算下列各式:
(1)
(2)
(3)
(4)
综合、运用、诊断
一、填空题
11.表示二次根式的条件是______.
12.使有意义的x的取值范围是______.
13.已知,则xy的平方根为______.
14.当x=-2时,=________.
二、选择题
15.下列各式中,x的取值范围是x>2的是().
A.
B.
C.
D.
16.若,则x-y的值是().
A.-7
B.-5
C.3
D.7
三、解答题
17.计算下列各式:
(1)
(2)
(3)
(4)
18.当a=2,b=-1,c=-1时,求代数式的值.
拓广、探究、思考
19.已知数a,b,c在数轴上的位置如图所示:
化简:的结果是:______________________.
20.已知△ABC的三边长a,b,c均为整数,且a和b满足试求△ABC的c边的长.
测试2
二次根式的乘除(一)
学习要求
会进行二次根式的乘法运算,能对二次根式进行化简.
课堂学习检测
一、填空题
1.如果成立,x,y必须满足条件______.
2.计算:(1)_________;(2)__________;
(3)___________.
3.化简:(1)______;(2)
______;(3)______.
二、选择题
4.下列计算正确的是().
A.
B.
C.
D.
5.如果,那么().
A.x≥0
B.x≥3
C.0≤x≤3
D.x为任意实数
6.当x=-3时,的值是().
A.±3
B.3
C.-3
D.9
三、解答题
7.计算:(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
8.已知三角形一边长为,这条边上的高为,求该三角形的面积.
综合、运用、诊断
一、填空题
9.定义运算“@”的运算法则为:则(2@6)@6=______.
10.已知矩形的长为,宽为,则面积为______cm2.
11.比较大小:(1)_____;(2)______;(3)-_______-.
二、选择题
12.若成立,则a,b满足的条件是().
A.a<0且b>0
B.a≤0且b≥0
C.a<0且b≥0
D.a,b异号
13.把根号外的因式移进根号内,结果等于().
A.
B.
C.
D.
三、解答题
14.计算:(1)_______;
(2)_______;
(3)_______;
(4)_______.
15.若(x-y+2)2与互为相反数,求(x+y)x的值.
拓广、探究、思考
16.化简:(1)________;
(2)_________.
测试3
二次根式的乘除(二)
学习要求
会进行二次根式的除法运算,能把二次根式化成最简二次根式.
课堂学习检测
一、填空题
1.把下列各式化成最简二次根式:
(1)______;(2)______;(3)______;(4)______;
(5)______;(6)______;(7)______;(8)______.
2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:
与
(1)与______;
(2)与______;
(3)与______;
(4)与______;
(5)与______.
二、选择题
3.成立的条件是().
A.x<1且x≠0
B.x>0且x≠1
C.0<x≤1
D.0<x<1
4.下列计算不正确的是().
A.
B.
C.
D.
5.把化成最简二次根式为().
A.
B.
C.
D.
三、计算题
6.(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
综合、运用、诊断
一、填空题
7.化简二次根式:(1)________(2)_________(3)_________
8.计算下列各式,使得结果的分母中不含有二次根式:
(1)_______(2)_________(3)__________(4)__________
9.已知则______;_________.(结果精确到0.001)
二、选择题
10.已知,则a与b的关系为().
A.a=b
B.ab=1
C.a=-b
D.ab=-1
11.下列各式中,最简二次根式是().
A.
B.
C.
D.
三、解答题
12.计算:(1)
(2)
(3)
13.当时,求和xy2+x2y的值.
拓广、探究、思考
14.观察规律:……并求值.
(1)_______;(2)_______;(3)_______.
15.试探究与a之间的关系.
测试4
二次根式的加减(一)
学习要求
掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.
课堂学习检测
一、填空题
1.下列二次根式化简后,与的被开方数相同的有______,与的被开方数相同的有______,与的被开方数相同的有______.
2.计算:(1)________;
(2)__________.
二、选择题
3.化简后,与的被开方数相同的二次根式是().
A.
B.
C.
D.
4.下列说法正确的是().
A.被开方数相同的二次根式可以合并
B.与可以合并
C.只有根指数为2的根式才能合并
D.与不能合并
5.下列计算,正确的是().
A.
B.
C.
D.
三、计算题
6.7.
8.9.
10.11.
综合、运用、诊断
一、填空题
12.已知二次根式与是同类二次根式,(a+b)a的值是______.
13.与无法合并,这种说法是______的.(填“正确”或“错误”)
二、选择题
14.在下列二次根式中,与是同类二次根式的是().
A.
B.
C.
D.
三、计算题
15.16.
17.18.
四、解答题
19.化简求值:,其中,.
20.当时,求代数式x2-4x+2的值.
拓广、探究、思考
21.探究下面的问题:
(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.
①()
②()
③()
④()
(2)你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.
(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.
测试5
二次根式的加减(二)
学习要求
会进行二次根式的混合运算,能够运用乘法公式简化运算.
课堂学习检测
一、填空题
1.当a=______时,最简二次根式与可以合并.
2.若,那么a+b=______,ab=______.
3.合并二次根式:(1)________;(2)________.
二、选择题
4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是().
A.与
B与
C.与
D.与
5.下列计算正确的是().
A.
B.
C.
D.
6.等于().
A.7
B.
C.1
D.
三、计算题(能简算的要简算)
7.8.
9.10.
11.12.
综合、运用、诊断
一、填空题
13.(1)规定运算:(a*b)=|a-b|,其中a,b为实数,则_______.
(2)设,且b是a的小数部分,则________.
二、选择题
14.与的关系是().
A.互为倒数
B.互为相反数
C.相等
D.乘积是有理式
15.下列计算正确的是().
A.
B.
C.
D.
三、解答题
16.17.
18.19.
四、解答题
20.已知求(1)x2-xy+y2;(2)x3y+xy3的值.
21.已知,求的值.
拓广、探究、思考
22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:与,与互为有理化因式.
试写下列各式的有理化因式:
(1)与______;
(2)与______;
(3)与______;
(4)与______;
(5)与______;
(6)与______.
23.已知求.(精确到0.01)
答案与提示
第十六章
二次根式
测试1
1.a≥-1.2.<1,>-3.3.x<-2.
4.(1)7;
(2)7;
(3)7;
(4)-7;
(5)0.7;
(6)49.
5.C.
6.B.
7.D.
8.D.
9.(1)x≤1;(2)x=0;(3)x是任意实数;(4)x≤1且x≠-2.
10.(1)18;(2)a2+1;(3)
(4)6.
11.x≤0.
12.x≥0且
13.±1.
14.0.
15.B.
16.D.
17.(1)π-3.14;(2)-9;(3)
(4)36.
18.或1.
19.0.
20.提示:a=2,b=3,于是1 测试2 1.x≥0且y≥0.2.(1) (2)24;(3)-0.18. 3.(1)42;(2)0.45;(3) 4.B. 5.B. 6.B. 7.(1) (2)45; (3)24; (4) (5) (6) (7)49; (8)12; (9) 8.9. 10.. 11.(1)>;(2)>;(3)<. 12.B. 13.D. 14.(1) (2) (3) (4)9. 15.1. 16.(1) (2) 测试3 1.(1) (2) (3) (4) (5) (6) (7) (8). 2.3.C. 4.C. 5.C. 6.7. 8.9.0.577,5.196. 10.A. 11.C. 12.13. 14.15.当a≥0时,;当a<0时,而无意义. 测试4 1.2.(1) 3.C. 4.A. 5.C. 6.7. 8.9. 10.11. 12.1. 13.错误. 14.C. 15.16. 17.18.0. 19.原式代入得2. 20.1. 21.(1)都画“√”;(2)(n≥2,且n为整数); (3)证明: 测试5 1.6. 2.3.(1) (2) 4.D. 5.D. 6.B. 7.8. 9.10. 11.12. 13.(1)3;(2) 14.B. 15.D. 16.17.2. 18.19.(可以按整式乘法,也可以按因式分解法). 20.(1)9; (2)10. 21.4. 22.(1); (2); (3); (4); (5); (6)(答案)不唯一. 23.约7.70. 第十六章 二次根式全章测试 一、填空题 1.已知有意义,则在平面直角坐标系中,点P(m,n)位于第______象限. 2.的相反数是______,绝对值是______. 3.若,则______. 4.已知直角三角形的两条直角边长分别为5和,那么这个三角形的周长为______. 5.当时,代数式的值为______. 二、选择题 6.当a<2时,式子中,有意义的有(). A.1个 B.2个 C.3个 D.4个 7.下列各式的计算中,正确的是(). A. B. C. D. 8.若(x+2)2=2,则x等于(). A. B. C. D. 9.a,b两数满足b<0|a|,则下列各式中,有意义的是(). A. B. C. D. 10.已知A点坐标为点B在直线y=-x上运动,当线段AB最短时,B点坐标(). A.(0,0) B. C.(1,-1) D. 三、计算题 11.12. 13.14. 15.16. 四、解答题 17.已知a是2的算术平方根,求的正整数解. 18.已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,△BCD为等边三角形,且AD,求梯形ABCD的周长. 附加题 19.先观察下列等式,再回答问题. ① ② ③ (1)请根据上面三个等式提供的信息,猜想的结果; (2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式. 20.用6个边长为12cm的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm,可用计算器计算). 答案与提示 第十六章 二次根式全章测试 1.三. 2.3. 4.5. 6.B. 7.C. 8.C. 9.C. 10.B. 11.12. 13.14. 15.16.0. 17.x<3;正整数解为1,2. 18.周长为 19.(1) (2) 20.两种:(1)拼成6×1,对角线 (2)拼成2×3,对角线(cm). 16.3二次根式加减法教学设计(第一课时) 王 伟 一、教材分析: 二次根式加减法是新人教版第十六章——16.3小节。主要内容是二次根式的加减运算和二次根式的加、减、乘、除混和运算。本节的基础是学生已经掌握了把二次根式化简成最简二次根式的方法。重点是二次根式的加减及混合运算。本课地位,既是第五章相关内容的发展,又是后面将学习的解直角三角形、一元二次方程、二次函数等章节的重要基础,起承上启下的作用。 二、教学目标: 知识技能:会进行二次根式的加减法运算。 数学思考:学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。解决问题:通过加减法运算,培养学生的运算能力。 情感态度:通过加减法运算解决生活中实际问题,体会数学知识应用的价值,提高学生学习数学的兴趣。 三、教学重点、难点: 教学重点:合并被开方数相同的二次根式。教学难点:二次根式加减法的实际应用。 四、教学方法:合作、讨论、探究 五、教学媒体:多媒体 六、教学活动过程: 【活动一】复习回顾 1、二次根式的乘法法则及除法法则。 abab abababababab(a≥0,b≥0) (a≥0,b>0) 2、最简二次根式概念及练习。下列根式中,哪些是最简二次根式?投影题目 【活动二】情景引题 问题: 1、学校计划在一块长为7.5米,宽为5米的绿草坪上划出两个面积分别为8㎡和18㎡的正方形状地方,分别种上杜鹃花和茉莉花,学校的计划能实现吗? 师生行为:(1)学生分组讨论,探求方案。 (2)教师倾听学生的交流,指导学生探究。 2、分析818的计算过程 教师关注:学生能否将8和18化成最简二次根式;能否将分配律运用到计算中。 小结:二次根式加减法时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。 (设计意图:此题贴近学生生活,易激发学生的学习兴趣。采用分组讨论,自主探究的方式解决问题,提高学生的自主学习能力。) 规律梳理 二次根式加减时,先将二次根式化为最简二次根式,再把被开方数相同的二次根式进行合并。 注意:对被开方数相同的二次根式进行合并,实质是对被开方数相同的二次根式的系数进行合并。 【活动三】例题讲解例1 计算 (1)16x9x (2)8045 完成课本P13练习1,2(1)(2)3慧眼识真 下列计算是否正确?为什么? (1)83=8 3(2)49=49(3)9×16=916(4)32222 (设计意图:使学生掌握被开方数相同的二次根式合并的方法,注意二次根式加减运算与乘除运算的联系与区别,提高解题的准确程度。)典例讲解 例2 计算(1)21261348 3(2)(1220)(35) 学生思考:(1)比较二次根式的加减法与整式的加减,你能得出什么结论?(2)3与5能合并吗? 教师关注:计算中教师要让学生体会到有理式的运算、二次根式的运算以及整式的运算之间的联系,感受数的扩充过程中运算性质和运算律的一致性。 (设计意图:使学生熟练掌握二次根式加减法的运算方法,综合运用新旧知识,使知识能融会贯通,提高课堂效率,培养学生及时发现问题并解决问题的习惯,调动学生的主观能动性。) 【活动4】 理解升华 二次根式加减运算的步骤:(1)“一看”看看各项是否是最简二次根式;(2)“二化”把各个二次根式化成最简二次根式;(3)“三合”再把被开方数相同的二次根式合并.注意:被开方数不相同的二次根式(如 3 与 5)不能合并 探究提高(1)2811183224(2)2412126238反馈纠正(投影对照) 易错警示 下列解答是否正确?为什么? (1)27532732759331031030(2)7218322326232232922完成课本P13练习2(2)(3)、3 【活动5】 聚焦中考 投影试题 1.(2013.衡阳)下列计算正确的是(A23=5B23=23C822=0D51=22.(2014.枣庄)下列计算正确的是(AC82=2))BD2525=12712=94=1362=3223.(2014.台州)计算:10123 【活动4】反思体会 问题 本节课你的收获有哪些? 2、还有什么疑惑? 3、是否有给老师的建议? 七、课后作业: 课本15页2题、3题。第五篇:16.3二次根式加减法教学设计(第一课时)