六年级数学广角

时间:2019-05-15 06:34:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级数学广角》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级数学广角》。

第一篇:六年级数学广角

六年级数学广角 抽屉原理教案

【教学内容】《义务教育课程标准实验教科书·数学》六年级下册7071页。【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

3. 通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教具、学具准备】每组都有相应数量的盒子、铅笔、书。【教学过程】

一、情境引入。

规则: 把3个小球藏到两个抽屉里,必须把小球放进抽屉,让我来猜猜,大家判断我猜的是否对?

二、通过操作,探究新知

(一)教学例1

1.出示题目:把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?

(学生先思考,然后在组内动手操作)

师:谁来展示一下你摆放的情况?(根据学生摆的情况,师演示各种情况。)

(4,0,0)(3,1,0)(2,2,0)(2,1,1)

师:把四支铅笔放入3个铅笔盒中一共有以上4中不同的放法。由于摆放的方法不同,每个铅笔盒总的支数也不相同。请同学们看看,铅笔盒中的指数有哪些不同的情况呢?(0、1、2、3、4)

师:看来,铅笔盒中的的支数是有多有少的。在没一种放法中的支数也是有多有少的。总有一个铅笔盒的支数放的是最多的,同学们能找出来吗? 师:第一种摆法中,哪个铅笔盒的支数是最多的?是几支?那我可以这样说,第一种摆法中,总有一个铅笔盒要放入()支铅笔。那第二种摆法总有一个铅笔盒中要放入几支铅笔呢?第三种?第四种呢?

师:总有一个指的的哪一个?

师:同学们通过操作和观察发现四支铅笔放入3个铅笔盒中,不管怎么摆总有一个铅笔盒放的支数是最多的,可能是2支、3支或4支。

2、那么,如果将5支铅笔放入4个铅笔盒中,又会出现怎样的情况呢?那么把5枝笔放进4个盒子里呢?你能根据刚才的操作直接填写出下表吗?

(学生完成后汇报。)

师:观察一下你们完成的表格,你又有什么发现呢?

找出每种放法中最多的那一盒的支数。(2、3、4、5)

师:总有一个文具盒中药放入2支、3支、4支或5支还可以怎样说?(至少放入2支)

至少是什么意思?

师:刚才我们将4支铅笔放入3个铅笔盒中,你也能这样来描述一下吗?

观察6种摆法中,哪种摆法最能体现出我们得到的这个结论呢?那我们如果不想把6种摆法都摆出来吗,只摆一次就想得到这个结论,你会怎么摆的呢?(学生小组内交流后汇报)

师:这种分法,实际就是先怎么分的?(平均分)

师:这样先尽量平均分有什么好处呢?(使最多的盒子里尽可能的少)

3、那么把6枝笔放进5个盒子,总有一个盒子里至少要放入几只铅笔你能很快的回答我吗?你是怎样想的呢?(可以结合操作,说一说)

生:(一边演示一边说)6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?还用摆吗?

生:7枝铅笔放在6个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

4、你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

5、介绍抽屉原理。

刚才我们把铅笔看成事要分的物体,把铅笔盒看做是抽屉。当物体数比抽屉数多1的时候,那么总有一个抽屉中至少要放入2个物体。

(二)如果物体数不止比抽屉数多1,譬如要将7个物体放入5个抽屉中,8个物体放入5个抽屉中,9个物体放入5个抽屉中,那总有一个铅笔盒中至少要放入几只铅笔呢?(学生任选一题探究)

8支放入5个文具盒中呢?9支放入5个文具盒中呢?

你又有是你发现呢?(当物体数大于抽屉数的时候,那么总有一个抽屉中至少要放入2个物体。)

三、应用原理解决问题

1、游戏:从一副扑克牌中任意抽取5张(除开大小王),至少有几张牌是同花色的?为什么?(把什么看作要分的物体?把什么看作抽屉?也就是把几个物体放入几个抽屉中?)2、7只鸽子飞回5个鸽舍,总有一个鸽舍中至少要飞入几只鸽子?

3、小明家来了15位客人,那么这些客人中至少有2人是同一个属相的,对吗?为什么?

四、课堂小节。

第二篇:六年级数学数学广角总结

第一部分:应用题分类

①求一个数是另一个数的几分之几(或百分之几)

1、一个车间有250个工人,其中男工有150人。男工人数是全车间人数的几分之几?

2、六(1)班今天到校48人,2人请假,求出勤 率。

3、植一批树苗,成活棵数与未成活棵数的比是

24:1,求成活率。

②求一个数比另一个数多或少几分之

几(百分之几)的问题 例

1、一种书包,原价50元,现价20元,降价 百分之几?

2、甲有2500元,乙比甲少500元,甲比乙多 百分之几?

3、行一段路,客车要6小时,货车要8小 时,客车的速度比货车快百分之几

③求一个数的几分之几(百分之几)是

多少的问题。

1、六(1)班有男生24人,女生人数是男生的2/3,女生有多少人?

2、一本书有420页,读了25%,还剩多少页?

3、汽车每小时行40千米,鸵鸟的速度比汽车快八分之一,鸵鸟每小时行多少千米?

4、一本书40页,第一天看了五分之二,第二天看了余下的四分之一,还剩多少页?

④已知一个数的几分之几(百分之几)是多少,求这个数的问题

1、某校一年级有142人,占全校学生人数的九分之二,全校有多少人?

2、食堂有一批大米,吃了九分之二,还剩280千克,这批大米共多少千克?

3、某校建设校舍共投资121万元,比原计划节约十二分之一,原计划投资多少?

4、修路队修一条公路,第一周修了全长的35﹪,第二周修了3600米,这时两周修的总米数占全长的四分之三多400米,求这条公路多少米?

⑤分析“中点

1)修一条公路,第一次修了全程的1/4,第二次修了全程的3/20,这时距中点还有6千米,这条公路全长多少千米?

(2)修一条公路,第一次修了全长的1/4,第二次修了全长的30%,这时过中点6千米,这条公路全长多少千米?

(3)客、货两车的速度比是4:3,两车同时从两地相向而行,在距中点15千米处相遇,两地相距多少千米?

⑥(1)、一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时行60千米,这时行的路程与全程的比是1:3,甲乙两地全程多少千米?

(2)、一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时行了60千米,这时已行的路程与未行的比是2:3,甲乙两地全程多少千米?

(3)、粮店运进一批大米,第一天卖出总数的1/4,第二天比第一天少卖15袋,这时卖出的袋数与剩下袋数比是3:5,这批大米共有多少袋?

⑦例1一根铁丝,第一次用去全长的1/4,第二次用去余下的1/3,还剩60米,这根铁丝长多少米?

2、一桶油,第一次用去2.1千克,第二次用去余下的1/4,还剩36千克,这桶油有多少千克? ⑧工程问题 例1一项工程,甲独做10天完成,乙独做15天完成。两队合做,多少天完成?

例2一块布,可做上衣10件,或裤子15条,这块

布可做多少套衣服?

例3一块铁皮,可做桶身10个,或桶底15个,这块铁皮可做多少只桶(无盖)?

⑨相向而行(包含相遇和相距)

例1甲车每小时行80千米,比乙车快三分之一,两车同时从两地相向而行,经过3小时相遇。两地相距多少千米?(相遇)

2、甲车每小时行80千米,甲、乙两车的速度比时4 :3,两车同时从两地相对开出,经过3小时,两车还相距 15千米,两地相距多少千米?(相距)

例3甲、乙两车同时从A、B两地相向而行,当甲车行至 全程的80%时,乙车行了全程的60%,此时两车相

距200千米。A、B两地相距多少千米?(相遇后继 续行驶而相距)

⑩比的应用 例

1、光明小学共有学生140人,分成三个小组进行植树活动,已知第一小组

和第二小组人数的比是2∶3,第二小组和第三小组人数的比是4∶5,第三小组有多少人?

例2某班有学生42人,其中女生占七分之二,后来又转来几个女生这时男女生人数的比是6:7,转来几个女生?

11、几个开放性问题

1、租房、租车船类两大原则:多租便宜的,尽量满载 育红小学94位同学在两位老师的带领下去租车春游,车站有54个座位的大客车每辆租费432元,21座的面包车每辆租费189元,请同学们帮助策划一下,如何包车最合算。

2、买几送几、打折

希望小学要买120个足球,现有甲、乙、丙、丁四

个商店可供选择,四个商店同品牌足球的单价都是

25元,但优惠办法不同:

甲店:买10送2

乙店:每个足球优惠5元

丙店:购物每满200元,返还现金30元

丁店:八五折出售

为了节省费用,希望小学应到哪个商店购买?

3、利润问题

商店以每件300元的价格卖出两件衣服,其中 一件赚25%,另一件亏25%,总的来说,商店 是赚钱还是赔钱?

4、水费问题

供水公司为鼓励居民节约用水,规定每人每月

用水不超过2立方米,按每立方米1.2元收费,超过2立方米的部分按每立方米4元收费,王红

家三口人,上月共交水费23.2元,请你算一算

王红家上月用水多少立方米?

5、列方程解应用题,找准等量关系

1、学校有排球20个,比足球的三分之二多2个,求足球有多少个?

2、小明读一本故事书,第一天读了五分之二,第二天读了余下的四分之一,还剩下18页,这本书共多少页?

3、一堆煤,三天烧完。第一天烧了总数的 五分之一,与第三天烧煤量的比是5:8,已知第三天比第一天多烧38吨,这堆煤共有多少吨?

4、两堆沙子共重1780千克,第一堆用去60%,第二堆用去514千克,所剩的沙子一样重,两堆沙子原来各有多少千克?

总复习填空

1、近年来,我市经济快速发展。今年第一季度我市的工业生产值是2508000000元,横线上的数读作(),把它改写成用亿作单位的数是()。

2、李明家有10千克大米,计划20天吃完,平均每天吃这些大米的(),2天吃()千克。

3、我校数学课外活动小组想了解我市今年电话和电脑普及率情况。他们随机调查了200户人家,其中173户有电话,25户有电脑。我市电话普及率是(),有电话的家庭是有电脑家庭的()倍。

4、边长1平方米的正方形最多可以剪()个1平方分米的小正方形,把这些小正方形排成一排长是()米。

5、一项工程,实际投资50万元,比计划节约10万元。实际节约

%。黎明电器公司前年销售额是1.5亿元,去年销售额比前年增加20%,去年比前年多销售

亿元。

16、两个不是0的自然数A、B。已知A=B,则A和B成()关系,也成()关系。

37、一个分数约分时,约了两次2,一次3,得4。原来这个分数的分子与分母的最大公约数是(),最小倍数是()。

8、一个长方体的底面周长是30分米,底面积是50平方分米,高6分米,它的表面积是(),体积是()。

49、将11化成小数,小数点后第100位上的数字是()。

10、一个圆柱形水桶,桶的内直径是4分米,桶深5分米,现将47.1升水倒进桶里,水占水桶容积的()%。

11、三年期国库券年利率是2.4%,某人购买国库券1500元,到期时连本带息共()元。

12、某班男生和女生人数的比是4:5,则男生占全班人数的(),女生占全班人数的。(),男生比女生少

14、爸爸说:“我的年龄比小明的4倍多3。” 小明说:“我今年a岁。”用含有字母的式子表示爸爸的年龄,写作();如果小明今年8岁,那么爸爸今年()岁。

15、一个数除以6或8都余2,这个数最小是();一个数去除160余4,去除240余6,这个数最大是()。

816、÷()=()÷60=2:5=()%=()成。

b17.如果a=c(c≠0),那么()一定时,()和()成反比例;()一定时,()和()成正比例。18.

一辆汽车从甲地到乙地,早晨10时35分出发,下午2时20分到达,路上行驶了()小时()分。

19. 一根圆柱体木料的体积是2.4立方分米,要削成一个最大的圆锥体,要削去()立方分米。

120、一段电线,长()米,截去5后,再接上4米,结果比原来电线长。

21、要反映这次考试你们班各分数段的人数,你认为该用()统计图;要反映总复习以来你的数学考试成绩变化情况,该用()统计图。

22、甲乙两数的平均数是24,甲数与乙数的比是5 : 3,甲数是(),乙数是()。

23、育才小学六(1)班同学做广播操,体育委员在前面领操,其他学生排成每行12人或每行16人都正好是整行,这班至少有学生()人。

24、将一个6个面都涂上红色的棱长5厘米的正方体块切成棱长1厘米的小正方体,可以切成()块,其中仅有1面涂红色的有()块。

25、用0、3、4、5四个数字,按要求排列成一个没有重复数字的四位数。

既能被2整除,又能被5整除:();能被2整除,但不能被5整除:(); 能同时被3和5整除:()。

226、一个分数,把它的分子缩小2倍后是5,如果把这个分数的分母扩大3倍,那么结果是()。

27、两个数的积是144,它们的最小公倍数是36。这两个数各是()和()。

28、我国香港特别行政区的总面积是十亿九千二百万平方米,写作()平方米,改写成用“万”作单位的数是()平方米,省略“亿”后面的尾数写作()平方米。

29、一个五位数8□35△,如果这个数能同时被2、3、5整除,那么□代表的数字是(),△代表的数字是()。

30、用铁丝焊一个长方体框架,框架长15厘米,宽10厘米,高8厘米,至少要用铁丝()厘米,如果要在框架的表面包上一层薄皮,薄皮的总面积是();包完后,这个长方体占空间的大小是()。

31、把一个圆柱体的侧面展开,得到一个正方形,已知正方形的周长是50.24厘米,那么圆柱体的表面积是()平方米。

32、A =2×3×n2,B=3×n3×5,(为质数),那么A,B两数的最大公约数是(),最小公倍数是()。

33、A=2×3×a,B=3×a×7,已知A与B的最大公约数是15,那么a=(),A与B的最小公倍数是()。

34、一个圆柱和一个圆锥的体积相等,它们的高的比是1∶30,底面积的比是()。

35、圆柱的高一定,它的底面半径和体积()比例。

36、把一个比的前项增加3倍,要使比值不变,那么后项应该乘上()。

37、甲数是乙数1.5倍,乙数和甲数的比是(),甲数占两数和的()。

1338、小红5小时行8千米,她每小时行()千米,行1千米用()小时。

39、一个长方体的长、宽、高德比是3:2:1,已知长方体的棱长总和是144厘米,它的体积是()立方厘米。

140、甲班人数比乙班多4,则乙班人数比甲班少()。

142、水结成冰后,体积比原来增加11,冰化成水后,体积减少()。

42、3.2时=()分

3小时15分=()小时

第三篇:六年级数学下册数学广角教案

六年级数学下册数学广角教案

数学广角

第一时《抽屉原理》

教学内容:教材第70、71页的例

1、例2

教学目标:、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。

3、通过操作发展学生的类推能力,形成比较抽象的数学思维。

教学重点:认识“抽屉原理”。

教学难点:灵活运用“抽屉原理”解决实际问题。

教学方法:小组合作,自主探究。

教学准备:若干根小棒,4个纸杯。

教学过程:

一、创设情境,导入新知

老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节我们就一起来研究这个原理。

二、自主学习,初步感知

(一)出示例1:4枝铅笔,3个文具盒。

、观察猜测

猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?

2、自主探究

(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。

(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。

(3)交流讨论,汇报。可能如下:

第一种:枚举法。

用实物摆一摆,把所有的摆放结果都罗列出来。

第二种:假设法。

如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。

第三种:数的分解。

把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

(4)、比较优化。

请学生继续思考:如果把枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?

师:为什么不采用枚举法来验证呢?

数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

3、引导发现

只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。

(二)出示例2:把本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?

、学生尝试自已探究。

2、交流探究的结果,可能如下:)枚举法。

共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书

2)假设法。

把本书“平均分成2份”,÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

由此可见,把本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。

9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进本书。

3、观察发现

学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

4、介绍原理。

师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

三、应用原理,解决问题

完成教材第72页“做一做”第1题

四、全总结,回归生活、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第二时抽取游戏

教学目标

知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。

过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。

情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重难点

使学生理解抽取问题中的一些基本原理。

2找到抽屉原理问题中被分的物品。

教学过程

一、创设情境、引入新:

师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?

学生思考、发言。

师:学习了这节我们就能解决类似的问题了。

二、活动探究、深入了解:

(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?

、学生提出猜想。

2、用预先准备的学具,小组合作交流。

4、小组反馈,师相机板书:

3、得出结论:把颜色看作抽屉。

有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。

(二)研究规律

师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?

分小组讨论后汇报。

再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。

小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。

三、巩固训练,促进内化

、做一做

2、解决前有趣的问题

3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证有两根筷子是同色的?

(2)至少拿几根,才能保证有两双同色的筷子?为什么?

四、全总结,畅谈收获、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第三时

节约用水

教学目标

知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力

过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。

情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。

教学重难点

所学知识的综合应用

教学过程

一、情景引入,提出问题、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出题。

2、提出问题:为什么要节约用水呢?

二、问题讨论,明白道理、交流前搜集的信息,畅谈有关水的认识。

2、展示相关资料,了解地球上水资源状况。

3、交流感想,强化体验。

三、参与活动,亲身体验

师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?

师:前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!、小组交流、展示成果。(一分钟大约滴水0毫升)

2、计算统计,交流感想。

师:根据上面的滴水速度,完成下面的统计表。

一个漏水水龙头漏水情况统计表

时间

分钟

小时

24小时

水量(升)

一个水龙头一年浪费多少水?(1立方米约重1吨)

3、评价家庭用水状况,提出节水建议。

4、(出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约02升。

A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?

B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?

、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?

(独立分析计算、汇报计算结果,交流想法)

四、解决问题,提出方案

分组讨论一下节约用水的措施。、学生分组讨论,多媒体演示生活中的节水片段。

2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。

第四篇:六年级数学广角鸡兔同笼教案

教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册第112~115页。

教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和代数方法的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

教学重点:用假设法解决“鸡兔同笼”问题。

教学具准备:课件。

教学过程:

一、创设情境,激情导入

1.出示原题

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题(课件出示《孙子算经》中的原题):今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2.理解题意

师:同学们知道这道题的意思吗?请试着说一说。

生:这道题的意思是——现在,鸡和兔在一个笼子里,从上面数有35个头,从下面数有94只脚,问鸡和兔各有多少只?

师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?

3.揭示课题

师:这就是著名的“鸡兔同笼”问题,也正是这节课要研究的问题。

[评析:教学即对文化的传承与弘扬,数学教学也不例外。课初,教师利用我国古代数学名著中的数学趣题直接导入新课学习,让学生感受到了数学文化的悠久与魅力,激发了探究的兴趣和动机,明确了本节课学习的目的与要求。导入新课的方式多种多样,惟有适合学生学习所需的才是最佳。]

二、合作探索,主动构建

1.出示例1

师:为便于研究,我们可先从简单问题入手,把题中的“35个头”和“94只脚”分别换成“8个头”和“26只脚”,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

2.理解题意

师:“从上面数,有8个头;从下面数,有26只脚”分别是什么意思?

生:“从上面数,有8个头”是说鸡和兔一共有8只;“从下面数,有26只脚”是说鸡脚和兔脚数共是26只。

3.探索策略

(1)猜想法

师:鸡和兔各有几只呢?我们不妨猜猜看。

生1:3只兔,5只鸡。

生2:6只鸡,2只兔;7只鸡,1只兔;5只兔,3只鸡。

师:伟大的科学家牛顿曾说:“有了大胆的猜想才会有伟大的发明和发现”。同学们猜的对不对,不妨验证一下。

生1:一只兔4只脚,3只兔就有12只脚;一只鸡2只脚,5只鸡就有10只脚,一共就是22只脚,看来没猜对。

生2:6只鸡、2只兔一共20只脚,也没猜对;7只鸡、1只兔共18只脚,也不对;5只兔、3只鸡共26只脚,猜对了。

师:在4次猜想中,只有1次猜对了,你们觉得用猜想法解决鸡兔同笼问题好不好?

生:不是很容易猜出正确答案,而且当头和脚的只数越多时,越不容易猜出答案。

师:看来,我们还有研究新方法的必要。

[评析:既鼓励学生大胆猜想,又能让学生体会到猜想法的局限性,还能激发学生探索解决问题新策略的兴趣,这样的教学正是新课程所需要的高效教学。]

(3)假设法

①假设全是鸡

师:我们先从表格中右起的第一列,8和0是什么意思?

生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡,这样就有16只脚。

师:实际脚的只数是26只,这样就笼子里就多出了10只脚,该怎么办呢?

生: 用刚才我们发现的规律:在鸡兔总只数不变的情况下,每增加1只兔、减少1只鸡,脚的只数就会增加2只,应该增加5只兔,脚的只数才变成26只,即10里面有5个2。

师:上面的过程能用算式表示出来吗?请同学们试试看。

(学生试着列算式,请一个学生到黑板上去板演。)

师:孩子们都写完了吗?多聪明啊!这是一个同学写的算式,我们来听听他是怎么想的。

生:(对着自己写的算式说想法)假设笼子里全是鸡,就有2×8=16只脚,而笼子里实际有26只脚,这样就多出了26-16=10只脚,而1只兔比1只鸡多2只脚,这样就有10÷2=5只兔,鸡的只数就是8-5=3只了。

师:说得多好哇!为了让大家进一步理解这种方法,下面我们边看图边分析(课件演示)。

师:算出来后,我们还要检验算的对不对,谁愿意口头检验。

生:3×2+5×4=26(只),5+3=8(只)。

师:看来做对了,最后写上答语。

②假设全是兔

师:我们再回到表格中,看看左起第一列中的8和0是什么意思?

生:假设笼子里全是兔。

师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?请同桌边讨论边写算式。

(学生讨论写算式,然后指名板演。)

师:这是一位同学写的算式,我们来听听他是怎么想的。

生:假设笼子里全是兔,就有4×8=32只脚,这样笼子里实际的脚数就比假设的脚数少了32-26=6只脚,1只鸡比1只兔少2只脚,这样就有6÷2=3只鸡,也就知道有8-3=5只兔了。

课件演示:“假设法” 中假设全是兔的情况。

师:在列表的基础上,我们想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。

生:假设法。

师:我们都认为猜想法和列表法有局限性,假设法还有局限性吗?

生:(讨论后)用假设法应该没有局限性了。

[评析:让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,教师以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。]

(4)代数法

师:在解决鸡兔同笼问题时,除了假设法没有局限性外,还有别的也没有局限性的一般方法吗?

生:方程的方法。

师:那么就请同学们用列方程的方法试一试。

(全班尝试,一名学生板演。)

师:我们来听听这个同学的想法。

生:设有x只兔,鸡就有(8-x)只。列出方程4x+2(8-x)=26,解是x=5,即有5只兔,8-3=5只鸡。

师:老师想问你,这里的 4x和2(8-x)分别表示是什么?

生:4x是兔脚的总数,2(8-x)是鸡脚的总数。

师:方程解完了也要注意检验,列方程的解法还有个名字也就叫代数法。

[评析:代数法是学生在五年级已学的旧方法,但运用到解决鸡兔同笼问题之中又是新策略。教师以旧知识和旧方法为基础,放手让学生大胆尝试、自主探究,并抓住其中的疑难点设问,帮助学生真正理解过程、掌握方法、提升技能。]

4.小结方法

师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?

生:猜想法,列表法,假设法和代数法。

师:要你们解决《孙子算经》中原题,你现在会选用哪种方法呢?

生1:我选择假设法,假设法比较简便。

生2:我选择代数法,代数法也好理解。

师:下面同学们就用自己喜欢的方法解决这个问题。

[评析:在计算教学中,需要算法多样化,更需要算法的优化;同样,在解决问题教学中,需要策略多样化,更需要策略的优化。发散思维与收敛思维应该兼顾并进。但优化并不等于强加,优化也强调自主和需要过程。在这里,教师对此都恰倒好处地予以了关照。]

三、分层练习,深化认识

1.解决原题

生:先独立完成《孙子算经》中的原题,后相互评议。

师:刚才我们用自己的方法解决了这个问题,那么《孙子算经》中又是怎样解决这个问题的呢?同学们想知道吗?我们一起去看看?(课件演示“抬腿法”)同学们古人的解法巧妙吗?如果大家对这种解法感兴趣,课后可以再研究。请同学们想一想,在日常生活中还有哪些情况类似于鸡兔同笼问题?

2.举出实例

生1:买了一些苹果和梨子,告诉苹果和梨子的单价和总数量,还有总的价钱,求苹果和梨分别买了多少千克。

生2:自行车和汽车一共有几辆,一共有多少个轮子,求汽车和自行车分别有几辆。

„„

师:可见生活中类似于鸡兔同笼的问题有很多,这些问题都可用不同的数学方法来解决,课后可用我们喜欢的方法解决这些问题。

3.课堂作业

从第115页“做一做”中自选1~2道题完成。

[评析:《孙子算经》中原题的解决,让学生排除了课初的悬念;作为特殊而巧妙的古代“抬腿法”的课件简介,让学生进一步感受到了我国古代数学的魅力;放手让学生对生活中类似于鸡兔同笼问题的列举,让学生体会到了此类问题在现实中的广泛存在,进而凸显了本节课的学习价值;书面作业的当堂完成和自由选择,足以体现了教学的高效和学生解决问题技能的及时训练与提升,以及对学生学习自主性的尊重。]

[总评:鸡兔同笼问题过去是少数精英学生学习的竞赛内容,如今是全体学生学习的一般内容。如何能较好地达成教学目标,让全体学生学得了、学得好、学得乐,广大教师都在密切关注。从本节课的教学效果来看,学生的表现还的确如此。究其原因,主要是教师特别注重了以下主要方面。

1.注重解题策略的多样

教学中,教师组织学生多手段、多层面、多角度地探索问题,学生先后运用猜测法、列表法、假设法、代数法等分析和解决问题,从而获得了分析问题和解决问题的基本方法和一般方法,体验了解决问题策略的多样性,发展了创新意识。在注重解决问题策略多样化的同时,教师还注重了解决问题策略的自主优化,注重了不同策略间的相互联系和影响,注重了解决问题策略的局限性和一般性。

2.注重思维能力的培养

让学生在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到假设法、代数法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

3.注重数学思想的渗透

“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,渗透了函数的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

4.注重数学文化的传承

鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把《孙子算经》、《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。

第五篇:六年级下册《数学广角》说课稿

六下《数学广角》说课稿

一、说教材

本课用直观的方法,介绍了“抽屉原理”的其中一种形式,还安排了一些需要学生解释原因的题目,实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形。通过这样的方式,有助于逐步提高学生的逻辑思维能力,培养学生建立“数学模型”的思想,为以后学习较严密的数学证明做准备。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征,我制定了如下教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。

2、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

教学难点:理解抽屉原理中“总有”“至少”的含义。

二、说教法和学法

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。为此,我在教学中采用了设疑激趣法、讲授法、实践操作法,来组织学生开展探索性的学习活动,让他们在自主探索中学习新知,亲历探索,获得知识。

有效的数学学习活动不是单纯地依赖模仿和记忆,而是一个有目的的、主动建构知识的过程,为此,我十分重视学生学习方法的指导,在本节课中,学生主要采用了自主、合作、探究式的学习方式。

三、说教学过程

为了实现教学目标,完成新课标赋予的教学任务,我把本课的教学过程分为四个环节:

(一)游戏导入

这一环节我会让学生任意在练习本上写出一个十一位数,体验肯定至少有两个数位上的数字是重复的。从而激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,使学生积极主动地投入到新课的学习中。

(二)发现问题,初步感知

这一环节的教学,我重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论或囫囵吞枣。所以我设计了这样一个环节:让学生四人一组,由组长将四本课本分到其余三个人手中。要求:是每个人手中的课本尽可能的少。抽屉原理对于学生来说,比较抽象,所以通过具体的操作,学生经历了思考分析之后才能得到符合要求的分法,同时初步在头脑中形成“总有”和“至少”的含义。由于所有组所得答案一致,极大地激发了学生探究新知的热情,由此激起了学生更近一步探求知识的欲望

(三)探究新知,总结原理

首先提出问题:为什么每个组都是总有一个同学手中至少有2本课本呢?现在我们就来重新研究。接着通过例1,让学生重新分组论证,并记录下论证过程。最后学生交流。让学生展示自己的思考方法和过程。

学生可能会用例举法、假设法等等方法。这时我会尊重学生个性的思考,尊重学生的差异,给学生充分的展示交流的空间,针对学生的不同情况,作出不同的指导,充分发挥教师作为课堂教学的组织者、引导者的作用。

接着我会引导学生思考:把5枝铅笔放进4个文具盒,结果会怎么样?你还用一一列举的方法吗?说明理由。把6枝铅笔放进5个文具盒呢?把7枝铅笔放进6个文具盒呢?把10枝铅笔放进9个文具盒呢?把100枝铅笔放进99个文具盒呢?你有什么发现?

【设计意图:让学生在这个连续的过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维,并总结归纳出原理】

(四)解决问题,游戏深化

此环节是对学生学习效果的检验,课的开始是游戏导入,要让学生没有遗憾的离开课堂,所以我在解决了开始的写数游戏后,设计了几个需要应用“抽屉原理”解决的简单的实际问题,进一步培养学生的“模型”思想,使学生对抽屉原理的应用更加灵活。同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。

下载六年级数学广角word格式文档
下载六年级数学广角.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版小学数学六年级数学广角教案

    5数学广角——鸽巢问题 【教学目标】 1.引导学生通过观察、猜测、实验推理等活动,经历探究鸽巢问题的过程,初步了解鸽巢问题,会用鸽巢问题解决简单的生活问题。 2.培养学生解决......

    六年级上册数学广角检测试卷

    数学广角自测题 1、小明有5元和2元的纸币共18张,一共60元,两种人民币个有多少张?2、自行车和三轮车共39辆,总共有96只车轮,自行车和三轮车各有多少辆?3、大油瓶一瓶装4kg,小油瓶2瓶......

    六年级数学下册数学广角公开课教案

    六年级数学下册公开课教案 第一课:抽屉原理 教学内容:教材第70、71页的例1、例2 教学目标: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、会用“抽屉原理”解决简......

    数学广角

    《数学广角──推理》教学设计(第1课时) 教学内容: 义务教育教科书小学数学二年级下册《数学广角——推理》第109页例1及相关内容。 教材分析: 学生在一年级下册教材中已经学......

    数学广角

    《数学广角》“烙饼问题”教学反思 “烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思......

    六年级第一学期数学广角教案(精选)

    第七单元:数学广角 教材分析: "鸡兔同笼"问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一......

    人教版六年级数学下册数学广角教案01

    抽屉原理教学内容 :数学六年级下册第 70 页例 1。 教学目标: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理” ,会用“抽 屉原理”解决 简单的实际问题。 2、通过操作发展......

    六年级下册教案第五单元数学广角

    第五单元 数学广角-鸽巢问题 单元分析: 本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题......