人教版六年级数学下册数学广角教案01

时间:2019-05-13 09:35:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版六年级数学下册数学广角教案01》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版六年级数学下册数学广角教案01》。

第一篇:人教版六年级数学下册数学广角教案01

抽屉原理

教学内容 :数学六年级下册第 70 页例 1。

教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽 屉原理”解决

简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点 :经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

教学准备:多媒体课件、铅笔、文具盒等。

教学过程:

一、创设情境,导入新知

老师组织学生做“抢凳子的游戏”。请 4 位同学上来,摆开 3 张凳子。老师宣布游戏规则:4 位同学围着凳子转圈,老师喊“停”的时候,四个人每个人都必须坐在凳子上。教师背对着游戏的学生,宣布游戏开始,然后叫“停”!师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着 2 位同学。老师说得对吗? 师:老师为什么说得这么肯定呢?

二、自主操作,探究新知

1、观察猜测。多媒体出示例 :4 枝铅笔,3 个文具盒。师:4 个人坐 3 张凳子,不管怎么坐,总有一张凳子至少坐两个同学。4 枝铅笔放进 3 个文具盒中呢?(不管怎么放,总有一个文具盒中至少放进 2 枝铅笔)。师:真的是这样吗?为什么会这样呢?你能给大家解释这一现象吗?

2、自主思考。(1)独立思考:怎样解释这一现象?(2)小组合作,拿铅笔和文具盒实际摆一摆、放一放,看一共有几 种情况?

3、交流讨论。学生汇报是用什么办法来解释这一现象的。(学情预设: 第一种:用实物摆一摆,把所有的摆放结果都罗列出来。学生展示把 4 枝铅笔放进 3 个盒子里的几种不同摆放情况,教师根据 学生摆的情况,有序板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)请学生观察不同的放法,能发现什么? 引导学生发现:每一种摆放情况,都一定有一个文具盒中至少有 2 枝 铅笔。也就是说不管怎么放,总有一个盒子里至少有 2 枝铅笔。第二种:假设法。教师请只摆了一种或没有摆放就能解释的同学说说自己的想法。师:其他学生是否明白他的想法呢? 引导学生在交流中明确:可以假设先在每个文具盒中放 1 枝铅笔,3 个文具盒里就放了 3 枝铅笔。还剩下 1 枝,放入任意一个文具盒,那么这 个文具盒中就有 2 枝铅笔了。也就是先平均分,每个文具盒中放 1 枝,余 下 1 枝,不管放在哪个盒子里,一定会出现总有一个文具盒里至少有 2 枝 铅笔。教师指出:碰到这样的问题,一般用平均分。

4、比较优化。请学生继续思考: 如果把 5 枝铅笔放进 4 个文具盒,结果是否一样呢?怎样解释这一现象? 请学生继续思考: 把 7 枝铅笔放进6 个文具盒里呢? 把 10 枝铅笔放进 9 个文具盒里呢? 把 100 枝铅笔放进 99 个文具盒里呢? 你发现了什么? 引导学生发现:只要放的铅笔数比文具盒的数量多 1,不论怎么放,总有一个文具盒里至少放进 2 枝铅笔。请学生继续思考:如果要放的铅笔数比文具盒的数量多 2 呢?多 3 呢?多 4 呢? 你发现了什么? 引导学生发现: 只要铅笔数比文具盒的数量多,这个结论都是成立的。5.学习抽屉原理概念。

三、灵活应用,解决问题

1、第 70 页“做一做”。(1)课件出示:7 只鸽子飞回 5 个鸽舍,至少有 2 只鸽

子要飞进同一 个鸽舍里。为什么?(2)学生独立思考,自主探究。(3)交流,说理。

(4)如果8只鸽子飞回3个鸽舍,至少有几只鸽子飞回同一个鸽舍?

2、智慧城堡:(1)把13只小兔子关在5个笼子里,至少有()只兔子要关在同一个笼子里?(2)、六(1)班第一组共有 26名学生,一定至少有3名学生的生日在同一个月,为什么?指导学生理解题意,明白一年有 12 个月,共有 26 名学生,是把26个学生平均分给12个月。(学生独立思考,交流。)

(3)、从扑克牌中取出两张王牌,在剩下的 52 张中任意抽出 5 张,至少 有 2 张扑克是同花色的。试一试,并说明理由。(1)帮助学生理解题意:剩下的 52 张扑克有 4 种花色。(2)学生思考,可以动手试一试。(3)交流。

四、全课总结(略)

第二篇:数学广角教案01

二年级上册数学广角—— 排列与组合

一、以故事形式引入新课

小朋友们,今天老师给大家带来了3只可爱的小动物,你们看它们是谁呀?

(边说边贴出动物头像:小刺猬、小鸭、小鸡)小刺猬、小鸭和小鸡三个是好朋友,今天准备到企鹅博士家去做客呢,可是刚走了一半路,突然下起雨来,可是它们只带了两把伞,你能帮他们想想办法怎么搭配撑雨伞吗?

学生可能出现的答案有:①小鸡和小刺猬拼一把伞,小鸭自己打一把伞。②小鸭和小刺猬拼一把伞,小鸡自己打一把伞。③小鸭和小鸡拼一把伞,小刺猬自己打一把伞。

当学生在回答以上方法时,教师根据学生的回答把相应的动物头像帖在伞的下面。

师:大家想的办法都不错。的确,三只小动物都和你们一样试了上面这三种方法,可最后它 们却选择了哪种方法,你们知道为什么吗?原来呀,当它们开始用前面两种方法时,可没 走几步,小刺猬身上的刺就把小鸭和小鸡给刺疼了,所以只能选择第③种方法。

二、用开密码锁的方法进行数的排列活动

师:三只小动物到了企鹅博士家,却发现大门紧闭,门上还挂着一把锁

(边说边在课件出示文字)咦,锁上还有一张纸条呢,让我看看纸条上写着什么呢?

(教师读纸条上写的内容:欢迎你们的到来,为了考考你们的智慧,请你们先想办法把这把密码锁打开,锁的密码提示1:请用数字1、2、3摆出所有的两位数。

师:三只小动物都犯傻了,怎么办呢?小朋友们能不能帮帮他们?老师给你们准备了数字卡片,在信封里。但是老师有要求: 同桌合作用数字卡片摆,并且让一个人把摆出来的数字记在白纸上,在动手之前先商量一下你们打算怎么摆再开始。

教师巡视,搜集各种不同的摆法。(板书,标上序号)汇报找密码的过程。(先全部板书,再请学生来说说哪种方法好,好在哪?说说是怎么摆的,最后学生用卡片演示一遍。)

老师这里有5种不同的答案,我给它们标上号。仔细观察,它是怎么摆的?你觉得哪种方法比较好?好在哪里?先和同桌说一说。预设:

他是怎么摆的?先摆出12,再把十位和个位交换位置。

师:哦,你的意思是用十位和个位交换位置的方法。觉得这种方法的同学请举手。(位置交换法)谁愿意再来说说这种方法好在哪里?师:你还觉得哪种摆法比较好? 他是先把1放在十位上,然后把数字2和3放在个位上组成12、13,再把2放在十位上……。(十位固定法)师:你的意思是先确定十位。十位是1的有哪些数?

12、13,21、23,31、32。这样摆有什么好处?(不会重复,不会遗漏,有序。)(请一生上来摆,其余生读数字,感受规律。)

师:观察5号,他有没有顺序?(有,他是先确定个位。)

师:为什么不觉得1、2方法好?为什么会漏掉?(没有按次序,还重复,漏掉了。)

师小结:看来以后碰到这样的问题,想摆得快又不漏掉,我们应该选择一定的顺序和一定的规律去摆就不会重复也不会遗漏。答错的小朋友现在你学会这些好办法了吗? 小结:像这种跟顺序有关系的叫排列,板书题目 :排列 师:我们来看一下接下来的提示。

密码提示2:密码就是这些数从小到大排列中的第4个。师:你们找到密码了吗?是多少? 三.用选食物的方法进行组合活动

师:通过大家的帮忙,企鹅博士家的密码锁被打开了,小动物们可高兴了。为了表示庆贺,他们每两只动物互相击掌一次,那我们三个一共击掌了几次呢?

来到了企鹅博士家。瞧,企鹅博士为他们提供了丰盛的美食!饮料和点心只能各选一种,这样有几种不同的选法呢?

请你用连一连的方法在练习纸上写。学生汇报。(生边说,师边画上序号1,2,3种)

追问:那牛奶和饼干还能连吗?(不能了,因为连了还是这两种食物。没变。)四.排列组合的对比。

师:咦?为什么3个数字能组成6个不同的数字,同样也是3种食物,选2样食物却只有3种结果呢?

小结:两个数字可以交换组成2个两位数,而两种食物交换后还是这两种只能算一种。跟顺序排列没关系的叫组合。(板书:组合)五.练习:

小动物们选了自己喜欢的美食好好享受完之后,他们决定去冒险。但是企鹅博士给他们一张古老的地图。3只小动物商量之后决定排着整齐的队伍再走,她们可以有几种排法?

师:他们排着整齐队伍,从企鹅博士家出发到城堡去探险,你知道他们从企鹅博士家到城堡一共有多少种走法吗?

师:从企鹅博士家到独木桥有2条路,为了小朋友等会表达的清楚我们把它标上A、B。从独木桥到城堡有3条路,我们标上1、2、3。从企鹅博士家到城堡有哪几种走法呢?想不想自己研究研究。

(1)看地图,请你自己想想。(2)反馈。预设1:

师:有几种? 师:哪六种?你能说的清楚一点吗?

师:恩,用符号来表示非常清晰有序!他先确定的是?是A。师:非常会思考!不仅可以先确定A,还可以倒着想,先确定1。

六、总结:

愉快的探险结束了,于是他们留在了城堡里,在这节课中你有什么收获呢?同学们总结的很好,通过与小伙伴的合作,能很有序的进行排列,不重复不遗漏。其实在生活中还有许多事情,能采用今天有序思考进行排一排的事例,回去找找好吗?

第三篇:六年级数学下册数学广角教案

六年级数学下册数学广角教案

数学广角

第一时《抽屉原理》

教学内容:教材第70、71页的例

1、例2

教学目标:、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。

3、通过操作发展学生的类推能力,形成比较抽象的数学思维。

教学重点:认识“抽屉原理”。

教学难点:灵活运用“抽屉原理”解决实际问题。

教学方法:小组合作,自主探究。

教学准备:若干根小棒,4个纸杯。

教学过程:

一、创设情境,导入新知

老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节我们就一起来研究这个原理。

二、自主学习,初步感知

(一)出示例1:4枝铅笔,3个文具盒。

、观察猜测

猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?

2、自主探究

(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。

(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。

(3)交流讨论,汇报。可能如下:

第一种:枚举法。

用实物摆一摆,把所有的摆放结果都罗列出来。

第二种:假设法。

如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。

第三种:数的分解。

把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

(4)、比较优化。

请学生继续思考:如果把枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?

师:为什么不采用枚举法来验证呢?

数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

3、引导发现

只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。

(二)出示例2:把本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?

、学生尝试自已探究。

2、交流探究的结果,可能如下:)枚举法。

共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书

2)假设法。

把本书“平均分成2份”,÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

由此可见,把本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。

同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。

9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进本书。

3、观察发现

学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

4、介绍原理。

师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

三、应用原理,解决问题

完成教材第72页“做一做”第1题

四、全总结,回归生活、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第二时抽取游戏

教学目标

知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。

过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。

情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重难点

使学生理解抽取问题中的一些基本原理。

2找到抽屉原理问题中被分的物品。

教学过程

一、创设情境、引入新:

师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?

学生思考、发言。

师:学习了这节我们就能解决类似的问题了。

二、活动探究、深入了解:

(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?

、学生提出猜想。

2、用预先准备的学具,小组合作交流。

4、小组反馈,师相机板书:

3、得出结论:把颜色看作抽屉。

有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。

(二)研究规律

师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?

分小组讨论后汇报。

再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。

小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。

三、巩固训练,促进内化

、做一做

2、解决前有趣的问题

3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证有两根筷子是同色的?

(2)至少拿几根,才能保证有两双同色的筷子?为什么?

四、全总结,畅谈收获、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

第三时

节约用水

教学目标

知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力

过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。

情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。

教学重难点

所学知识的综合应用

教学过程

一、情景引入,提出问题、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出题。

2、提出问题:为什么要节约用水呢?

二、问题讨论,明白道理、交流前搜集的信息,畅谈有关水的认识。

2、展示相关资料,了解地球上水资源状况。

3、交流感想,强化体验。

三、参与活动,亲身体验

师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?

师:前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!、小组交流、展示成果。(一分钟大约滴水0毫升)

2、计算统计,交流感想。

师:根据上面的滴水速度,完成下面的统计表。

一个漏水水龙头漏水情况统计表

时间

分钟

小时

24小时

水量(升)

一个水龙头一年浪费多少水?(1立方米约重1吨)

3、评价家庭用水状况,提出节水建议。

4、(出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约02升。

A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?

B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?

、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?

(独立分析计算、汇报计算结果,交流想法)

四、解决问题,提出方案

分组讨论一下节约用水的措施。、学生分组讨论,多媒体演示生活中的节水片段。

2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。

第四篇:(人教新课标)六年级数学下册数学广角《抽屉原理》

(人教新课标)六年级数学下册 数学广角《抽屉原理》

1.把5只兔放进2个笼子里。不管怎么放,总有一个笼子至少放进几只兔?为什么?

2.盒子里有同样大小的红球、黄球和蓝球各5个。

(1)要想摸出的球一定有两种同色的,最少要摸多少个球?

(2)要想摸出的球一定有3个同色的,至少要摸多少个球?

3.五(1)班有30名学生是2月份出生的,至少有几名学生的生日是同一天,为什么?

4.在38个小朋友中,至少有几个小朋友的属相是相同的?为什么?

5.一个盒子里装有大小相同但颜色不同的手套若干只,已知手套的颜色有灰、白、黑三种。问最少要取出多少只手套才能保证有三幅手套是同色的?

6.有100个学生参加美术小组,其中最小的只有7岁,最大的有12岁。问参加美术小组的学生是否一定有两个学生肯定是同年同月出生的?

第五篇:六年级数学下册数学广角公开课教案

六年级数学下册<数学广角>公开课教案

第一课:抽屉原理

教学内容:教材第70、71页的例

1、例2 教学目标:

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、会用“抽屉原理”解决简单的实际问题。

3、通过操作发展学生的类推能力,形成比较抽象的数学思维。教学重点:认识“抽屉原理”。

教学难点:灵活运用“抽屉原理”解决实际问题。教学方法:小组合作,自主探究。教学准备:若干根小棒,4个纸杯。教学过程:

一、创设情境,导入新知

老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。

二、自主学习,初步感知

(一)出示例1:4枝铅笔,3个文具盒。

1、观察猜测

猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?

2、自主探究

(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。(3)交流讨论,汇报。可能如下: 第一种:枚举法。

用实物摆一摆,把所有的摆放结果都罗列出来。第二种:假设法。

如果每个文具盒中只放1枝铅笔,最多放进3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。第三种:数的分解。

把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。(4)、比较优化。

请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象? 师:为什么不采用枚举法来验证呢?

数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。

3、引导发现

只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。

(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书? 7本书会怎样呢?9本呢?

1、学生尝试自己探究。

2、交流探究的结果,可能如下: 1)枚举法。

共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书 2)假设法。

把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。同样,7÷2=3…1把7本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。

9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。

3、观察发现

学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。

4、介绍原理。

师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。

三、应用原理,解决问题

完成教材第72页 “做一做”第1题

四、全课总结,回归生活

1、通过今天的学习你有什么收获?

2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?

下载人教版六年级数学下册数学广角教案01word格式文档
下载人教版六年级数学下册数学广角教案01.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级下册《数学广角》说课稿

    六下《数学广角》说课稿 一、说教材 本课用直观的方法,介绍了“抽屉原理”的其中一种形式,还安排了一些需要学生解释原因的题目,实际上,通过“说理”的方式来理解“抽屉原理”的......

    六年级数学广角

    六年级数学广角 抽屉原理教案 【教学内容】《义务教育课程标准实验教科书·数学》六年级下册7071页。 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用......

    六年级下册教案第五单元数学广角

    第五单元 数学广角-鸽巢问题 单元分析: 本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题......

    六年级数学广角鸡兔同笼教案

    教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册第112~115页。 教学目标: 1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2.尝试用不同的方法解决“鸡兔同......

    五年级下册数学广角教案

    五年级下册数学广角教案 散旦小学李加有 教学内容: 《义务教育课程标准实验教科书数学 五年级下册》第134~135页。 教学目标: 1.能够借助纸笔对“找次品”问题进行分析,归纳出解......

    人教小学六年级下册数学教学计划(精选)

    六年级下册数学教学计划 一、教学内容 这一册教材包括下面一些内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。 教学重点:百分数的应用、圆柱的侧面积和表面积......

    六年级下册数学广角第一课时教案(精选五篇)

    第一课时 抽屉原理(一) 教学内容: 义务教育课程标准实验教科书六年级下册数学广角例1、“做一做”及相关练习。 教学目标: 1、经历“抽屉原理”探究过程,运用不同的证明思路:枚举......

    数学广角教案

    1教学目标: 评论 1、 通过猜测、观察、操作等活动,使学生了解发现最简单事物的排列数的基本思路、基本方法,初步培养学生有序、全面地思考问题的意识。 2、 在发现最简单事物......