第一篇:五年级下册数学广角教案
五年级下册数学广角教案
散旦小学李加有
教学内容:
《义务教育课程标准实验教科书数学 五年级下册》第134~135页。
教学目标:
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2.以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。
教学难点:脱离实物,借助纸笔帮助分析“找次品”的问题。
教、学具准备:
教师用具:卡片、5个药瓶
学生用具:卡片
教学过程:
一、导入新课
1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。可见,不合格零件的危害有多大。不合格的零件称为次品,合格的物品称为正品,次品与正品相差甚微,有些从外表根本无法辨别。怎样才能快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们就一起来研究找次品的问题。
二、初步认识“找次品”的基本解决手段和方法
1、出示药瓶,提出问题:这里有3瓶药,其中有一瓶少了3片,你能用什么办法把它找出来吗?
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称……),哪一种更加快速、准确?(天平)
2.创设情景,自主探索。
(1)出示问题,引导学生利用学具自主探索:现在有5瓶药,其中有一瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5个学具代替药,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。
(3)全班汇报。较复杂的方法教师帮助板书示意图。
(4)教师小结。
三、解决9个零件问题,归纳出找次品的最优方法
1.出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?
教师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品。
2.自主探索。
3.在小组内交流。
4.全班汇报。教师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
5.教师先引导学生观察,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。
四、推测多个零件找次品的解决办法
提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
学生猜测。
要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
学生汇报:3次。
我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2 2 8)(3 3 6)(5 5 2)(6 6)……
学生选择一种分法在纸上进行分析。
全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。
五、巩固练习
完成P136练习二十六的第二题:
六、拓展训练
刚才我们我们分析的9、12和15都是刚好可以平均分成3份的数,假如
遇到不能平均分成3份的数,例如10个、11个……又该怎么分呢?大家猜猜,可以大胆地试一下,看看哪种分法能保证找出次品而且称的次数最少。我们下节课继续研究这个问题。
七、小结
第二篇:五年级下册数学广角
第七单元数学广角
单元计划:
教学内容:利用天平找出多件物品中的1 件次品
教学目标:1 .通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。.感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重难点:用数学方法解决生活中的实际问题
授课时数:2 课时
一课时
一教学内容
数学广角
教材第134页的例1及136页的1-3题。
二教学目标.通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
三重点难点
尝试用数学方法解决实际生活中的简单实际问题。
四教具准备
投影,天平。
五教学过程
(一)导入.出示天平教具,提问:这是什么?(天平)你知道天平的作用吗?它的工作原理是什么?
学生介绍自己对天平的了解,阐述天平的工作原理和特点。
天平大家都见过吗?有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会„ „ 轻的一端就会„ „,老师在学生发言的基础上,进一步阐述天平的工作原理。.创设情景,自主探索。
(1)出示钙片,提出问题:这里有3 瓶钙片,其是有一瓶少了3 片,你能用什么办法把它找出来吗?
(2)独立思考。老师鼓励学生大胆设想,积极发言。
全班汇报。老师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么秤来称)、用天平称(老师不急于让学生说出最佳方案,给全班留出思考空间。).自主探索用天平找次品的基本方法。
(1)引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。我们可以拿出3 个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。老师指导交流方法:一个一个讲,声音不要太大,能让对方听到就可以了,也可以边讲边演示,让对方可以更清楚„ „
(3)全班汇报。一个一个地称出重量(利用硅码);利用推理(老师手托实物模拟天平帮助演示,强调全面考虑可能出现的结果:你说的是“如果”,那还可能出现什么情况?说明什么?„„
老师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用祛码称出每瓶的质量再进行比较。还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的;如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端是少的。.揭示课题。
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称„ „),哪一种更加快速、准确?(天平)在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。
(二)教学实施.出示例1 :这里有5 瓶钙片,其中1 瓶少了3 片,设法把它找出来。2 .让学生思考后,说出自己的想法。
(1)出示问题,引导学生利用学具自主探索:现在有5 瓶钙片,其中有1 瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5 个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。老师指导学生在交流中比较方法。
(3)全班汇报。较复杂的方法老师帮助板书示意图。老师在引导语中强调全面考虑可能出现的结果:怎么找?可能出观什么情况?说明什么?
(4)对几种方法的梳理、比较:分成几份?每份数量是多少?至少需要称几次就一定能找出来?
(5)老师小结:在天平的帮助下找到这瓶钙片有多种方法,可以„ „ 还可以„ „。除了利用学具,还可以画出示意图来帮助我们思考。.完成教材第136、137 页练习二十六的第1-3 题。学生独立完成,集体交流。(l)第1 题,因总数为9 筐,故可平均分成3 份,只称2 次就能保证把吃过的那筐松果找出来。如果天平两端各放4 筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就能称出来的,也不能保证2 次就能称出来,只能保证称3 次就一定能称出来,故该方法不是最优的。
(2)第2 题,把15 盒平均分成3 份,至多3 次就可能保证找出较轻的那盒饼干。
第三篇:五年级数学广角教案
第八单元数学广角
单元计划
教材分析:
第八单元的《数学广角》主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单视实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔)和植树的棵数之间的关系就不同。例1是探讨关于一条路线的植树问题并且两端都要栽树的情况,让学生先通过划线段图来发现栽树的棵数和间隔数之间的关系,再用发现的规律解决实际问题。例2讨论的是两端都不栽树的情形。教学中通过生活中的事例,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用,同时培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,初步培养学生抽取数学模型的能力。教学目标
1、知识与技能方面:通过探索,发现两端都栽和两端不栽的植树问题的规律,并运用这一规律解决实际生活中的问题。
2、过程与方法方面:通过尝试探索、实验、直观演示、观察、分析、讨论等方法经历和体验“复杂问题简单化”的解题策略。
3、情感态度价值观方面:感受数学在日常生活中的广泛应用,尝试
用数学的方法来解决实际生活中的简单问题,培养应用意识和解决实际问题的能力,渗透爱国主义教育。教学重、难点:
发现植树的棵数和间隔数的关系,并运用发现的规律解决实际问题。
第七单元:数学广角《植树问题》
第 一 课 时
【教学目标】:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解并掌握“植树问题”的基本方法、并能解决一些实际生活中存在的与植树有关的问题。
3、让学生自己编一道题,真正从根本上掌握解决植树问题的方法。
4、培养学生认真审题的良好习惯。【教学重、难点】
1、掌握“两端都要种的植树问题”的解题方法。
2、引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。教学过程:
一、导入新课
同学们,春天是植树的季节,因为植树可以净化空气,绿化我们的家园,国家把每年的3月12日定为植树节,你可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,那么你们想了解植树中的学问吗?那么我们今天就来共同研究你们想要解决的问题。
(一)、同桌相互观察你们自己的一双手,看看发现了什么? 让同学们,观察后,自己发言,全班交流。
师:看着老师的手,你从中得到了什么数字?(5,5个手指)
师:老师从中也得到了一个数字—4,你们知道它指的是什么吗?(缝隙、空格等)
师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。我们手上每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指的时候有几个间隔呢?3个手指,2个手指呢? 师:你们发现手指数与间隔数的关系了吗?谁能说一说? 2.引入
师:连手上都有这么多数学奥秘,看来数学真是无处不在!现在我们开始上课了吗?
二、创设情境,学习新课、出示例
1、同学们在全长100米的小路一边植树,每隔5米栽和一棵(两端都栽)。一共需要多少棵树苗?1、2、3、4、让学生读题,理解题意。
交流从题目中获取的信息和所要解决的问题。学生动手试一试。
小组看图讨论,各自交流做题方法。
生1、100÷5=20,所以要准备20棵树苗。
生
2、我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。
5、6、师让学生猜测,谁的思路对。集体反馈,发现规律。
经过集体交流,同学们发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。
7、教师讲解,帮助学生理解规律。
因为植树总是比间隔数多1,这样我们就可以先求出树与树之间共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。
8、研究如何列式。
100÷5=20(段)20﹢1=21(棵)
老师请同学们说出为什么这样列式,并让他们阐明思考过程。
三、敢于尝试,大显身手
1、在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?(1)、让学生自己读题,思考。(2)、小组讨论交流。(3)、集体反馈。指名板书:18÷3=6(段)
6+1=7(盆)
请学生分别说出每步的意思。
2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?(1)、读题、理解题意。(2)、分析已知条件和问题。(3)、尝试分析、独立列式。(4)、交流反馈。36-1=35(段)35×6=210(米)
(5)、让学生观察此题与例1的不同(6)、小组讨论,得出结论。例1是已知全长和株距,求株数。间隔+1=株数
此题是已知株数和株距,求全长。株数-1=间隔 间隔×株距=全长。
四、相信自己,你是最棒的!(做一做)
1、有一根绳子,每隔2米挂一个灯笼,起点和终点都挂,共挂了14个灯笼。这根绳子长多少米?
2、学校领操台到教学楼前共12米,每隔2米插一面彩旗。一共需要多少面彩旗?
五、学做小老师
同学们,学了这节课,相信同学们都明白了如何解决植树问题,那么,请同学们自己做一次小老师,自己编写一道植树问题,在小组内交流,比一比,看谁编的最好。
(学生动手,小组交流)
六、课堂小结,课外延伸
通过这节课的学习你有什么收获?
(这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。)
植树问题
(二)第 二 课 时
教学目标
[知识与技能]
1、探究两端都不种的植树问题。
2、培养学生动手操作,分析解决问题的能力。
3、培养学生运用数学知识解决实际问题的能力。
[过程与方法]通过猜测操作,验证,交流的方式探究两端都不种的植树问题。[情感态度与价值观]通过实践活动,培养学生应用所学知识解决实际问题的能力。
教学重点 理解植树问题中线段两端都不种的特征,并能应用规律解决问题。
教学难点 基本规律的提炼和方法的应用。
教学方法 观察法,尝试法,自学引导法 学法指导 自主探索、合作讨论练习法 教学过程
一、开门见山,直点主题
今天我们继续研究植树问题(师板书)
二、合作探究,发现规律
出示例2:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?
1、学生读题,理解题意
“两馆间的小路”指的是哪一段?
“小路两旁”指的是要栽几边?
2、学生互相合作,用小棒摆一摆
师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。
要求完成:
你一共摆了几根小棒
每一边的小棒根数和间隔数之间有什么关系?
3、全班交流
4、教师小结
这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。
三、运用规律,解决问题。
1、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安装一座,一共要安装多少座路灯?
2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
学生独立完成后全班交流
想一想:平均分成5段只需锯几次?
师问:为什么要减1?这相当于植树问题中的哪种情况?
四、课堂小结
同学们,今天这节课,你们表现得太出色了。谁能来夸夸自己或小伙伴,哪些地方做得好?
五、作业设计:
1、在两栋教学楼中间有一条50米的小路,在小路的两旁每隔5米放一盆兰花(两头都不放),一共要放多少盆花?
2、在一条全长3千米的公路两端装路灯(两端不要安装),每隔20米装一座。一共要安装多少座路灯?
板书
植树问题
全长÷间隔=间隔数
两端都不种的植树问题,即:植树棵数=间隔个数—1。
第三课时 围棋中的数学问题
课题:围棋中的数学问题 教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力; 3.让学生感受数学在日常生活中的广泛应用。教学重点:从封闭曲线(方阵)中探讨植树问题。教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。教学过程:
一、情境导入
二、猜谜:十九乘十九,黑白两对手,有眼看不见,无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。(4)汇报交流(着重请学生说出方法。)可能会出现以下方法:
3×2+2=8 2×4=8 3×3-1=8 3×4-4=8 直接点数。教师表扬学生的创新摆法,并奖励“智慧星”。(教师随学生回答,出示摆放方法。)2.教学每边摆放4粒棋子的方法。(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?(2)动手操作:请学生分小组按要求摆放棋子,写出算式。(3)游戏:让一学生当“小老师”,其余学生当“围棋子”,请小老师邀请“围棋子”按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。](4)汇报交流(着重请学生说出方法)教师随学生回答,用课件出示摆放方法。(5)你们最喜欢哪种方法?为什么? 3.教学每边摆放5粒棋子的方法。(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。(3)汇报交流。(教师随学生回答,出示摆放方法。)(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身“经历”的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)每边放的个数 最外层总数 3 4 5 6 „
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律:教师随着学生的回答板书: 间隔数×边数=最外层的总数
(3)学生根据规律,独立完成例3。
三、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子? 如果最外层每边能放200个,最外层一共可以摆放多少个棋子? 如果最外层每边能放300个,最外层一共可以摆放多少个棋子? 拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)2.做第121页第三题。
[设计意图:充分相信学生,放手让学生分析问题、解决问题,以学生为主归纳问题;教师在关键之处疏通点拨,引导学生加深理解,做到以学生为主体。] 3.请你参加:
12名学生在操场上做游戏,大家围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?(在教室内围一围。)4.请你思考:(课件出示同学开联欢会时的欢乐情景。)
“六一”儿童节即将来临,四<1>班同学准备开联欢会。大家围坐在一起,如果每边做14人,(如下图),这个班一共有多少个同学?每边都有8张课桌,一共要多少张课桌?
5.请你设计:(课件出示美丽的校园情景。)
学校为了庆祝“六一”儿童节,改变校园环境,想全校范围内征集校园花坛设计方案。有以下三种,请每组同学选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?再动手画一画,展示在黑板上,看哪一组做得又好又快!
[设计意图:整个练习从现实生活中出发提出数学问题,让学生在游戏中,在具体情境中充分动口、动手、动脑,培养了学生的自主学习能力、合作意识和科学探究精神。]
第四篇:六年级数学下册数学广角教案
六年级数学下册数学广角教案
数学广角
第一时《抽屉原理》
教学内容:教材第70、71页的例
1、例2
教学目标:、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、会用“抽屉原理”解决简单的实际问题。
3、通过操作发展学生的类推能力,形成比较抽象的数学思维。
教学重点:认识“抽屉原理”。
教学难点:灵活运用“抽屉原理”解决实际问题。
教学方法:小组合作,自主探究。
教学准备:若干根小棒,4个纸杯。
教学过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。
师:象这样的现象中隐藏着什么数学奥秘呢?这节我们就一起来研究这个原理。
二、自主学习,初步感知
(一)出示例1:4枝铅笔,3个文具盒。
、观察猜测
猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?
2、自主探究
(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。
(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。
(3)交流讨论,汇报。可能如下:
第一种:枚举法。
用实物摆一摆,把所有的摆放结果都罗列出来。
第二种:假设法。
如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。
第三种:数的分解。
把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。
(4)、比较优化。
请学生继续思考:如果把枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?
师:为什么不采用枚举法来验证呢?
数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。
3、引导发现
只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。
(二)出示例2:把本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?
、学生尝试自已探究。
2、交流探究的结果,可能如下:)枚举法。
共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书
2)假设法。
把本书“平均分成2份”,÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。
由此可见,把本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。
同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。
9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进本书。
3、观察发现
学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。
4、介绍原理。
师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。
三、应用原理,解决问题
完成教材第72页“做一做”第1题
四、全总结,回归生活、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
第二时抽取游戏
教学目标
知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。
过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。
情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重难点
使学生理解抽取问题中的一些基本原理。
2找到抽屉原理问题中被分的物品。
教学过程
一、创设情境、引入新:
师:一天晚上,有一个小女孩正要从抽屉里拿袜子。抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女孩至少摸出多少只袜子,才能保证拿出相同颜色的袜子?
学生思考、发言。
师:学习了这节我们就能解决类似的问题了。
二、活动探究、深入了解:
(一)出示例3:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球?
、学生提出猜想。
2、用预先准备的学具,小组合作交流。
4、小组反馈,师相机板书:
3、得出结论:把颜色看作抽屉。
有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。
(二)研究规律
师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?
分小组讨论后汇报。
再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。
小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。
三、巩固训练,促进内化
、做一做
2、解决前有趣的问题
3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证有两根筷子是同色的?
(2)至少拿几根,才能保证有两双同色的筷子?为什么?
四、全总结,畅谈收获、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
第三时
节约用水
教学目标
知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力
过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。
情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。
教学重难点
所学知识的综合应用
教学过程
一、情景引入,提出问题、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出题。
2、提出问题:为什么要节约用水呢?
二、问题讨论,明白道理、交流前搜集的信息,畅谈有关水的认识。
2、展示相关资料,了解地球上水资源状况。
3、交流感想,强化体验。
三、参与活动,亲身体验
师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?
师:前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!、小组交流、展示成果。(一分钟大约滴水0毫升)
2、计算统计,交流感想。
师:根据上面的滴水速度,完成下面的统计表。
一个漏水水龙头漏水情况统计表
时间
分钟
小时
24小时
年
水量(升)
一个水龙头一年浪费多少水?(1立方米约重1吨)
3、评价家庭用水状况,提出节水建议。
4、(出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约02升。
A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?
B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?
、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?
(独立分析计算、汇报计算结果,交流想法)
四、解决问题,提出方案
分组讨论一下节约用水的措施。、学生分组讨论,多媒体演示生活中的节水片段。
2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。
第五篇:五年级下册数学广角教学反思
五年级下册数学广角教学反思
找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。教材的编排是先分析5个零件中找一个次品的方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,这时进行优化,并且延伸10、11个零件怎么分?教材虽然给我们提供一个基本教学思路,但是教学过程如何展开;优化在什么时候妥当;这么多内容如何在40分钟得到落实;都是值得深思的。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课,我认为有以下几点优点与不足。
一、导入激发学生学习热情
首先,我以课题提问导入,抓住学生好奇心理(什么是次品?怎样找次品?等等一些问题。)课一开始,发挥学生对新课学习的积极性和主动性,形成主体意识。而后又加以课件来解决他们心中的某些疑问,这样能激发学生学习的热情。
二、过程注重循序渐进
然后,我让学生先从3瓶口香糖中找少了2粒的口香糖,在学生有初步体验的基础上,再过度到从5个,9个、12个。这样首先是一次验证,其次加深了学生的体验。为了解决概括需要例子的充分性和课堂时间的有限性的矛盾,本节课我还提供部分典型的数据的方法解决了这个矛盾,即节省了时间,有很好的提供了归纳优化的数据。其次,充分的动手操作和幻灯片直观演示是学生分析找次品次数的基础。
三、结论注重猜测与验证
猜测与验证是学生开展数学活动的一种重要方式。波利亚认为:“参与教学在一定程度上就是积极地参与发现工作,并且在很大程度上是通过猜测与验证来实现的。”在本节课的教学中,我常常从自由猜测入手(在得出从9个物品中找次品得出结论,把9平均分成3份后,所称的次数是最少的。然后我引导学生大胆猜测,是不是所有的3的倍数的数都把它平均分成3份后,所称得的次数是最少的呢?然后学生就会想到拿一个是3的倍数的数去验证。从而得出了结论。在课结尾时,我也让学生大胆猜测不是3的倍数的数你认为应该怎样分呢?这样学生有了刚才是3的倍数的数的分法的经验,也大胆地说出了自己的猜想。)引导学生发现问题,提出问题,激活思维;继而利用合情推理或逻辑推理验证猜测,从而理解概念,把握规律,知晓原理;最后设计延伸猜测活动,启迪思维,鼓励创新。
四、拓展开启学生思维
在得出待测物品是3的倍数后,我适当将知识进行了拓展,(当待测物品是27个、81个、243个、729个、2187个,你们能不能很快说出至少称几次,就一定能找到次品。)学生经过观察后,很快地分别说出了所要称的次数。这一拓展,有效地开启了学生的思维。当然不足之处也有很多:
1、本节是思维训练课,但最终是不是所有的同学的思维都得到了不同的发展呢?现在反思一下,确实课堂上还有一部分同学一直很“安静”,那就是他们的思维根本就没有调动起来。
2、所用的图示的办法,应该多做讲解,要让每一位同学能熟练的运用它。
3、没有采用形式多样的教学手段,不能充分调动所有学生的学习积极性。以上存在的种种不足,我认为上好这节课应该从以上几点进行调整。