第一篇:函数极限的四则运算法则学案1
课题:§13-3函数极限的四则运算法则
(一)学习目标:掌握函数极限的运算法则,并会求简单的函数的极限
学习重点:运用函数极限的运算法则求极限
学习难点:函数极限法则的运用
学习过程
一、知识复习
1.复习数列极限的四则运算法则(包括乘方的极限的法则).
2.复习几个简单函数的极限.即:
二、课堂学习
1.指导
对上述定理的证明作简要说明.
2.探究
问题1 根据函数极限定义和函数的图象,说出下列极限,并验证所给结论.
(其中f(x)为有理分函数).
所以,若f(x)为有理整函数,则有
解:因为当x→x0时,分子、分母皆有极限且分母的极限不为零,因此有
判断下列各极限是否存在?如果存在,求其极限;如果不存在,说明理由.
三、检测
1.求下列极限:
2.求下列极限:
四、学习小结
第二篇:函数极限
《数学分析》教案
第三章 函数极限
xbl
第三章 函数极限
教学目的:
1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限
和,并能熟练运用;
4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点:
本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。
教学时数:16学时
§ 1 函数极限概念(3学时)
教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。
教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。
教学重点:函数极限的概念。
教学难点:函数极限的定义及其应用。
一、复习:数列极限的概念、性质等
二、讲授新课:
(一)时函数的极限:
《数学分析》教案
第三章 函数极限
xbl
例4 验证
例5 验证
例6 验证
证 由 =
为使
需有
需有
为使
于是, 倘限制 , 就有
例7 验证
例8 验证(类似有
(三)单侧极限:
1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域
《数学分析》教案
第三章 函数极限
xbl
我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课:
(一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性:
2.局部有界性:
3.局部保号性:
4.单调性(不等式性质):
Th 4 若使,证 设
和都有 =
(现证对 都存在, 且存在点 的空心邻域),有
註: 若在Th 4的条件中, 改“ 就有
5.6.以
迫敛性:
”为“ 举例说明.”, 未必
四则运算性质:(只证“+”和“ ”)
(二)利用极限性质求极限: 已证明过以下几个极限:
《数学分析》教案
第三章 函数极限
xbl
例8
例9
例10 已知
求和
补充题:已知
求和()§ 3 函数极限存在的条件(4学时)
教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。
教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限
为例.一.Heine归并原则——函数极限与数列极限的关系:
Th 1 设函数在,对任何在点
且的某空心邻域
内有定义.则极限都存在且相等.(证)
存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为
单调趋于
.参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案
第三章 函数极限
xbl
教学难点:两个重要极限的证明及运用。
教学方法:讲授定理的证明,举例说明应用,练习。一.
(证)(同理有)
例1
例2.例3
例4
例5 证明极限 不存在.二.证 对
有
例6
特别当 等.例7
例8
《数学分析》教案
第三章 函数极限
xbl
三. 等价无穷小:
Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则)
几组常用等价无穷小:(见[2])
例3 时, 无穷小
与
是否等价? 例4
四.无穷大量:
1.定义:
2.性质:
性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系:
无穷大的倒数是无穷小,非零无穷小的倒数是无穷大
习题 课(2学时)
一、理论概述:
《数学分析》教案
第三章 函数极限
xbl
例7.求
.注意 时, 且
.先求
由Heine归并原则
即求得所求极限
.例8 求是否存在.和.并说明极限
解;
可见极限 不存在.--32
第三篇:函数极限
习题
1.按定义证明下列极限:
(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x
x251;(4)lim(3)lim2xx1x2
(5)limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf(x)≠ A.xx0
3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0
4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0
5.证明定理3.1
6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x
x;(2)f(x)= [x]
2x;x0.(3)f(x)=0;x0.1x2,x0.
7.设 limf(x)= A,证明limf(xxx01)= A x
8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0
习题
1. 求下列极限:
x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22
x21x113x;
lim(3)lim;(4)
x12x2x1x0x22x3
xn1(5)limm(n,m 为正整数);(6)lim
x1xx41
(7)lim
x0
2x3x2
70;
a2xa3x68x5.(a>0);(8)lim
xx5x190
2. 利用敛性求极限:(1)lim
x
xcosxxsinx
;(2)lim2
x0xx4
xx0
3. 设 limf(x)=A, limg(x)=B.证明:
xx0
(1)lim[f(x)±g(x)]=A±B;
xx0
(2)lim[f(x)g(x)]=AB;
xx0
(3)lim
xx0
f(x)A
=(当B≠0时)g(x)B
4. 设
a0xma1xm1am1xam
f(x)=,a0≠0,b0≠0,m≤n,nn1
b0xb1xbn1xbn
试求 limf(x)
x
5. 设f(x)>0, limf(x)=A.证明
xx0
xx0
lim
f(x)=A,其中n≥2为正整数.6.证明limax=1(0 x0 7.设limf(x)=A, limg(x)=B.xx0 xx0 (1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么? (2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim x0 x x11 lim;(2);nnx0x1xx1x xx2xnn (3)lim;(4)lim x0x0x1 x1 x (5)lim x x(提示:参照例1) x x0 x0 x0 9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)? x0 x0 x0 习题 1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n n 2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n [a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则; n (2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n n 4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都 n n 存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)= 0xu x0 0xun(x0) inff(x) 6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0 7.证明:若f为周期函数,且limf(x)=0,则f(x)=0 x 8.证明定理3.9 习题 1.求下列极限 sin2xsinx3 (1)lim;(2)lim x0x0sinx2x (3)lim x cosxx tanxsinxarctanx lim(5)lim;(6);3x0x0xx sin2xsin2a1 (7)limxsin;(8)lim; xxaxxa ;(4)lim x0 tanx ;x cosx2 (9)lim;(10)lim x0x01cosxx11 sin4x 2.求下列极限 12x (1)lim(1);(2)lim1axx(a为给定实数); nx0x x (3)lim1tanx x0 cotx ;(4)lim 1x ; x01x (5)lim(x 3x22x1);(6)lim(1)x(,为给定实数) n3x1x 3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin n x0n x2 xxcos1 2n22 n ;(2) 习题 1. 证明下列各式 (1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0); + (3)x1o(1)(x→0); (4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞); (6)o(g(x))±o(g(x))=o(g(x))(x→x0) (7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限: x21x(1)lim(2)lim x01cosxxxcosx x3. 证明定理3.13 4. 求下列函数所表示曲线的渐近线: 13x34 (1)y =;(2)y = arctan x;(3)y = 2 xx2x 5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量: (1)sin2x-2sinx;(2) -(1-x);1x (3)tanxsinx;(4) x24x3 6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量: (1) x2x5;(2)x+x2(2+sinx); (3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞) 8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r 时的无穷大量。 9. 设 f(x)~g(x)(x→x0),证明: f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x)) 总 练习题 1. 求下列极限: 1 (x[x])lim([x]1)(1)lim;(2) x3 x1 (3)lim(x axbxaxbx) xxa (4)lim x (5)lim xxa x (6)lim xxxx x0 (7)lim nm,m,n 为正整数 nx11xm1x 2. 分别求出满足下述条件的常数a与b: x21 (1)limaxb0 xx1 x(3)limx (2)lim xxx2 x1axb0 x1axb0 x2 3. 试分别举出符合下列要求的函数f: (1)limf(x)f(2);(2)limf(x)不存在。 4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0 局部保号性有矛盾吗? 5. 设limf(x)A,limg(u)B,在何种条件下能由此推出 xa gA limg(f(x))B? xa 6. 设f(x)=x cos x。试作数列 (1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列: (1)limanr1 n (2)lim an1 s1(an≠0,n=1,2,…) nan n2 n2 8. 利用上题(1)的结论求极限: (1)lim1 n 11(2)lim1 nnn 9. 设liman,证明 n (1)lim (a1a2an) nn n (2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限: (1)limn!(2)lim n In(n!) nn 11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得 limf(xn)A,则有 n f(x0-0)= supf(x)A 0xU(x0) 12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞) x 13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且 f(x)=limf(x)f(1)lim x0 x 证明:f(x)f(1),x∈(0,+∞) 14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足 x lim(f(x1)f(1))A证明 x lim f(x) A x 数学之美2006年7月第1期 函数极限的综合分析与理解 经济学院 财政学 任银涛 0511666 数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。 一、函数极限的定义和基本性质 函数极限可以分成x→x0,x→∞两类,而运用ε-δ定义更多的见诸于已知 极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以xx0的极限为例,fx在点x0以A极限的定义是:0,0,使当0xx0时,有f(x)A(A为常数).问题的关键在于找到符合定义要求的,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明xx0 ''即如果fxnA,fxn,fx在x0处的极限不存在。B(n,xn和xnx0) 则fx在x0处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式fxPxPx,Qx均为多项式,Qx0)。设Px的次数为n,Qx的Qx次数为m,当x时,若nm,则fx0;若nm,则fxPx与Qx的最高次项系数之比;若nm,则fx。当xx0时,f(x)P(x0)(Q(x0)0)。Q(x0) 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数gx与 hx,并且要满足gxfxhx,从而证明或求得函数fx的极限值。 三、应用等价无穷小代换求极限 掌握常用的等价无穷小很重要。等价无穷小代换可以将复杂的极限式变的简单明了,让求解过程变得简明迅速。 x0时,sinx与x,tanx与x,arcsinx与x,arctanx与x,1cosx与x2,xa,ax1与xlna,1a与ax(a0)等等可ln1x与x,loga1x与lna 以相互替换。特别需要注意的是,等价无穷小代换只能用于分子、分母中的乘积 sinxx 因子,而对于加减法运算则不能运用。例如lim,不能直接把sinx替换 x0x 3sinxx 1成x,得出极限值为0,实际上lim。 x0x36 四、运用洛必达法则求函数极限 设函数fx,gx在点a的某空心邻域可导,且g'(x)0。当xa时,fxf'x,fx和gx的极限同时为0或时才适用'A(A为常数或) gxgx洛必达法则。洛必达法则实际上把求函数极限问题转化为学生较为拿手的求导数 0、00、1、0等类型则需要问题。这使得求解思路简单程序化。而对于、0 对式子进行转化,或通分或取倒数或取对数等转化为型,再使用洛必达法 0 则求极限。例如fx gx的极限转化为求egxlnfx的极限等等。然而,对于数列,则必须转化为函数再运用洛必达法则。这是因为如果把数列看作是自变量为n的函数时,它的定义域是一系列孤立的点,不存在导数。这是使用洛必达法则时必须要注意的一点。参见附例3。 五、泰勒公式的运用 对于使用洛必达法则不易求出结果的复杂函数式,可以考虑使用泰勒公式。这样将函数式化为最高次项为相同或相近的式子,这时就变成了求多项式的极限值(接着求值见上文所述方法),使计算一目了然。因此掌握和记忆常用基本初 等函数的麦克劳林展开式是十分必要的。如ex,sinx,cosx,ln1x等等。至于展开式展开多少,则要与题干中的自变量x最高次项保持一致。如 cosxelimx0x4x4)。 x 2利用泰勒公式展开cosx,e x22,展开到x4即可(原式x最高次项为 六、利用微分中值定理来求极限 f(x)在a,b上连续,在a,b上可导,则至少存在一点a,b,使 f'() f(b)f(a)'f(b)f(a),f()即可看成特殊的极限,用来求解。一般需 baba 要函数式可以看成同一函数的区间端点的差,这样可以使用微分中值定理。参见附例4。 另外,一些重要的结论往往在求极限时可以直接加以引用,例如 lim(1x)e,lim x0 1x sinx 1, 1,1等等。 x0nnx 求极限的方法和技巧更多的在于实践中的摸索和探讨,上述方法只是笔者在高等数学学习和练习的一些心得,求极限的方法还有很多。局限于笔者的认知水平,缺点和不足在所难免,敬请批评指正。 南开大学张阳和张效成老师的课堂教学给了笔者很大的启发,在此向两位老师表示感谢。 附:例1:对任意给定的0,1,总存在正整数N,使得当nN时,恒有。xna2,是数列xn收敛于a的() A 充分非必要条件 B必要非充分条件C充分必要条件D既非充分又非必要条件 解析:这道题是1999年全国考研试卷(二)的数学选择题,这道题直接考察了对极限定义的掌握和理解。 例2:若x1a,y1b(ba0),xn1xnyn,yn1明数列xn,yn有相同的极限。(见习题册1 Page.18) 解析:由已知条件易知,by1y2……yn1xn1……x1a,数列 xn1yn 1,试证 2文中习题册是指南开大学薛运华,赵志勇主编的《高等数学习题课讲义(上册)》,为学生用数学练习册。 xyn limyn1linxn,yn单调有界,可以推出xn,yn收敛。nn n 。设 limynA,limxnB,则A n AB,AB。2 例3:求lim(ntan)n的值。(见课本2 Page.153) nn 1 解析:这是数列。设fxxtan,则对limfx可以运用洛必达法则,xx且原式=limfx。 x x2 aa arctan),a0 nnn1 arctan解析:如例题3,设fxa,则在x,x1上fx连续,在x,x1内 x 例4:求limn2(arctan 可导。于是,x,x1,f'()arctan aaaarctan2(使用微分中x1xa2 a)a。22 a 值定理可得)。x,则,原式=lim2( 参考书目 [1] 张效成主编,《经济类数学分析(上册)》,天津大学出版社,2005年7月 [2] 薛运华,赵志勇主编,《高等数学习题课讲义(上册)》,南开大学 [3] 张友贵等,《掌握高等数学(理工类、经济类)》,大连理工出版社,2004年11月 [4]《硕士研究生入学考试试题》,1984—2005 ※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○ 文中课本是指笔者使用的天津大学出版社05年7月版的《经济类数学分析(上册)》张效成主编 高等数学教案 §1.2函数极限 教学目标: 1.掌握各种情形下的函数极限的基本概念和性质。 2.掌握极限存在性的判定及应用。 3.熟练掌握求函数极限的基本方法。 教学重难点:函数极限的概念、性质及计算。 教学过程: 一、复习数列极限的定义及性质 二、导入新课: 由上节知,数列是自变量取自然数时的函数,xnf(n),因此,数列是函数的一种特殊情况。对于函数,自变量的变化主要表现在两个方面: 1、自变量x任意接近于有限值a,记为xa,相应的函数值f(x)的变化情况。 2、当自变量x的绝对值x无限增大,记x,相应的函数值f(x)的变化情况。 三、讲授新课: Ⅰ、当xa(a为有限实数)时函数f(x)的极限 (一)引例 曲线的切线:求抛物线y2x2在点M0(1,2)处的切线。 方法:割线――切线。求曲线的切线可归结为求出曲线在定点的切线斜率,从数量上看,动割线的斜率的极限就是切线的斜率。 (二)函数极限的概念 1、当xa(a为有限实数)时函数f(x)的极限 与数列极限的意义相仿,自变量趋于有限值a时的函数极限可理解为:当xa时,f(x)A(A为某常数),即当xa时,f(x)与A无限地接近,或说f(x)A可任意小,亦即对于预先任意给定的正整数(不论多么小),当x与a充分接近时,可使得f(x)A小于。用数学的语言说,即 定义(定义):设函数f(x)在点a的某空心邻域内有定义,A为定数.若对>0,>0,使得当0<|x-a|<δ时有 f(x)A,则称xa时,函数f(x)以A为极限,记作 limf(x)A,或f(x)→A(x→a).xa 0,说明:(1)“x与x0充分接近”在定义中表现为:有0xx0,即xU(x0,)。 显然越小,此与数列极限中的N所起的作用是一样的,它也依赖于。x与x0接近就越好,一般地,越小,相应地也小一些。 (2)定义中“0<|x-a|<δ”指出xa,这说明,当xa时,函数f(x)有没有极限与 f(x)在点a有无定义无关。函数极限概念侧重于描述f(x)在xa且xa时的变化趋势。 正因为如此,这个概念能解决切线问题。 (3)函数极限limf(x)A的几何意义:当x在a的去心邻域时,函数yf(x)图形完全落在xa 以直线yA为中心线,宽为2的带形区域内.(|f(x)A|,Af(x)A) y A(4)在应用定义验证这种 类型的函数极限时,具体方法是:对任A给的0,通过不等式|f(x)A| 反解出|xx0|,进而找到满足条件的,证明结论。 Ⅱ、求函数极限 下面我们举例说明如何应用 定义来验证这种类型的函数极限。请读者特别注意以下 各例中的值(依赖于)是怎样确定的。 例1 证明limCC,(C为常数).xa 证明:任给0,任取0,当0xx0时,总有 f(x)cCC0,依定义,有limCC.xa 例2 证明lim(3x2)4.x 2证明:任给0,由于f(x)4(3x2)43x63x2,取 ,则当 0x2时,总有f(x)4,所以lim(3x2)4.x2 x2 12.例3 证明lim x1x1 证明:函数在点x=1处没有定义,x21 f(x)A2x1,任给0,要使 x1 x21x21 2.f(x)A,只要取,当0x1时,就有2,lim x1x1x1 练习: 1、证明lim(axb)ax0b xx0 (a0) 证明:对0,要使得(axb)(ax0b)a(xx0)axx0,只须 xx0 a,所以取 a 0显然当xx0时,有(axb)(ax0b)。 x21 2。 2、证明lim 2x12xx1 3x212x121x证明:对0,因为a1,所以x10. 2 2xx132x133(2x1)[此处x1,即考虑x01附近的情况,故不妨限制x为0x11,即0x2,xxx2121x x1]。因为2x11,,要使,只须 ,即2 33(2x1)32xx13 x212 1,3}(从图形中解释),当0x时,有2x3。取min{。 2xx13 Ⅲ、单侧极限 有些函数在其定义域上某些点左侧与右侧的解析式不同(如分段函数定义域上的某些点),或函数在某些点仅在其一侧有定义(如在定义区间端点处),这时函数在那些点上的极限只能 1,x0,单侧地给出定义。例如函数f(x),当x从左侧趋于0时,f(x)以1为极限.当x x,x0.从右侧趋于0时,f(x)以0为极限.它们分别称为x趋于0时f(x)的左极限和右极限。 左极限:0,0,使得当axa时,都有f(x)A.则称A为函数f(x)当xa 时的左极限。记作 limf(x)A,或f(a0)A。 xa 右极限:0,0,使得当axa时,都有f(x)A.则称A为函数f(x)当xa 时的右极限。记作 limf(x)A,或f(a0)A。 xa 由左、右极限的定义不难看出,函数f(x)当xa时极限存在函数左、右极限存在且相等,即limf(x)limf(x).xa xa 若左、右极限存在不相等,则极限不存在。 1,x0, 例4 函数f(x)sngx0,x0,当x0时极限不存在。 1,x0. 证明:事实上,f(x)的左极限limf(x)1,右极限limf(x)1,左右极限不相等,所以 x0 x0 limf(x)不存在。 x0 Ⅳ、当x时,函数f(x)的极限 (一)当x时,函数f(x)的极限 定义:对于任意给定的0,总存在一个M0,使得对于满足不等式xM的一切x,均有不等式f(x)A成立,则称函数f(x)当x∞时以A为极限,记作 limf(x)A x x x,或 f(x)→A(x→∞).同样可以定义limf(x)A,limf(x)A.注意:(1)limf(x)A可看作数列极限limf(n)a的直接推广。它们不同之处在于,这里所 x n 考虑的是所有大于M的实数(连续),而不仅仅是正整数(跳跃性的)。(2)limf(x)Alimf(x)limf(x)A。 x x x (3)几何意义:当xM或xM时,函数yf(x)图形完全落在以直线yA为中心线,宽为2的带形区域内.(二)例题 例5 证明lim 0.xx 2110||x|M,只需,如果取,则对x2x2 证明:任意给定0,要使|一切满足xM的x,均有| 例6 证明lim sinx 0.xx 0|,证毕。x2 证:要使 11sinxsinx 10,只需|x|.,因此对0,取M,当xM时,有 xxx sinxsinx 0,故lim0.xxx Ⅴ、函数极限的性质 下面以limf(x)为代表叙述函数极限的性质,这些性质对其余5种类型的函数极限也成立.xa1、(唯一性)若limf(x)存在,则此极限是唯一的.xa2、(局部有界性)若limf(x)A,存在某个00和常数M0,当0xx00时,有 xa |f(x)|M.注意:如果一个数列收敛,则这个数列有界。但函数f(x)在点a有极限,只能断言它在某个 局部范围,即在点a的某空心邻域有界,称为局部有界。 3、(局部保号性)若limf(x)=A>0(或<0),则存在00,使当0xx00时,有f(x)0 xa (或f(x)0)。 A,则由limf(x)=A,对上述0,总存在00,使当0xx00时,xa 2AA 有|f(x)A|0,因而f(x)A0A0.22 A 若A<0, 取0,则由limf(x)=A,对上述0,总存在00,使当0xx00时,有 xa2 AA |f(x)A|0,因而f(x)A0A0.224、四则运算法则 证:设A>0,取0 设limf(x)与limg(x)存在,则函数f±g,f·g,(若limg(x)≠0)当x→a时极限存在且 xa xa fg xx0 1)lim[f(x)g(x)]=limf(x)±limg(x); xa xa xa 2)lim[f(x)g(x)]=limf(x)limg(x); xa xa xa f(x)f(x)limxa 3)lim=.(limg(x)≠0) xag(x)limg(x)xx0 xa 注意:公式(1)、(2)可以推广到任意有限个函数的情况。特别地,有 lim[(f(x))n][limf(x)]n.xa xa 例7 求lim[(3x22x1)(x33)].x 2x23x2 例8 求lim.(先约分) x1x3 12x31 3x例9 求lim3.(分子分母同除以) xx8x27x x1,x0 例10 设f(x)x23x1,求limf(x),limf(x).x0x,x03 x1 (注意求limf(x)时,由于时分段函数,所以要求在x0时的左右极限。) x0 四、习题处理 五、小结,作业:p36ex1、6、8.附录:设limf(x)A,limg(x)B。证明: xx0 xx0 f(x)A ,(当 B≠0时) xx0xx0xx0g(x)B 证明因为limf(x)A,limg(x)B所以0,分别存在10,20,使得当 (1)lim[f(x)g(x)]AB;(2)lim[f(x)g(x)]AB;(3)lim xx0 xx0 0|xx0|1时,有|f(x)A|;当0|xx0|2时,有|g(x)B|。(1)取min{1,2},于是当0|xx0|时,有 |(f(x)g(x))(AB)||f(x)A||g(x)B|2,所以lim[f(x)g(x)]AB。 xx0 同理可证:lim[f(x)g(x)]AB xx0 (2)因为limf(x)A,由局部有界性定理,知存在30,使f(x)在U0(x0,3)有界。即存在xx0 M0,当0|xx0|3时,|f(x)|M。现在取min{1,2,3},于是当0|xx0|时,有 |f(x)g(x)AB||f(x)g(x)f(x)B||f(x)BAB| |f(x)||g(x)B|B|f(x)A|MB(MB)所以lim[f(x)g(x)]AB xx0 B2 0,于是由局部保号性定理知,存在40,(3)因为limg(x)B0,limBg(x)B xx0xx02 B2 当0|xx0|4时,|Bg(x)|。现在取min{1,2,4},于是当0|xx0|时,有 f(x)ABf(x)Ag(x)|Bf(x)ABABAg(x)| g(x)BBg(x)|B||g(x)| |B||f(x)A||A||Bg(x)||B||A||B||A| 22 |B||g(x)|BBf(x)A 。所以lim xx0g(x)B第四篇:函数极限
第五篇:1-2函数极限