第一篇:数与形的教学内容
《数学广角──数与形》教学内容
一、填空
1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
考查目的:数与形结合的规律;通过特例分析归纳出一般结论的方法。答案:30。
解析:第(1)个图有1+2+3=6个点,第(2)个图有2+3+4=9个点,第(3)个图有3+4+5=12个点„„第个图就有
个点。对于找规律的题目,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
2.先画出第五个图形并填空。再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
考查目的:数与形结合的规律;利用规律解决问题。
答案:,1+4×4;37,201。
个点,则第10个图共有1+4×(10-1)解析:分析图形,可得出第个图中共有=37个点,第51个图共有1+4×(51-1)=201个点。
3.按下面用小棒摆正六边形。摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
考查目的:根据已知图形的排列特点及数量关系,推理得出一般的结论进行解答。答案:21;51。
解析:摆1个六边形需要6根小棒,可以写作5×1+1;摆2个六边形需要11根小棒,可以写作5×2+1;摆3个六边形需要16根小棒,可以写作5×3+1„„由此可以推理得出一般规律,即摆个六边形需要
根小棒。4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:
考查目的:分析图形的变化规律并列出代数式。答案:10。
解析:一张方桌坐4人,每多一张方桌就多2个人,那么有4张方桌时就多坐了6人,总人数为4+6=10。如果是
张方桌,则所坐人数是。
5.数形结合是一种重要的数学思想,认真观察图形,然后完成下列问题。
; ;
; 。
考查目的:利用数形结合的思想探索规律。答案:16,4;5。
解析:通过启发引导,使学生明确可以把一个点看作边长是1的正方形,并由此类比正方形的面积公式计算出结果。对于的解答,引导学生从已知的结果归纳出“从1开始连续奇数的和等于奇数个数的平方”这一结论即可。
二、选择
1.观察下图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色的三角形有()。
A.82个 B.154个 C.83个 D.121个 考查目的:数与形的变化规律。答案:D
解析:分别数出第一个、第二个、第三个图中白色三角形的个数,总结出白色三角形的增长规律,以此推算出第5个大三角形中白色三角形的个数为1+3+9+27+81=121。
2.有一个从袋子中摸球的游戏,小红根据游戏规则,做出了如下图所示的树形图,则此次摸球的游戏规则是()。
A.随机摸出一个球后放回,再随机摸出一个球
B.随机摸出一个球后不放回,再随机摸出一个球 C.随机摸出一个球后放回,再随机摸出三个球
D.随机摸出一个球后不放回,再随机摸出三个球
考查目的:用画树状图的方法解决与“可能性”有关的问题。答案:A
解析:观察树形图可知,袋中共有红、黄、蓝三个小球,此次摸球的游戏规则为:第一次随机摸出一个球后放回,第二次再随机摸出一个球。
3.搭建如图(1)的单顶帐篷需要17根钢管,若这样的帐篷按图(2)、图(3)的方式串起来搭建,则可节省结合处的钢管,那么串搭20顶这样的帐篷需要()根钢管。
A.340 B.225 C.226 D.227
考查目的:图形中的计数规律。答案:C
解析:通过分析图形,搭建单顶帐篷需要17根钢管。从串搭第2顶帐篷开始,每多串一顶帐篷需多用11根钢管,由此得出串搭顶帐篷需要串搭20顶这样的帐篷需要11×20+6=226根钢管。
根钢管。则4.一只兔子和一条小狗从同一地点出发,同时开始向东运动,兔子的运动距离与时间关系图象如图中实线部分ABCD所示,小狗的运动距离与时间关系图象如图中虚线部分AD所示。则关于该图象下列说法正确的是()。
A.小狗的速度始终比兔子快 B.整个过程中小狗和兔子的平均速度相同 C.图中BC段表明兔子在做匀速直线运动 D.在前4秒内,小狗比兔子跑得快 考查目的:关于行程问题的图象综合题。答案:B
解析:由图象可以看出:在前4秒,兔子在相同时间内通过的路程比小狗的路程多,所以兔子的运动速度大于小狗的运动速度(由此判断选项D错误);在第4秒,小狗和兔子在相同时间内通过相同的路程,所以它们的平均速度相同;在4到8秒的时间段,小狗在相同时间内通过的路程比兔子的路程多,所以小狗的运动速度大于兔子的运动速度。整个过程中,小狗和兔子运动路程相同,运动时间相同,所以它们的平均速度相同,选项A是错误的,B正确。另,图中的BC段表示兔子处于静止状态。
5.如图,观察下列正三角形的三个顶点所标的数字规律,那么2008这个数在第 个三角形的 顶点处。()
A.669;上 B.669;左下 C.670;右下 D.670;上 考查目的:数字和图形相结合的变化规律。答案:D
解析:每个三角形有三个角,对应的三个数的顺序是上、左下、右下。根据2008÷3=669„„1,所以2008这个数在第670个三角形的上顶点处。
三、解答
1.把4个完全相同的乒乓球标上数字2、3、4、5,然后放到一个不透明的口袋中,第一次任意摸出一个球(不放回),第二次再任意摸出一个球。
(1)请补充完整下面的连线图:
(2)根据上图计算,两次摸出的球所标数字之和是7的可能性是多少? 考查目的:连线和列表的方法;利用可能性的知识解决问题。答案:(1)如下图所示:
(2)共有12种情况,和为7的有4种情况,可能性为。
解析:利用连线和列表的方法列举出所有的情况,是一种常用的解决问题的方法。教师应引导学生去经历和体会整个过程,注重对方法的理解和掌握。
2.找规律填空,要求写出思考的过程。
考查目的:探索数与形结合的规律。答案:(1)2×4=8,8×2=16,8×8=64。(2)8+2=10,12+3=15,16+4=20。如下图所示:
解析:第一个图形中,从上到下外围数字都是2,内部数字都是它的左上角与右上角两个数字的积;第二个图形中,从右上向左下看,每组数据都是一个等差数列:第一列公差是1,第二列公差是2,第三列公差是3,第四列公差是4„„由此即可解答。
3.双休日期间,明明和爸爸开车去动物园,在去的路上,明明画出了汽车的速度随时间的变化情况。如图所示:
(1)汽车行驶了多长时间?它的最大速度是多少?(2)汽车在哪个范围内保持匀速行驶?速度是多少?(3)出发后8分钟到10分钟这段时间可能出现什么情况?(4)用自己的语言描述这辆车的行驶情况。
考查目的:联系生活实际,利用数形结合的知识解决问题。
答案:(1)汽车行驶了16分钟,最大速度为30千米/小时。
(2)汽车在2到6分钟、12到16分钟这两个时间段内保持匀速行驶,速度为30千米/小时。
(3)可能发生的情况:汽车加油。
(4)先加速行驶,速度达到30千米/小时,开始匀速行驶,然后减速行驶,直到停下加油。加油后又开始加速,到30千米/小时的速度后匀速行驶,快到目的地时开始减速,最后到达目的地。
解析:通过读图,需要让学生明确:速度不为0就说明汽车在行驶;图象中点的纵坐标的最大值就是最大速度;匀速行驶时,汽车的速度不变;某段时间速度为0,说明汽车没有在行驶,说出一种可能的情况即可;最后一个问题需要结合实际进行描述。
4.分别由红、白、黑、黄、绿、蓝、紫七种颜色排成一排,颜色下面是自然数,按下列方式依次排列:
那么,自然数2010对应在哪种颜色下面?在第几行? 考查目的:利用数表中的规律解决问题。
答案:2010是图形中出现的第2011个数,而2011÷(7+6)=154„„9,说明2010在154×2+2=310行,具体位置为从右向左第2个,对应颜色是绿色。
答:2010在绿色下面,在第310行。解析:奇数行都有7个数,偶数行都有6个数,循环的周期是13。而且奇数行是从左到右增加的顺序,偶数行是从右到左增加的顺序。2010是图形中出现的第2011个数,用2011除以13得出循环的周期和余数,进一步分析所在的行数,最后确定位置和对应的颜色。
5.用花、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用花瓷砖(如图所示)。
(1)填写下列表格。想一想,这些数量之间有什么关系?
(2)如果所拼的图形中,用了20块花瓷砖,那么,白瓷砖用了多少块?(3)如果所拼的图形中,用了
块白瓷砖,那么花瓷砖用了多少块?
考查目的:先找到数与形结合的规律,再根据规律求解。
答案:(1)如下表格所示:
(2)(20÷4-1)×(20÷4-1)=16(块)。答:白瓷砖用了16块。(3)答:花瓷砖用了,块。
(块)。
解析:大正方形每边的块数每增加1块,所用的花瓷砖块数就增加4。白瓷砖的总块数是白色瓷砖区域每个边上的块数的平方,而花瓷砖的总数量是白瓷砖一边的块数加1的4倍。
第二篇:数与形教案
《数与形》教学设计
半程镇中心小学 范建玲
【教学内容】
《义务教育教科书·数学》(人教版)六年制六年级上册第八单元《数学广角----数与形》,107页例1,108页做一做。
【教学目标】
1、在解决数学问题的过程中,总结并应用规律,体会归纳推理等数学思想。
2、体会数与形的联系,积累数形结合解决问题的经验,培养数形结合的应用意识。
3、体会数形结合思想的价值,激发学生的学习兴趣,感受数学的魅力。【教学重点】
体会数形结合思想的价值,激发学生的学习兴趣,感受数学魅力。【教学难点】
数形结合,解释应用。【教学过程】
一、实物引入,体验数形先天联系。1.欣赏一幅图片(花坛)。你看到了什么?
2.从数学的角度观察描述实物,体验数---形---物之间的天然联系。
【设计意图:数学来源于生活,数与形是同一客观事物在数学上的两种不同表象,通过简单事物以小见大,使学生感受数与形的联系是先天的,不可分割的。】
二、操作探究,体验数形结合思想价值。
(一)经历问题解决过程,寻找规律,以形助数。1.提出问题,分析问题。
(从1开始的n个连续奇数相加的和是)。2.假设举例,探究规律。
复杂的问题从简单的开始是一个很好的解决问题的策略,我们先把n假定在10个以内。3.观察对比,归纳总结。
你发现了什么规律?你能举例说明一下吗?从1开始的n个连续奇数相加的和是 n² 4.以形助数,解释规律。 化数为形,合作探究。这个问题从数的角度不好解释了,怎么办呢?
以此类推,再现通式。
提炼总结:以形助数。
师:一些复杂的数量关系往往需要借助图形来帮助理解,化数为形后,可以使这些复杂的数量关系变得更加清楚明白,直观易懂。
【设计意图:着眼于学生利用数形结合解决问题经验的积累,使学生切实经历分析问题,提出假设,举例验证,形成结论,解释证明的问题解决全过程。以小见大,发现规律,化数为形,解释规律,全面体现数与形的应用价值】
(二)化形为数,以数解形。(做一做2题变式。)1.出示问题,观察规律。
师:10张桌子拼在一起能坐多少人?。2.解决问题,汇报交流。
师:10张桌子拼在一起能坐多少人?你是怎么做的?为什么这样做? 3.数形对比,提炼总结(以数解形)。
用数的规律来解决图形数量的问题有什么好处?
师:形虽然形象直观,但在计算数量的时候往往也需要借助数的力量,用数的规律来计算往往能更快速,更准确。我们把这个过程称之为以数解形。
(三)梳理回顾,概括总结。
师:数和形一一对应,既可以互相转化,又可以互为补充,所以在解决问题时就需要把数和形结合起来,灵活运用,这在数学上是一种重要的思想和方法,叫做数形结合。
【设计意图:以数解形是类似于学生比较熟悉的找规律,是学生比较熟悉的应用形式,所以此素材宜做为一个综合性的应用练习,学生既能以数解形,又能在交流过程中参与解释,以形助数。学生交流时,在画图与计算的不同问题解决方式间进行对比,体现以数解形的优势及必要性,从而促进学生数形结合解决问题的应用意识形成。呈现图例,顺势总结,直观易懂。】
三、课堂练习,搭建思想至方法转换桥梁。1.名言欣赏,强化思想。
师:提到数形结合,我国著名数学家华罗庚先生,对数形结合思想有着自己独到的见解,我们一起来欣赏。
2.技能训练,促进应用。
那怎样才能做到数与形的结合呢?我觉得还是要落脚在思和想上,也就是见数思形,见形想数。我们一起来练一练。
3.小结学习意义,承上启下。
师:可见数形结合的思想不但在小学阶段悄悄陪伴着我们,它对我们初中乃至以后的学习都是十分重要的。
【设计意图:数形结合思想既是一种数学思想,更是一种方法,离开了技能的支撑,空谈思想,对于促进学生由思想到方法的转化应用是没有意义的,本环节意在通过一系列学生以前熟知的题例,沟通学生的日常学习与数形结合思想的联系,并通过勾股定理的事例将数形结合思想的应用引深至学生的终生发展,提升数形结合思想的应用价值。】
四、拓展总结,提升数形认识境界。1.课外拓展,认识形数。
师:下面给大家介绍一些数和形紧密结合的数字。我们就把这样有形状的数叫做形数。2.首尾呼应,根植思想。
师:你知道形数是谁发现的吗?这个人叫毕达哥拉斯。毕达哥拉斯学派万物皆数思想。3.课堂总结,提升认识。
师:同学们,学完这节课后,你有什么收获?你对数与形的认识有没有发生一些改变? 【设计意图:学生对数学的兴趣和好奇心是促进学生和谐可持续发展的不竭动力,也是课堂上教师不应忽视的情感目标。形数较好地体现了数与形的结合,而毕达哥拉斯万物皆数的思想不但与前面引入的事例相互印证,而且为学生利用数形结合思想解决生活中的实际问题提供了有力的佐证。】
第三篇:数与形说课稿
数与形说课稿
一、说教材
(一)教学内容
本节课是人教版六年级上册第八单元《数学广角》的教学内容,考虑到学生的实际接受能力,本课只讲解例1
1、例题中巧妙运用数形结合思想解题,不仅直观而且易于寻找解题途径,并能避免繁杂的计算和推理,可以起到事半功倍的效果,在解决问题过程中显得更优越,因而数形结合思想是帮助学生建立数学模型的基础。
2、例题中巧妙运用数形结合思想解题,不仅直观易于寻找解题途径,而且能避免繁杂的计算和推理,可以起到事半功倍的效果,在解决问题过程中更优越,因而数形结合思想是帮助学生建立数学模型的基础。
3、从教材编排看,数学知识的呈现逐渐由借助直观形式过渡到知识的迁移与推理;从学生思维特点看,他们正从形象思维逐步过渡到抽象逻辑思维,从数形结合的渗透情况看,教材注重由低段的感悟数形结合思想逐步到高段能够运用数形结合解决问题。
(二)学情
小学六年级的学生已具备初步的逻辑思维能力,但仍以形象思维为主,教材在小学中年级的数学教学中,已经逐渐借助推理与知识迁
移来完成,并结合教材挖掘、创造条件开始渗透数形结合思想。进入高年级后,学生逻辑思维能力已有一定发展,为了使学生更直观的理解知识,同时又满足学生逻辑思维能力的发展,因此本节课教材在编排上体现了先“数”后“形”的顺序,把形象真正放在“支撑”地位,从而为培养学生的逻辑能力而服务。
基于以上对教材和学情分析,我确定了本节课的教学目标及重难点如下。
(三)教学目标
1、知识与技能:运用数形结合的方法探索规律,帮助计算,解决实际问题。
2、过程与方法:让学生经历观察、操作、归纳等活动,帮助学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。
3、情感态度价值观:培养学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。
(四).教学重点,难点:
教学重点:
借助“形”与“数”之间的关系,解决实际问题。
教学难点:
如何用形来表示数,培养学生用“数形结合”的思想解决
问题。
二、说教法和学法。
(一)教法:
为了在教学过程中充分体现学生的主体地位和教师的主导作用,本节采用教师引导和学生自主学习相结合的方法,培养学生积极探索和团结协作的科学精神,同时采用课件生动形象的演示功能,强化理解,突出重点、突破难点并调动学生的学习积极性。
(二)学法:
1、给学生提供充足的学具,引导学生产生自主应用学具解决问题的意识,为学生提供了学具——小正方形,将问题直接呈现在学生面前,引导学生对题目的内容进行理解,在明确了题目的要求之后,教师把时间还给学生,引导学生自主思考问题,通过具体形象学具的支撑帮助学生发现规律。
2、利用小组合作学习,在合作交流中通过摆一摆,议一议,借助直观教具发现理解规律。
3、利用小组合作学习交流的形式,鼓励学生在面对问题或者疑惑时,仅依靠自己的力量无法进行解决,可小组同学互帮互助共同启发直至发现规律解决问题。
三、说教学程序
(一)创设情境,激情促思。
师:同学们,我们走过了小学五年的数学之旅,在学习中,我们常常会利用数形结合的思想,用画图的方法,来帮助我们解题。例如:在学习“倍”的问题时,我们利用线段图来理解倍数关系、在解决植树问题的时候,我们也通过作图来区分植树问题的3种情况。
(二)、合作探究、解决问题。
1、出示题目:1+3+5+7++99= 50个
这里有一道经典的题目,你能很快说出结果吗?我能。老师的秘密就是请小正方形来帮忙。你也想学会这种快速解题的方法吗?
2、小组合作探究:1+3 1+3+5
师:好,我们首先来看看这类算式有什么特点?
1、这类算式有什么特点?(从1开始、连续奇数相加
2、复杂的问题,我们一般从简单的例子入手研究。我们就以前两个算式为研究对象,一起来探究其中的奥秘。
3、根据算式中的加数有序地拿出若干个小正方形,拼成大的正方形,你会怎么拼?
(1)1,用一个正方形表示。
(2)1+3= 1+3+5=怎样用图形来表示,并思考以下2个问题思考
(1)加数个数与图形每边个数有什么关系
(2)图形总个数与加数个数有什么关系?
3、请观察上面的算式和下面的图形,结合这两个问题你有什么发现?在小组内说说
4、汇报发现。
发现一:加数的个数与对应的大正方形中每边个数相同;
发现二:加数有几个和就是几的平方。
5、根据你的发现,能够将这几道算式补充完整。
1=()2
1+3=()2
1+3+5= ()2
并说说你的理由?如1+3这里有2个加数拼成了每边个数是2的正方形,和就是2的平方
6、猜一猜:如果用小正方形继续摆下去,至少还需要添上几个小正方形才能拼成一个大的正方形呢?(7个)是这样的吗?求图中小正方形的个数,算式列为?
7、你能用一句话总结出求这类算式得数的规律吗?这条规律我们是借助什么得到的呢?(图形)的确,图形能够帮助更加直观地理解数的问题。
(三)、巩固应用,总结提升
1、运用规律解决问题。
(1)1+3+5+7=()2
(2)1+3+5+7+9+11+13=()2
(3)从1开始的连续n个奇数相加的和__。
2寻找图形中蕴藏的算式的规律。通过刚才的研究,我们知道了,有很多数的问题是借助图形来思考的,那么图形里面会不会也蕴藏着数的规律呢?
下面几个图形中,各有几个红色的和蓝色的小正方形?(填出来)先看红色,有什么规律?每次加1;
再看蓝色,有什么规律?每次加2。你是怎么知道每次加2的?(每增加1个红色,就会增加两个蓝色,课件演示,)是这样吗?
照这样下去,第6个图形有多少个红色小正方形和多少个蓝色小正方形?你是怎么想的?
第10个图形呢?有没有更好的办法?
(课件展示第二种)(鼓励多角度思考)
那么第100个图形中,有多少个蓝色呢?算式怎么列?
[设计意图]图形中蕴藏着数的规律,数形结合能让这些规律变得浅显易懂第四环节:知识梳理,归纳总结
同学们回忆一下,通过这节课的学习你有哪些收获?
[设计意图]对本节课的学习做一个回顾整理,形成基本的知识网络。
四说板书设计
数学广角—数与形
1=()
1+3=()
1+3+5=()
1+3+5+7=()
1+3+5+7+9+11+13=()
从1开始,连续奇数相加的和就等于加数个数的平方。
【设计意图】条理清晰,重点突出,有助学生建构知识系统。
第四篇:数与形教学设计
《数与形》教学设计
教学目标:
1.使学生认识到数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。
2.使学生能够感受到数与形可以互相转化,树立数与形相结合是数学解题思想方法。3.使学生加深对数形结合思想方法的认识,充分感受数形结合在小学数学学习中的应用。
重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。
难点:寻找和发现数与形相互转化的途径与方法通过数与形的转化,认识到数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。
实物投影。
投影出示。计算下面的算式
1+2+3+4+5+6+7+6+5+4+3+2+1=?(1)学生读题,理解题意。(2)尝试独立完成。(3)介绍解题方法。
如果有的学生能够想出来好的解题方法,就让他们说一说他们的解题思路,老师加以点拨、归纳。
1.出示例1。
(1)学生读题,教师整理。
为了便于观察,我们可以把图形与算式一一对应起来,找出图形和算式存在的相互关系。
1=()2 1+3=()2 1+3+5=()2(2)老师:先填一下算式括号。1=(1)2 1+3=(2)2 1+3+5=(4)2 提问①:算式左边的加数有什么特点? 小组内讨论,然后集体汇报。
(观察后会发现:算式左边的加数是连续的奇数)提问②:算式左边的加数与构成的图形之间有什么关系? 小组内讨论,然后集体汇报。
(仔细观察后,我们会发现:算式左边的加数是大正方形左下角的小正方形和其他“ ”形图形所包含的小正方形个数之和正好是每行或每列小正方形个数的平方)提问③:算式右边括号里的数字与构成的图形之间有什么关系? 小组内讨论,然后集体汇报。
(仔细观察后会发现:算式右边括号里的数字是图形构成小正方形的个数)提问④:算式左边加数(除1图外)与右边括号里的数字之间有什么关系?算式左边的加数是1、3、5……n,右边括号里的数字用a表示,那么你能用字母表示其关系吗?小组内讨论,然后集体汇报。
(观察计算后,我们会发现:算式左边加数和的一半等于右边括号里的数字)老师:可以举一个例子吗? 学生: 提问②:从左到右连续相加计算,你发现了什么? 小组内讨论,然后集体汇报。
老师小结:有些问题通过画图,把数字、算式转化为图形,利用图形解答,更简洁直观。3.完成教材第108页“做一做”。(1)学生读题,然后独立完成。(2)集体订正。
观察点阵与算式的对应规律,再填空。
…
…
①②1+③1+4+4
④1+4+4+4
⑤……
⑥1+4+4+4+4+4 第⑥个点阵图中有多少个点?
如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第10个图案需要多少枚棋子?
①6+1=7 ②6×(1+2)+1=19 ③6×(1+2+3)+1=37 …… ⑩
课堂作业新设计
观察图形可得:第一个图形有1个点,可以写作1+(1-1)×4;第二个图形有1+4个点,可以写作1+(2-1)×4;第三个图形有1+4+4个点,可以写作1+(3-1)×4……则第n个图形的点数就可以写作1+(n-1)×4。当n=5时,点数为:1+(5-1)×4=17(个)当n=6时,点数为:1+(6-1)×4=21(个)。思维训练
第1个图案有7枚棋子;第2个图案有19枚棋子;相差12;6的2倍;第3个图案有37枚棋子;相差18;6的3倍;第4个图案有61枚棋子;相差24;6的4倍;……第n个图案有3n(n+1)+1枚棋子;相差6n;6的n倍;那么所求摆第10个图案需要棋子:3n(n+1)+1=3×10×(10+1)+1=331,即摆第10个图案需要331枚棋子。教材习题
教材第108页做一做 1.42+32 72+62 2.第6个图形中有6个红色小正方形,18个蓝色小正方形;第10个图形中有10个红色小正方形,26个蓝色小正方形。练习二十二
1.第5个图形最外圈有小正方形个数为112-92=40。道理略 2.画图略 第10个数是55。
3.三角形个数:1 4 9 16 周长:3 6 9 12 问题:(答案不唯一)如第10个图的周长是多少?含有多少个小三角形? 4.200×2=400(米)5.妈妈:第二幅图;爸爸:第三幅图;小兰:第一幅图。6.2盘,分别和小林、小强下的。
7.关系:①两边各是1,往中间数是左右对称状,数字相同;②且左右两边往中间数的第二个数,等于所在行的行数减1;下一行的数等于上一行左右两数的和。
8.* 因为大正方形面积=(a+b)2,四个小图形的面积之和=a2+b2+2ab,所以(a+b)2=a2+2ab+b2。
1.学生对富有情趣的古代著名数学问题很感兴趣。
2.对于绝大多数没有培优的学生来说,用“数形结合”思想解题既是重点也是难点。
学生已经在前面接触过“数形结合”思想,在解题时,老师要引导学生往“数形结合”思想这一方面靠拢,帮助学生突破难关。
1.教学时,强调激发学生兴趣,可讲古代数学故事。
2.老师适当引导,引导学生尝试用“数形结合”的思想去解题。文 章 来源莲山
课件 w ww.5 y kj.Co m
第五篇:《数与形》教学反思
《数与形》教学反思
课堂教学是否做到关注每一位学生?是否关注让现实的教育资源成为我们优质的教学素材?是否将问题情境镶嵌在学生主动学习、积极探索当中,而催生对学生终生发展、更有价值的新思维、新思路?是否关注每节课的生命课堂与教学效果?这就是我对这节课深刻体会与反思。
1.先“数”后“形”,培养学生的逻辑能力
小学六年级的学生已具备初步的逻辑思维能力,但仍以形象思维为主,教材在小学中年级的数学教学中,已经逐渐借助推理与知识迁移来完成,并结合教材挖掘、创造条件开始渗透数形结合思想。进入中高年级后,学生逻辑思维能力已有一定发展,为了使学生更直观的理解知识,同时又满足学生逻辑思维能力的发展,因此本节教材在编排上体现了先“数”后“形”的顺序,把形象真正放在“支撑”地位,从而为培养学生的逻辑能力而服务。
2.引导学生数形结合,相互印证。
形的问题中包含数的规律,数的问题也可以用形来帮助解决,教学时,要让学生通过解决问题体会到数与形的这种完美结合。既可以从数的角度出发,让学生看看可以怎样用图形来表示数的规律,也可以让学生寻找图形中所包含的数的规律。通过数与形的对应关系,互相印证结果、感受数学的魅力。例如,在例1中可以先让学生计算1+3+5+„的得数,使学生发现得到的和都是“平方数”,再通过图形的规律理解“三角形数”和“正方形数”的含义。
3.通过举一反三,培养数学能力。
在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。
4.重视利用图形来分析题意,理清思路,提高解决问题的能力。在本课的配套的练习中,题目中蕴含的信息量较大,直接让学生来读懂题意有一定的难度。因此在教学中,我试图引导学生通过结合图形来分析题目意思,理清数量之间的关系,提高解决问题的能力。
总之,在今后的教育教学中应充分重视学生原有认知水平,利用数形结合的数学思想,选择一些适合学生认知水平的学习材料,设置生动有趣的教学情景,抛出有探究性的问题,放手让学生自己发现、自己归纳、自己体验,那肯定比教师讲解更有价值,更能调动学生的兴趣。