第三节 金属晶体(第1课时)

时间:2019-05-15 06:42:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第三节 金属晶体(第1课时)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第三节 金属晶体(第1课时)》。

第一篇:第三节 金属晶体(第1课时)

第三节

金属晶体(第1课时)

【教材内容分析】

在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。【教学目标】

1.理解金属键的概念和电子气理论

2.初步学会用电子气理论解释金属的物理性质 【教学难点】金属键和电子气理论

【教学重点】金属具有共同物理性质的解释。【教学过程设计】

【引入】大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?

【板书】

一、金属键

金属晶体中原子之间的化学作用力叫做金属键。

【讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。

【强调】金属晶体是以金属键为基本作用力的晶体。【板书】

二、电子气理论及其对金属通性的解释 1.电子气理论

【讲解】经典的金属键理论叫做“电子气理论”。它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。2.金属通性的解释

【展示金属实物】展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。

【教师引导】从上述金属的应用来看,金属有哪些共同的物理性质呢? 【学生分组讨论】请一位同学归纳,其他同学补充。【板书】金属共同的物理性质

容易导电、导热、有延展性、有金属光泽等。⑴.金属导电性的解释

在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。【设问】导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色? 金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。⑶.金属延展性的解释

当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。【课堂练习】

1.金属晶体的形成是因为晶体中存在 A.金属离子间的相互作用 B.金属原子间的相互作用

C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用 2.金属能导电的原因是

A.金属晶体中金属阳离子与自由电子间的相互作用较弱 B.金属晶体中的自由电子在外加电场作用下可发生定向移动 C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动 D.金属晶体在外加电场作用下可失去电子 课后阅读材料

1.超导体——一类急待开发的材料

一般说来,金属是电的良好导体(汞的很差)。1911年荷兰物理学家H·昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即—269、)时汞的电阻“奇异”般地降为零,表现出超导电性。后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。

2.合金

两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。合金的特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;⑤导电性比成分金属差。

3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。

(1)状态:通常情况下,除Hg外都是固体。

(2)金属光泽:多数金属具有光泽。但除Mg、Al、Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。

(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。(4)延展性

(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。金属除有共同的物理性质外,还具有各自的特性。

①颜色:绝大多数金属都是银白色,有少数金属具有颜色。如Au金黄色Cu紫红色Cs银白略带金色。

②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。最重的为锇(Os)铂(Pt)最轻的为锂(Li)③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为28.4℃ Ca为30℃ ④硬度:最硬的金属为铬(Cr),最软的金属为钾(K),钠(Na),铯(Cs)等,可用小刀切割。

⑤导电性:导电性能强的为银(Ag),金(Au),铜(Cu)等。导电性能差的为汞(Hg)⑥延展性:延展性最好的为金(Au),Al

第二篇:第三节 化学键(第1课时)教学设计

第一章 物质结构 元素周期律

第三节 化学键(第1课时)

一 教材分析:本节是必修二第一章 物质结构 元素周期律 第三节 化学键(第1课时)内容,主要讲述了离子键的含义,形成条件以及用电子式表示离子化合物的形成过程,为今后学习有机内容打下了良好的基础,也为后面选修3《物质结构与性质》做好了铺垫,在高考中也占有相当的分值。

二 教学目标

知识与技能: 1.掌握离子键的概念。

2.掌握离子键的形成过程和形成条件,并能熟练地用电子式表示离子化合物的形成过程。

过程与方法: 1.通过对离子键形成过程的教学,培养学生抽象思维和综合概括能力;

2.通过电子式的书写,培养学生的归纳比较能力,通过分子构型的教学培养学生的空间想像能力。

情感、态度与价值观:

1.培养学生用对立统一规律认识问题。2.培养学生怀疑、求实、创新的精神。

三 教学重点:离子键和离子化合物的概念

教学难点:用电子式表示离子化合物的形成过程。

四 学情分析:本节知识比较抽象,学生掌握起来有些困难。针对学生实际应该让学生充分预习,由简单的入手,逐层深入,采用边讲边练的方法,让学生掌握。

五 教学方法:学案导学 六 课前准备: 学生的学习准备:阅读课本,填写导学案空白,并结合预习内容找出疑惑内容。教师的教学准备:阅读课本,认真备课,写教案,出导学案并提前发给学生,上课前检查学生预习情况。3 教学环境的设计和布置:前后桌为一组,根据实际需要讨论,探究,得出结论。七 课时安排:1课时

八 教学过程:

(一)预习检查,总结疑惑(检查落实学生预习情况,并了解学生疑惑,使教学具有针对性)

(二)情景导入,展示目标

在黑板上展示氯化钠的形成过程,小组讨论,探究导学案空白。

(三)合作探究,经讲点拨

根据氯化钠的形成过程,小组讨论,探究导学案空白

1、离子键

(1)定义: 称为离子键(2)成键微粒 :(3)成键本质:

(4)成键条件:

(5)存在的范围:_______________________________________ 提出疑惑,小组讨论,老师加以提示,启发,诱导,得出结论:

1含有离子键的化合物均为离子化合物(如:大多数金属化合物、碱、盐类)金属和非金属不一定形成离子键,例如:氯化铝 3非金属和非金属也能形成离子键,例如:氯化铵

学生根据结论,练习巩固:

例1.下列化合物中有离子键的是()

(1)KI(2)HBr(3)Na 2SO 4(4)NH 4 Cl(5)H 2 CO 3 提问学生,填写空白,其他学生加以纠错。

在化学反应中,一般是原子的 电子发生变化,我们可以在元素符号周围用小黑点(·或X)来代表原子的最外层电子,这种式子叫电子式。老师强调:

例如:原子电子式:离子电子式:Na+ Mg2+ 练习巩固

例2 用电子式表示原子或离子:

氟原子 钙原子 氢原子 氧原子

钙离子 铝离子 氯离子 硫离子 小组讨论,老师加以提示,启发,诱导,得出结论:

阳离子的电子式一般是离子符号本身,而阴离子的电子式要用方括号括起来。

让学生根据以上知识试着用电子式表示下列化合物:(注意相同的离子不能合并)NaCl: MgO CaCl 2 : Na 2 O 老师纠错,并强调,同时给学生展示例题3 例3.用电子式表示氯化钠的形成过程:

小组讨论,老师加以提示,启发,诱导,得出结论:

用电子式表示离子化合物的形成过程时,左边写原子的电子式,右边写化合物的电子式,中间用箭头连接,离子化合物还要用箭头表示出电子的转移方向,不写反应条件。练习巩固

用电子式表示下列化合物的形成过程

KBr: MgCl 2 : Na 2 S:

(四)反思总结:

1含有离子键的化合物均为离子化合物,离子化合物一定含离子键,不一定含共价键键。金属和非金属不一定形成离子键,例如:氯化铝。非金属和非金属也能形成离子键,例如:氯化铵 3阳离子的电子式一般是离子符号本身,而阴离子的电子式要用方括号括起来。

4.用电子式表示离子化合的形成过程时,左边写原子的电子式,右边写化合物的电子式,中间用箭头连接,离子化合物还要用箭头表示出电子的转移方向,不写反应条件。

当堂检测

1.下列各数值表示有关元素的原子序数,能以离子键相互结合成稳定化合物的是()A.10与19 B.6与16

C. 11与17

D.14与8 2.下列不是离子化合物的是(A)

A.H 2 O B.CaI 2 C.KOH D.NaNO 3

3.下列性质中,可以证明某化合物内一定存在离子键的是

A.溶于水 B.熔点较高 C.水溶液能导电 D.熔融状态能导电 4.A和B两元素能形成AB 2 型离子化合物,则A和B的原子序数可能是()A.6和8 B.11和6 C.20和8 D.20和17 课后练习与提高:

(五)发导学案,布置预习作业(预习第三节第2课时共价键)九 板书设计:

(一)、离子键:

1、离子键

(1)定义: 称为离子键

(2)成键微粒 :

(3)成键本质:

(4)成键条件:

(5)存在范围:____________________________________________ 注意:1含有离子键的化合物均为离子化合物(如:大多数金属化合物、碱、盐类)金属和非金属不一定形成离子键,例如:氯化铝 3.非金属和非金属也能形成离子键,例如:氯化铵

2、电子式:

原子电子式:离子电子式:Na+ Mg2+

注意: 阳离子的电子式一般是离子符号本身,而阴离子的电子式要用方括号括起来。

3、用电子式表示离子化合物:(注意相同的离子不能合并)

4、用电子式表示离子化合物的形成过程:

()

注意: 左边写原子的电子式,右边写化合物的电子式,中间用箭头连接,离子化合物还要用箭头表示出电子的转移方向,不写反应条件。

第三篇:《金属晶体与离子晶体》第一课时教案

第2节

金属晶体与离子晶体

第1课时 金属晶体

【教学目标】

1.知道金属原子的三种常见堆积方式:A1、A2、A3型密堆积

2.能从构成金属晶体的微粒间的作用力和微粒的密堆积出发解释金属晶体的延展性

【教学重点】金属晶体内原子的空间排列方式,【教学难点】金属晶体内原子的空间排列方式。【教学方法】借助模型课件教学 【教师具备】制作课件 【教学过程】 【复习提问】

1.如何用金属键解释金属的导热性、导电性?

2.哪些因素会影响金属键的强弱呢?

3.何谓金属键?成键微粒是什么?有何特征?

4.A1型密堆积?何谓A3型密堆积?

【联想质疑】通过上一节的学习,你已知道金属铜的晶体属于A1型密堆积,金属镁属于A3型密堆积,那么,金属铁、钠、铝、金、银等属于哪种类型的密堆积?除了A1型和A3型外,金属原子的密堆积还有哪些型式? 【板书】

一、金属晶体

【讨论】什么是金属晶体?它有何特征? 【回答】

【板书】

1.定义:金属晶体是指金属原子通过金属键形成的晶体。

2.金属键的特征:由于自由电子为整个金属所共有,所以金属键没有方向性和饱和性。

【陈述】金属原子的外层电子数比较少,容易失去电子变成金属离子和电子,金属离子间存在反性电荷的维系――带负电荷的自由移动的电子(运动的电子使体系更稳定),这些电子不是专属于某几个特定的金属离子这就是金属晶体的形成的原因。

【练习】金属晶体的形成是因为晶体中存在()①金属原子②金属离子③自由电子④阴离子 A.只有①

B.只有③

C.②③

D.②④

解析:金属晶体内存在的作用力是金属键,应该从金属键的角度考虑,分析金属键的组成和特征:由自由电子和离子组成,自由电子具有良好导电性,即金属晶体是金属离子和自由电子通过金属键形成的。【过渡】金属原子的密堆积还有哪些型式 【板书】

3.金属晶体的结构型式:

【思考】如果把金属晶体中的原子看成直径相等的球体,把他们放置在平面上,有几种方式?

【学生活动】利用20个大小相同的玻璃小球进行探讨?

【思考】上述两种方式中,与一个原子紧邻的原子数(配位数)分别是多少?哪一种放置方式对空间的利用率较高? 【思考交流】对于非密置层在三维空间有几种堆积方式? 【讲述】一种:上下对齐 的简单立方。另一种:将上层金属原子填入下层金属原子形成的凹穴中,每层均照此堆积.钾、钠、铁等金属采用这种堆积方式,简称为A2型。

Ca、Al、Cu、Ag、Au等金属晶体属于A1型最密堆积,Mg、Zn等金属晶体属于A3型最密堆积,A2型密堆积又称为体心立方密堆积,Li、Na、K、Fe等金属晶体属于A2型密堆积。A1型配位数为12,A2型配位数为8,A3型配位数为 12。

【联想·质疑】金属晶体有哪些共同的性质?为什么? 【回答】导电导热性强;不透明、有金属光泽;延展性好;【讨论】金属晶体中的金属键和原子的堆积方式与金属晶体的物理性质的关系如何?

【板书】4.金属晶体中的金属键和原子的堆积方式与金属晶体的物理性质的关系 【总结讲述】

(1)金属晶体具有良好的导电性:金属中有自由移动的电子,金属晶体中的自由电子在没有外加电场存在时是自由运动的,当有外加电场存在的情况下,电子发生了定向移动形成了电流,呈现良好的导电性。

(2)金属晶体具有良好的导热性:自由电子在运动时经常与金属离子碰撞,从而引起两者能量的交换。当金属某一部分受热时,在那个区域里的自由电子能量增加,运动速度加快,于是通过碰撞,自由电子把能量传给金属离子。金属容易导热就是由于自由电子运动时,把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。

(3)金属晶体具有良好的延展性:金属有延性,可以抽成细丝,例如最细的白金丝直径不过1/5000 mm。金属又有展性,可以压成薄片,例如最薄的金箔只有1/10000 mm厚。金属晶体的延展性可以从金属晶体的结构特点加以解释。当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,由于金属离子与自由电子之间的相互作用没有方向性,滑动以后,各层之间仍保持着这种相互作用,在外力作用下,金属虽然发生了变形,但不会导致断裂。

(4)金属的熔点、硬度等取决于金属晶体内部作用力的强弱。一般来说金属原子的价电子数越多,原子半径越小,金属晶体内部作用力越强。因而晶体熔点越高、硬度越大。

金属晶体的熔点变化差别较大。如:Hg在常温下为液态,熔点低(-38.9℃),而铁等金属熔点高(1355℃),这是由于金属晶体紧密堆积方式,金属阳离子与自由电子的作用力不同造成的。同类型金属金属晶体,金属晶体的熔点由金属阳离子半径,离子所带的电荷决定,阳离子半径越小,所带电荷越多,相互作用力就越大,熔点就越高。如:熔点:Li>Na>K>Rb>Cs,Na

【练习】金属晶体堆积密度大,原子配位数高,能充分利用空间的原因是()

A.金属原子的价电子数少 C.金属原子的原子半径大

B.金属晶体中有自由电子 D.金属键没有饱和性和方向性

解析:这是因为分别借助于没有方向性的金属键形成的金属晶体的结构中,都趋向于使原子吸引尽可能多的原子分布于周围,并以密堆积的方式降低体系的能量,使晶体变得比较稳定。答案:D 【思考】合金为何比纯金属的性质优越?

【学生】阅读—追根寻源并思考1.合金的概念?2.合金的特点?3.合金的类型及其性质特点?

【板书】5.合金及合金的优点 【总结】合金及合金的优点

⑴合金:

①定义:把两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质叫做合金。

②特点:

a.合金的熔点比其成分中各金属的熔点都要低,而不是介于两种成分金属的熔点之间。

b.具有比各成分金属更好的硬度、强度和机械加工性能。例如:金属铝很软,但如果将铝与铜、镁按一定的比例混合,经高温熔融后冷却可以得到硬铝,硬度大大提高。

⑵合金的不同类型及各自的性质特点

①当两种金属的电负性、化学性质和原子半径相差不大时,形成的合金称为金属固熔体,如铜镍、银金合金。这类合金的强度和硬度一般都比组成它的各成分金属的强度和硬度大。

②当两种金属元素的电负性或原子大小相差较大时,形成的合金称为金属化合物,如Ag3Al合金。这类合金通常具有较高的熔点,较大的强度,较高的硬度和耐磨性,但塑性和韧性较低。

③原子半径较小时氢、硼、氮等非金属元素渗入过渡金属结构的间隙中,称为金属间隙化合物或金属间隙固熔体。这类合金具有很高熔点和很大的硬度,遮住要是填隙原子和金属原子之间存在共价键的原因。【概括整合】

【板书设计】

一、金属晶体

1.定义:金属晶体是指金属原子通过金属键形成的晶体。2.金属键的特征;金属键没有方向性和饱和性。3.金属晶体的结构型式:

4.金属晶体中的金属键和原子的堆积方式与金属晶体的物理性质的关系 5.合金及合金的优点

第四篇:高中化学_第三章第三节金属晶体教案_新人教版选修3

第三节 金属晶体(第一课时)

教学目标

(1)理解金属键的概念和电子气理论;

(2)初步学会用电子气理论解释金属的物理性质。

教学重、难点

教学难点:

金属键和电子气理论。教学重点:

金属具有共同物理性质的解释。

教学过程

[引入] 大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?

[板书]

一、金属键

金属晶体中原子之间的化学作用力叫做金属键。

[讲解] 金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。

[强调] 金属晶体是以金属键为基本作用力的晶体。[板书]

二、电子气理论及其对金属通性的解释 1.电子气理论

[讲解] 经典的金属键理论叫做“电子气理论”。它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。

2.金属通性的解释

[展示金属实物] 展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。

[板书] 金属共同的物理性质:容易导电、导热、有延展性、有金属光泽等。(1)金属导电性的解释。

在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。

[设问] 导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色?(2)金属导热性的解释。

金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。

(3)金属延展性的解释

当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。

第三节 金属晶体(第二课时)

教学目标

(1)了解金属晶体内原子的几种常见排列方式;(2)训练学生的动手能力和空间想象能力;(3)培养学生的合作意识。

教学重、难点

金属晶体内原子的空间排列方式。

教学方法

活动探究。

教学过程

[引入] 分子晶体中,分子间的范德华力使分子有序排列;原子晶体中,原子之间的共价键使原子有序排列;金属晶体中,金属键使金属原子有序排列。今天,我们一起讨

论有关金属原子的空间排列问题。

[分组活动1] 利用20个大小相同的玻璃小球,有序地排列在水平桌面上(二维平面上),要求小球之间紧密接触。可能有几种排列方式。讨论每一种方式的配位数。(配位数:同一层内与一个原子紧密接触的原子数)

[学生活动1] 学生分四组活动,各由一人汇报结果。利用多媒体展示,学生排列结果主要介绍以下两种方式。(配位数:同一层内与一个原子紧密接触的原子数)

我们继续讨论,原子在三维空间的排列。首先讨论非密置层这种情况。

[学生活动2] 非密置层排列的金属原子,在空间内可能的排列。汇总各类情况逐一讨论。

(一)简单立方体堆积

这种堆积方式形成的晶胞是一个立方体,每个晶胞含1个原子,被称为简单立方堆积。这种堆积方式的空间利用率太低,只有金属钋采取这种堆积方式。

(二)钾型

如果是非密置层上层金属原子填入下层的金属原子形成的凹穴中,每层均照此堆积,如下图:

这种堆积方式的空间利用率显然比简单立方堆积的高多了,许多金属是这种堆积方式,如碱金属,简称为钾型。

三、混合晶体

石墨不同于金刚石,这的碳原子不像金刚石的碳原子那样呈sp3杂化.而是呈sp2杂化,形成平面六元并环结构,因此石墨晶体是层状结构的,层内的碳原子的核间距为142pm层间距离为335pm,说明层间没有化学键相连,是靠范德华力维系的;石墨的二维结构内,每一个碳原子的配位数为3,有一个末参与杂化的2p电子,它的原子轨道垂直于碳原子平面。石墨晶体中,既有共价键,又有金属键,还有范德华力,不能简单地归属于其中任何一种晶体,是一种混合晶体。

第五篇:金属晶体高二化学教学反思

本节课的教学目标是通过模型的构建掌握金属晶体内原子的几种常见堆积方式,了解不同堆积方式的区别,教学的对象是高二理科班的学生。由于学生在初三以及高一的化学学习,甚至是其它学科学习中,很少接触球体的堆积方式和相关模型,并且此部分内容的讲解较为枯燥,有一定难度,所以在进行课程的设计时,为了体现新课程的理念,我思考有以下三点:

1、如何打造一个轻松愉快的学习氛围,让学生能够亲自动手来构建金属原子的堆积方式和模型;

2、如何设计活动让学生能够自主学习,合作探究,在教师的指导下主动地去获取和探究,充分发挥学生的主体作用;

3、教师如何能够从讲台上走下来和学生在一起,成为一个协助者而不是灌输者。因此,课程的前期准备,我们以乒乓球为载体,制作了不同形状和功能的半成品,以合作分组的形式进行课程的设计。在教学环节中,遵循知识构建的顺序,先讨论二维平面的排列方式,再研究三维空间的堆积方式,层层递进,并且在每一个环节设计问题和矛盾,引导学生自主发现,解决,最终获取,在一定程度上也培养了他们的空间想象能力。

在本节课中,电子白板的交互式活动起到了关键的辅助作用,在学生动手实践的基础之上再给以直观的多媒体显像,新颖的感官冲击,更多的是师生交互式的合作,彼此心灵发生碰撞,享受到了探究的乐趣。在融洽的师生关系,生生关系中,本节课的教学任务顺利完成,教学效果良好,基本营造了轻松愉快的学习氛围,教师和学生都有所收获。

一堂课下来,我对开放性课堂的理解又加深了一步,在开放性的课堂教学中,从来没有最好的教学设计,只有最合适的教学设计,今后,如何在教学过程中激发学生思维和活力,如何在40分钟内打破时间和空间的局限性是我应当多加思考的问题。

下载第三节 金属晶体(第1课时)word格式文档
下载第三节 金属晶体(第1课时).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    3.3金属晶体的教学设计

    3.3金属晶体教材分析:《金属晶体》选择人教版选修3第三单元课题三,本单元主要介绍四种晶体的结构及其性质。课题一《晶体与非晶体》中学习的晶体的辨别、晶体与晶胞的关系以及......

    选修三 第2节 分子晶体与原子晶体 学案 第1课时

    一、学习目标 1.掌握分子间作用力和氢键对物质的物理性质的影响。 2.掌握构成分子晶体的微粒,分子晶体的物理特性。 3.了解物质的“相似相溶”原理。 二、学习过程 [新授内容]......

    第一章 第三节 化学键 第2课时

    http://www.xiexiebang.com 或http://www.xiexiebang.com 第2课时 三维目标 知识与技能 1.使学生理解共价键的概念,初步掌握共价键的形成,加深对电子配对法的理解。 2.能较为......

    《金属资源的利用和保护》教学设计(第1课时)

    《金属资源的利用和保护》教学设计(第1课时) 一、教学目标 (一)知识与技能 1.知道一些常见的金属(铁)等矿物 2.了解从铁矿石中将铁还原出来的方法。 3.会根据化学方程式对含......

    2020-2021学年高中化学人教版(2019)选择性必修2:第三章第3节 金属晶体与离子晶体 课时作业

    金属晶体与离子晶体1.下列可能属于金属晶体的是(  )A.由分子间作用力结合而成,熔点低B.固态时或熔融后易导电,熔点在1000℃左右C.由共价键结合成网状结构,熔点高D.固态时不导电,但......

    1、观潮_第1课时

    《观潮》教学设计 阜南一小丁涛 【设计理念】 《语文课程标准》指出:“阅读是学生的个性化行为,教师应加强对学生阅读的指导、引领、和点拨,但不应以教师的分析代替学生的阅读......

    《春》 第 1 课时

    第11课 《春》 第 1 课时 教学目标 1.反复朗读,学习抓住特点、多角度、按顺序描写景物的写法。 2.揣摩、品味本文优美的语言。 3.熟读成诵,体会作者对大自然的热爱之情。 教学......

    解决问题 第1课时

    解决问题 第1课时 故县镇中心小学 尹淑荣 【教学内容】 分数除法应用题 教科书第53页例1,课堂活动第1、2题,练习十一第1、2、3、4、6、7题。 【教学目标】 1.通过理解“求......