第一篇:华师大版数学七上2.10《有理数的除法》教案
2.10 有理数的除法
教学内容:P58-60 教学目的:
1、要求学生会将有理数除法转换成乘法计算;
2、让学生进一步认识到化归思想在数学学习中的应用 教学分析:
重点:除法法则的运用。
难点:如何通过实例引入有理数除法法则。教学过程
一、知识导向:
本节课是在学习乘法法则的基础上,根据除法是乘法的逆运算以及有理数乘法法则,通过实例引入有理数除法法则,在其过程中应对学生逐渐渗透数学上的重要的化归思想。在除法运算的学习中应着重促使学生对法则的应用。
二、新课
1、知识基础:
其一:有理数的乘法法则;
其二:小学所学习的除法运算与乘法运算的关系
2、知识形成: 引例:(6)2?
根据乘法与除法是互为逆运算,有:
(?)26
又根据有理数的乘法运算,有:
(3)26 所以:(6)23 同时:(6)13 21 2所以:(6)2(6)概括:乘积是1的两个数互为倒数;
除以一个数等于乘以这个数的倒数;(零不能作除数)
两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数,都得零。
例 计算:(1)(18)6(2)()()(3)
例 化简下列分数:(1)
三、巩固训练: P601、2、3、4
四、知识小结:
五、家庭作业: P61.1、2、3、4
六、每日预题:
如何计算一个正方形的面积、体积?
152564()2551224(2)
163
第二篇:教案新人教版七上1.4.2 有理数的除法
1.4.2. 有理数的除法
(二)[教学目标] 1.熟练进行有理数的乘除混合运算,能运用简便算法计算; 2.掌握有理数的加减乘除混合运算顺序,并能准确进行运算; 3.能解决有理数混合运算的应用题. [教学过程设计]
一、复习有理数的乘除法法则.
二、例题讲解
例1 计算:
112)÷(-4)×; 42941(2)63×(-1)+(-)÷(-0.9).
97(1)-54×(-2[说明](1)用两种方法计算;(2)(3)将除法转化为乘法,再运用乘法的法则进行计算也可以从左至右依次进行计算,有理数的除法的符号法则与有理数的乘法法则是一样的;(4)先算乘除,再算加减.
例
2观察下列解题过程,看有没有错误.如果有,请说明错误的原因,并给予纠正;如果没有错误,请指明用了什么运算律.
32=-9÷1=-9. 2332[分析] -9÷是乘除混合运算,应该从左到右按顺序进行计算,或者运用除法的法则将除法统一成23计算:-9÷乘法,再按乘法法则进行计算.
答:解法有错误,错误的原因是在只含乘除的同级运算里,没有按从左到右的顺序进行,而错误地先算32,正确的解答是: 233222-9÷=-9×=-4.
2333[说明]这是一个不注意就会出现的错误,另外,本例是阅读理解错题,是当前中考的一个特点题型. 例3 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何? 例
4已知a的相反数是
1三、练习
(一)教材P47中10,13; 21a3b,b的倒数是-2,求的值.
2a2b3
(二)补充练习1.计算:
(1)(-0.4)÷(+0.02)×(-5);(2)2÷(-341)×÷(-5); 777(3)(-5)÷(-15)÷(-3);(4)(-1313713)÷(-1)-(+)÷(-).
248164138;(2)-209÷19. 5392.计算:
(1)-1÷(-5)×3.某冷冻厂的一个冷库现在的室温是-4℃,现有一批食品需要在-30℃冷藏.如果每小时降温4℃,问几小时能降到所需要的温度?
4.某人用1000元人民币购进一批货物,第二天出售,获利10%;过几天后又以上次售出价的90%购进一批同样的货,由于卖不出去,两天后他将其按第二次购进价的九折全部卖出.他在这两次交易中盈亏如何? 5.下面的解题过程是否正确?若正确,请指明运用了什么运算律;若不正确,请指明错误的原因,并作出正确解答.
11221)÷().
***解:原式=(-)÷-(-)÷+(-)÷-(-)÷
***1
2=-+-+
7184291 =.
911116.计算:1÷(1-)÷(1-)÷(1-)÷…÷(1-).
23410计算:(-
四、作业
教材P46中7,P47中8,11,12.
第三篇:2.10有理数乘方电子教案1
2.10有理数的乘方教案
一、课标与教材分析:
课标要求:理解乘方的意义,掌握乘方运算。本节运算是初中有理数运算的一种,教科书通过实例感受当低数大于1时,乘方运算的结果增长的很快。理解乘方运算的意义。
二、学情分析:
本节是在学生学习了有理数乘法运算的基础上进行学习的,教学时以实际问题为背景,关注学生对有理数乘方意义的理解,结合有理数乘法运算进行乘方运算的教学。重点难点分析:重点:有理数乘方运算。难点:乘方意义的理解。
三、教学目标:
知识与技能:
1、培养学生观察思考,合作探究的精神
2、理解有理数乘方的意义,3、能进行有理数的乘方运算。过程与方法:讲练结合四、教学过程 【知识回顾】: 1.计算(1)
121212121
(2)22222=
【新课探究】: ★知识点
(一):乘方的定义
先阅读课本83页至84页,了解本节课的基本内容,再阅读一遍课本,领会本节课的重点内容,然后结合课本内容试着解决下面的内容,并把答案写在相应的空白处。
1、(1)阅读课本83页引例: 1个细胞经过一次分裂分裂成2个,2次分裂分裂成____个,3次分裂分裂成_______个„10次分裂分裂成_________个。创新支点.你是如何计算的?
⑵试着举出生活中乘方的例子.⑶一般地,n个相同的因数a相乘,记作______.这种求n个相同的因数a的积的运算叫做_______,乘方的结果叫做_____,a叫做_____,n叫做_____,an
读作_________.特别地,一个数可以看作本身的___次方.针对性练习1: 完成课本84页随堂练习1。
★知识点
(二): 乘方的规律及注意事项
自学例1,你认为在进行乘方运算时应注意什么问题?
3、自学例2,你总结出了什么规律?
针对性练习2:
1.完成P85的习题1、2、3.2.熟背1-20自然数的平方和1-10自然数的立方
3.计算:(1)(-3)2 =(-3)3 =[-(-3)]5
=
(2)-32=-33 =-(-3)5
=
(3)2
223
=3=
4.试一试,设n为正整数,计算:
(1)(-1)2n=(2)(-1)2n+1=
【总结收获】: 【自我检测】: 基础达标:
1、在46
中,底数是_____,指数是_____,47
读做____________.2、215的结果是____数(填“正”或“负”),125的结果是____数(填“正”或“负”)
3、计算:
①52
____;④23
____;②0.13
____;⑤103
____;
③1
____;⑥2____;⑦(-1)100 +(-1)101⑧(-1)2n+12
3+(-1)2n
4、默写1-20自然数的平方。
5、默写1-10自然数的立方。
能力提升:
1.一个数的平方是1,则这个数是,一个数的平方是
9,则这个数是,一个数的平方是0,则这个数是,一个数的平方是-4,则这个数,.
第四篇:数学:2.4有理数的除法教案(浙教版七年级上)
2.4有理数的除法 教学设计
一、教学目标
1、知识目标
A 了解有理数除法意义,经历归纳出有理数除法法则的过程.B 理解除法转化为乘法,体验矛盾双方在一定条件互相转化的辨证唯物主义思想.C 掌握有理数除法法则,会进行有理数的除法运算及乘除混合运算.2、能力与情感目标
培养学生发现问题,寻找规律,用已有知识解决问题的能力.二、教学重点难点
1、有理数除法法则和乘除混合运算.2、归纳出除法法则的过程.三、课前准备: 多媒体课件
四、教学过程
1、新课导入: 口算:
8×9=
72÷9=(-4)×3=
(-12)÷(-4)= 2×(-3)=(-6)÷2=(-4)×(-3)=
12÷(-4)=
0×(-6)= 0÷(-6)= 观察右侧算式, 两个有理数相除时:商的符号如何确定?商的绝对值如何确定?(让学生讨论并尝试归纳)
2、新授:
有理数除法法则:
两个有理数相除, 同号得正, 异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.(注意:0不能作为除数)
〈1〉例1讲解:
(1)(-8)÷(-4)
(2)(-3.2)÷0.08(3)(-1/6)÷2/3
教师边板书边和学生一起完成,从中反复渗透有理数的除法法则,着重强调先确定符号是关键.最后提出问题:求解中的第一步,第二步分别是什么?让学生思考并回答.〈2〉给出抢答题,组织学生抢答活跃气氛.计算:(1)(-21)÷3
(2)(-36)÷(-9)(3)(-1.6)÷0.4
(4)0÷(-7/83)(5)1÷(-2/5)
〈3〉议一议:
比较大小:(1)1÷(-2/5)与1×(-5/2)(2)(-1/4)÷(-1/6)
问题1:上面各组数计算结果有什么关系?
问题2:以上等式两边的结果有什么不同?
让学生思考发表观点之后,得出有理数乘法与除法之间的关系:
除以一个数,等于乘以这个数的倒数.、比比看,谁既快又准:
计算:(1)(-3/10)÷(-3/5)(2)(-2)÷(3/5)
让两学生板演,其他学生比赛.〈4〉例2
计算:(-12)÷(-1/12)÷(-100)
问:本例和例1以及前面的练习有什么不一样?能用除法法则求解吗?如何求解?让学生思考后发言.然后和学生一起完成求解过程.并指出:常利用“除以一个数等于乘以这个数的倒数”把除法运算改写成乘法运算, 再利用乘法法则来计算.问:还有没有其他的解法?让学生思考出其他解法并写在黑板上进行分析评讲.想一想:
对于例2下面两种计算正确吗?让学生讨论思考.(1)解:原式=(-12)÷(1/12 ÷100)=(-12)÷1/1200 =-14400本文节选自(建筑墙体保温 www.xiexiebang.com)
(2)解:原式=(-1/12)÷(-12)÷(-100)=1/144÷(-100)
=-1/14400 学生讨论发表观点之后,教师强调指出:除法不适合交换律与结合律.故不正确.比比看,谁既快又准: 计算:(1)(-3/4)×(-3/2)÷(-9/4)(2)(-3/2)÷(-7)×(-7/5)(3)(-3/4)×(-4/3)-8÷4
3、小结:
这堂课你学到了什么?让学生用“我学会了„”“我明白了„”“我认为„”等造句.4、数学在你我身边:
提供一个能用(-900)÷9×2表示的实际问题的情景,并说明负数表示的意义.让学生课后去思考完成
5、作业: 教学反思:
本节课效果还不错,整堂课围绕有理数的除法法则和有理数乘法、除法之间的关系展开教学,在练习中不断渗透法则,强化重点,分散难点.开展抢答、比赛等形式活跃丰富课堂教学.同时不忘联系生活,让学生体验数学与生活密切相关.但还有点不足之处:对多个有理数相乘除的计算的方法上没有给学生以明确指导.
第五篇:有理数乘除法教案
学习目标
1.掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。2.通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。3.根据情境创设把有理数的除法转化为乘法。会进行有理数的乘法混合运算
学习重点
1.应用法则正确地进行有理数乘法运算。2.两负数相乘,积的符号为正。
3.有理数除法法则和有理数乘除混合运算的熟练运用
有理数的乘法
一、引入 计算下列各题;
二、新课
我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。
1.正数与正数相乘
问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(+2)×(+3)=+6 答:结果向东运动了6米. 2.负数与正数相乘
问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(-2)×(+3)=(-6)3.正数与负数相乘
问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(+2)×(-3)=-6 4.负数与负数相乘
问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
(-2)×(-3)=+6 5.零与任何数相乘或任何数与零相乘
问题五:原地不动或运动了零次,结果是什么?
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0. 综合上述五个问题得出:
(1)(+2)×(+3)=+6;(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;(4)(-2)×(-3)=+6.(5)任何数与零相乘都得零. 由此我们可以得到:
两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与零相乘都得零。即时练:
例1:计算下列各题:
即时练:
1.口答下列各题:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
3.计算下列各题:
(1)(-36)×(-15);(2)-48×1.25;
有理数的除法
一、情境创设:
1、复习倒数的概念;
2、说出下列各数对应的倒数:
1、-
34、-(-4.5)、|-32| 城市区某一周上午8时的气温记录如下:
周日
周一
周二
周三
周四
周五
周六 -30c -30c -20c -3°
c 0°
c -2°
c -1°
c 问:这周每天上午8时的平均气温是多少?
解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7,即:(-14)÷7,解答,(除法是乘法的逆运算)什么乘以7等于-14? 因为(-2)×7=-14,所以:(-14)÷7=-2
又因为:(-14)×17=-2 所以:(-14)÷7=(-14)×先将除法转化为乘法,再进行乘法运算
2、有理数除法法则(1)
除以一个不等于0的数等于乘以这个数的倒数; 0除以任何一个不等于0的数都等于0
3、因为(-10)÷2=(-10)×12=-5 ;-10÷2=-5 所以(-10)÷2=-10÷2 因为24÷(-8)=-24×
18=-3;-24÷8=-3 所以24÷(-8)=-24÷8 因为(-12)÷(-4)=(-12)×(-14)=3,12÷4=3 所以(-12)÷(-4)=12÷4 从而得:有理数除法还有以下法则:
有理数除法法则(2):两数相除,同号得正,异号得负,并把绝对值相除。
4、例题教学: 例
1、计算:
(1)36÷(-9)
(2)(48)÷(-6)
(2)0÷(-8)(3)(-
12)÷(-23)(4)0.25÷(-0.5)(5)(-2467)÷(-6)(6)(-32)÷4×(-8)
(7)17×(-6)÷5 例
2、计算:
(1)48÷[(-6)-4]
(2)(-81)÷94×49÷(-16)(3)22135÷(-25)-28×(-14)-0.75 例
3、化简下列分数:
2127,12,7
131、有理数乘法法则 :两数相乘,同号得正,异号得负,并把绝对值相乘.
任何数与零相乘都得零。
2、有理数除法法则(1): 除以一个不等于0的数等于乘以这个数的倒数;
0除以任何一个不等于0的数都等于0 有理数除法法则(2):两数相除,同号得正,异号得负,并把绝对值相除。
1.计算:
(1)(-16)×15;
(2)(-9)×(-14);
(3)(-36)×(-1);
(4)13×(-11);
(5)(-25)×16;
(6)(-10)×(-16). 2.计算:
(1)2.9×(-0.4);
(2)-30.5×0.2;
(3)0.72×(-1.25);
(4)100×(-0.001);
(5)-4.8×(-1.25);
(6)-4.5×(-0.32). 3.计算:
4.填空:(用“>”或“<”号连接)(1)如果a<0,b>0,那么,ab____0;(2)如果a<0,b<0,那么,ab____0;(3)当a>0时,a____2a;(4)当a<0时,a____2a.
5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)];23;3212(3)13(5)6(5).33(2)375÷6.计算
1182111(2)81.339(1)13;