发动机教案- - 第4章燃油供给系分解

时间:2019-05-15 08:16:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《发动机教案- - 第4章燃油供给系分解》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《发动机教案- - 第4章燃油供给系分解》。

第一篇:发动机教案- - 第4章燃油供给系分解

四、燃油供给系-教案 教案12教学时数:2 重点:混合气成分对汽油机工作性能的影响

第二章 汽油机化油器式燃料供给系统

第一节 汽油机供给系的组成和燃料

一、汽油机供给系的功用

根据发动机不同工况的要求,供给不同数量和浓度的可燃混合气进入气缸;燃烧后的废气经净化处理后排入大气。

二、汽油机供给系的组成

按照燃料供给方式的不同分为化油器式和汽油直接喷射式。以化油器式为例,它包括:利用多媒体课件演示

燃油供给装置:汽油油箱、汽油泵、汽油滤清器、油管 空气供给装置:空气滤清器 可燃混合气形成装置:化油器 废气排出装置:排气管道、排气消音器

三、汽油的性质

简单描述汽油的物理化学性质、将主要精力放在汽油最重要的指标——辛烷值上,讲清辛烷值的含义及其重要作用。第二节 可燃混合气成分与汽油机性能的关系

一、可燃混合气成分

可燃混合气是指空气与燃料的混合物,其成分对发动机的动力性与经济性有很大的影响。

可燃混合气成分的表示方法:

空燃比、过量空气系数:精确描述这二个可燃混合气成分表示方法的异同,让学生掌握这二种表示方法的含义。

一、可燃混合气的浓度对发动机的性能影响

通过试验证明,发动机的功率和耗油率都是随着过量空气系数α变化而变化的。

标准混合气

理论上,对于α=1的标准混合气而言,所含空气中的氧正好足以使汽油完全燃烧,但实际上,由于时间和空间条件的限制,汽油细粒和蒸汽不可能及时地与空气绝对均匀地混合,因此,即使α=1,汽油也不可能完全燃烧,混合气α>1才有可能完全燃烧。

稀混合气

因为α>1时混合气中,有适量较多的空气,正好满足完全燃烧的条件,此混合气称为经济混合气,对于不同的汽油机经济混合气成分不同,一般在α=1.05~1.15范围内。α>1.11的混合气称为过稀混合气。

当混合气稀到α=1.4 以上时,混合气虽然能着火,但火焰无法传播,导致发动机熄火,所以α=1.4称为火焰传播下限。

浓混合气

当α大于或小于1.05~1.15时,ge↑,经济性变坏。

当α= 0.88时,Pe最大,因为这种混合气中汽油含量较多,汽油分子密集,因此,燃烧速度最高,热量损失最小,因而使得缸内平均压力最高,功率最大,此混合气称为功率混合气。对不同的汽油机来说,功率混合气一般在α=0.85~0.95 之间。α<0.88的混合气称为过浓混合气,混合气无论过稀过浓都会使发动机功率降低Pe↓,耗油率增加

ge↑。

混合气浓到α=0.4以下,可燃混合气虽然能着火,但火焰无法传播,发动机熄火,所以α=0.4称为火焰传播上限。

三、汽油机各种工况对可燃混合气成份的要求

作为车用汽油机,其工况(负荷和转速)是复杂的,例如,超车、刹车、高速行驶、汽车在红灯信号下,起步或怠速运转、汽车满载爬坡等,工况变化范围很大,负荷可以0→100%,转速可以最低→最高。不同工况对混合气的数量和浓度都有不同要求,具体要求如下:

(1)小负荷工况-要求供给较浓混合气α=0.7~0.9量少,因为,小负荷时,节气门开度较小,进入气缸内的可燃混合气量较少,而上一循环残留在气缸中的废气在气缸内气体中所占的比例相对较多,不利于燃烧,因此必须供给较浓的可燃混合气。

(2)中负荷工况-要求经济性为主,混合气成分α=0.9~1.1,量多。发动机大部分工作时间处于中负荷工况,所以经济性要求为主。中负荷时,节气门开度中等,故应供给接近于相应耗油率最小的α值的混合气,主要是α>1的稀混合气,这样,功率损失不多,节油效果却很显著。

(3)全负荷工况-要求发出最大功率Pemax,α=0.85~0.95,量多。汽车需要克服很大阻力(如上陡坡或在艰难路上行驶)时,驾驶员往往需要将加速踏板踩到底,使节气门全开,发动机在全负荷下工

作,显然要求发动机能发出尽可能大的功率,即尽量发挥其动力。性,而经济性要求居次要地位。故要求化油器供给Pemax时的α值。(4)起动工况-要求供给极浓的混合气α=0.2~0.6量少。

因为发动机起动时,由于发动机处于冷车状态,混合气得不到足够地预热,汽油蒸发困难。同时,由于发动机曲轴被带动的转速低,因而被吸入化油器喉管内的空气流速较低。难以在喉管处产生足够的真空度使汽油喷出。既使是从喉管流出汽油,也不能受到强烈气流的冲击而雾化,绝大部分呈油粒状态。混合气中的油粒会因为与冷金属接触而凝结在进气管壁上,不能随气流进入气缸。因而使气缸内的混合气过稀,无法引燃,因此,要求化油器供给极浓的混合气进行补偿,从而使进入气缸的混合气有足够的汽油蒸汽,以保证发动机得以起动。

(5)怠速-是指发动机在对外无功率输出的情况下以最低转速运转,此时混合气燃烧后所作的功,只用以克服发动机的内部阻力,使发动机保持最低转速稳定运转。汽油机怠速运转一般为300~700r/min,转速很低,化油器内空气流速也低,使得汽油雾化不良,与空气的混合也很不均匀。另一方面,节气门开度很小,吸入气缸内的可燃混合气量很少,同时又受到气缸内残余废气的冲淡作用,使混合气的燃烧速度↓↓,因而发动机动力不足。因此要求提供较浓的混合气α=0.6~0.8。

6)加速工况

发动机的加速是指负荷突然迅速增加的过程。要求混合气量要突

增,并保证浓度不下降。当驾驶员猛踩踏板时,节气门开度突然加大,以期发动机功率迅速增大。在这种情况下,空气流量和流速以及喉管真空度均随之增大。汽油供油量,也有所增大。但由于汽油的惯性>空气的惯性,汽油来不及足够地以喷口喷出,所以瞬时汽油流量的增加比空气的增加要小得多,致使混合气过稀。另外,在节气门急开时,进气管内压力骤然升高,同时由于冷空气来不及预热,使进气管内温度降低。不利于汽油的蒸发,致使汽油的蒸发量减少,造成混合气过稀。结果就会导致发动机不能实现立即加速,甚至有时还会发生熄火现象。

为了改善这种情况,就应该采取强制方法。在化油器节气门突然开大时,强制多供油,额外增加供油量,及时使混合气加浓到足够的程度。

课堂小结:通过上述分析,可以看出

① 发动机的运转情况是复杂的,各种运转情况对可燃混合气的成分要求不同。

② 起动、怠速、全负荷、加速运转时,要求供给浓混合气α<1。

③中负荷运转时,随着节气门开度由小变大,要求供给由浓逐渐变稀的混合气α=0.9~1.1。汽车正常行驶时,在大负荷、中负荷工况下,随着负荷的增加,化油器供给由浓逐渐变稀的混合气α↑,当进入大负荷范围内,混合气又由稀变浓,保证发动机发出最大功率。

课堂小结:

通过上述分析,可以看出

① 发动机的运转情况是复杂的,各种运转情况对可燃混合气的成分要求不

② 起动、怠速、全负荷、加速运转时,要求供给浓混合气α<1。

③中负荷运转时,随着节气门开度由小变大,要求供给由浓逐渐变稀的混合气α=0.9~1.1。汽车正常行驶时,在大负荷、中负荷工况下,随着负荷的增加,化油器供给由浓逐渐变稀的混合气α↑,当进入大负荷范围内,混合气又由稀变浓,保证发动机发出最大功率。

教案13学时:2 重点:电动汽油泵的的构造与工作、化油器的工作原理 难点:汽油泵的定压不定量供油特性

重点难点的解决办法:化油器的工作原理可用口吹二条纸条中间,形象地展示空气流速与压力的关系来突破;汽油泵的定压不定量供油原理可以利用其液压系统中调压阀的工作原理引导讲授。

第三节

汽油供给装置

一、汽油供给装置的功用

二、汽油供给装置的组成:(由课件展示讲授)

三、汽油供给装置的构造(课件展示构造)1、2、3、油箱: 汽油滤清器 汽油泵

(1)膜片式汽油泵(课件展示讲授)(2)电动汽油泵(课件展示讲授)

第四节

空气滤清器

一、空气滤清器的功用

二、空气滤清器的构造(课件展示讲授)

第四节 化油器式供油装置

一、基本组成(课件展示讲授)

二、化油器的工作原理(课件展示讲授

教案14学时:2 重点:主要装置的构造特点 难点:各工作装置的工作原理

解决办法:充分利用学生已有的简单化油器的知识加以引导,让学生们认识到各种工作装置不过是利用此原理在不同位置上开设了喷孔(主供油装置除外)

三、化油器的工作装置

1、主供油装置:(用课件展示构造及原理)

利用泡沫管吸入空气至主量孔后方,从使主量孔前后的压力差减小,燃油的流出速度下降,混合气变稀,同时使燃油形成泡沫汽油,改善混合气的形成质量。显然,节气门开度越大,进入泡沫管中的空气越多,燃油越稀。满足中小负荷时,随着节气门的开度增大,燃油逐渐变稀的要求。

由上可见,主供油装置的工作特点是:随着节气门开度的增加,混合气的浓度逐渐下降(变稀)。

启发:随着节气门开度的增加,单位时间耗油量也会下降吗?为什么?

试想:为了达到随节气门开度增加,混合气变稀的目的,还有什么样的结构可供采用?

1、怠速装置(用课件展示构造及原理)

先不展示结构,引导学生思考

启发:怠速时化油器有什么最明显的特征——————节气门开度最小

此时主供油装置能否工作?

在什么位置采取措施可以满足怠速供油的要求? 可见,此时,节气门后方的气体压力很低,可否利用? ————————引入怠速装置的结构(用课件展示)怠速装置:

为满足怠速时供油的要求,利用怠速时节气门后高真空度吸油,为过渡圆滑,设过渡喷口。

2、起动装置(用课件展示结构及原理)

启发:采用如此构造,其作用原理是什么样的?此时哪些装置可能参与供油?

(同学们可根据简单化油器的工作原理进行思考)

总结讲授:设置阻风门,增加冷起动时真空度,此时主喷孔、怠

速喷孔、过渡喷口一起供油。此时混合气是浓的还是稀的?

教案15学时:2 重点:工作装置的结构 难点:工作装置的原理

解决办法:注意通过化油器各工作装置的工作条件引导学生分析,进而利用课件展示加以讲授

3、加浓装置

引导:在主供油装置的基础上,想加消浓混合气,采用什么样的方法可以实现?

化油器上的哪个元件最能说明负荷增大到什么程度?——节气门

(1)机械式加浓装置 展示课件,讲授原理

当节气门开大时,加浓阀位置随节气门开度变化,推杆向下泵油,增加主喷口的喷油量。(实际上相当与加大了主量孔,这岂不使主量孔的出油量受不到限制?——功率量孔)(2)真空式加浓装置

启发:节气门的开度除了反映在节气门摇臂上之外,还有什么参数可以反映这种状态?——————节气门后方的真空度 展示课件,讲授原理

利用节气门处的真空度,控制加浓阀的开启,增大主量孔处汽油流量。除负荷增大时节气门后方的真空度会下降之外,什么因素还会导致如此结果?

当负荷虽然不大,但发动机转速下降到一定程度时,真空式加浓装置也起作用,这一作用称为它的补偿作用。因些真空加深装置必须设量孔才能正常工作!

4、加速装置

汽车要加速超车时驾驶员会采用何种操作动作?——急踩节气门 在喉管处设置加速喷孔,当节气门突然开大时,活塞阀向下泵油,加速喷口喷油,提供加速时额外的燃油量。什么样的结构措施可以实现这一目的? 展示课件,说明其工作原理

节气门缓慢下移时,加速泵内的油压较低,不足以压闭进油阀,加速泵的内的油液经进油阀流回浮子室;当节气门快速下移时,泵内油压迅速上升,压闭进油阀,油压克服重柱重力,经加速喷嘴入喉管,加浓混合气。

5、化油器附属装置(通过课件展示讲授)

(1)多重喉管(2)平衡管

教案16 学时:2 重点:化油器的各装置不同工况下的协同工作

难点:化油器构造细节

重点、难点解决办法:先复习化油器的工作装置,并强调各工作装置在什么情况下起作用,(课件展示),以便在讲总体工作时引导,方便学生理解,当启而不发时,随时切换到该幻灯片引导学生思考。

四、现代化油器的结构

1、化油器的总体结构特点(利用课件展示)

通过对化油器结构课件的观察,初步了解化油器的结构特点,并将之与化油器的各工作装置相比较,简单说明实际化油器是由各工作装置有机结合的整体,它们的协同工作,构造了化油器不同工况下的工作状态。

2、化油器的工作状态

(1)起动工况

① 冷起动工况:节气门微开,阻风门全关

试想:二个可操纵的零件处于这种状态时,什么装置应该起作用? 启发:节气开度很小时,哪里真空度较高?

阻风门是什么元件?它关闭时什么装置起作用? 展示课件,观察此时化油器工作装置的状态,并讲授其工作。② 中负荷工况:节气门处于中等开度:小于80%高于怠速

展示课件并启发:中等负荷是汽车发动机经常工作的工况,应该主要考虑什么因素?

节气门处于此开度下,什么装置应该起作用?

对照计时课件讲授其工作过程

③ 化油器大负荷工况

节气门开度大于80% 展示课件并提出问题:此时主供油装置起作用否?

应该有什么装置参与供油以加浓混合气? 此时主供油装置、机械式省油器、真空式省油器同时起作用,相当于主量孔变大了,出油量增多,而实现加浓。(谁来限制最大供油?)④ 加速工况:节气门迅速开大

化油器的工作装置中哪个的工作与节气门的运动速度有关?

教案17课时:2 重点:电控系统的功能、原理 难点:喷油时序

重点难点的解决办法:对于理解难度较大的喷射时序,必须先让学生重新回顾发动机工作原理中的四个过程,然后再讲时序就容易多了

第二篇:发动机冷却系教案.doc

发动机冷却系的构造和工作原理(专业理论教学案)

教师

教学单元 发动机冷却系 授课计划学时 2 教学过程

导入:

引出问题:发动机在工作的时候会产生高温,那么它能不能像人一样将产生的热量通过“出汗”的方式散发出去呢?

一、冷却系的功用和分类

发动机,工作时,由于燃料的燃烧,气缸内气体温度可高达2 200~2 800K。使发动机的零件温度升高,特别是高温气体接触的零件,如不及时冷却则难以保证发动机正常工作,发动机过热或过冷都会给发动机带来危害。冷却系的功用就是保证发动机在适宜的温度下工作。

提问:最适宜的发动机工作温度是多少?

冷却系统的分类

汽车发动机常见的冷却方式有两种,即水冷却和风冷却。大多数发动机采用水冷却。

冷却液:1.冷却水的选择

发动机用的冷却用水,最好是软水(含矿物质少的水)。因为用硬水易产生水垢而堵塞水

道,破坏水的冷却循环,使气缸体、气缸盖传热效果差,发动机容易产生过热。雨水为软水,将其过滤,清除杂质便可使用。发动机使用硬水时,需经软化处理。2.冷却液

冬季使用冷却水,要防冻冰。为降低冷却水的冰点,适应冬季行车需要,可在冷却水中加入适量的乙二醇或丙二醇。当这两种物质的加入量为50%时,冰点可降至243K(—30~C)。目前汽车上已普遍使用配制好的冷却液。乙二醇冷却液有一定的毒性。

注意事项:使用中应注意,切勿吸人口中,以免中毒。一般冷却液基本上有两种:(1)乙二醇与水型防冻液。(2)丙二醇与水型防冻液。

二、水冷却系统

水冷系组成及工作原理

水冷却系统具有冷却可靠、布置紧凑、噪声小、使用方便等优点,在汽车发动机上应用较为广泛。水冷却系统主要由水箱、风扇、水泵、水管、水套、节温器和水温监测、控制装置等组成。

水冷系主要零部件 1.膨胀水箱 2。散热器

3.风扇

4.水泵:水泵的作用是强制冷却水在冷却系统中进行循环。

水冷却强度的调节装置:为使汽车适应不同环境条件的变化,要求能够调节冷却系的冷却强度,保证发动机经常在最佳的温度状况下工作。

百叶窗: 百叶窗和保温帘是起到调节进风量作用的,二者不是同时设置的。

风扇离合器:电磁风扇离合器

电磁风扇离合器的工作过程:当冷却水温度低于92℃时,水温感应开关的电路不通,线圈不通电,离合器处于分离状态;当水温超过92℃时,水温感应开关的电路自动接通,线圈通电,电磁壳体吸引衔铁环将摩擦片压紧,离合器处于结合状态。

蜡式节温器

总结本节主要知识点:

冷却系是保证发动机在适宜的温度下工作的,分为风冷系统和水冷却系统。

水冷却系统是以冷却液为介质,热量由机件传给冷却液,靠冷却液的流动把热量带走,再散发到大气中去,使发动机的温度降低而进行冷却的一系列装置,散热后的冷却液再重新流回到受热机件处。由于水冷却系统应用广泛,本章对水冷系统进行了详细的分析。风冷系统利用高速流动的空气直接吹过气缸盖和气缸体表面,把热量散发到大气中去,保证发动机在最有利的范围内工作。思考题及习题

1.冷却系的功用、组成。

保证发动机在适宜的温度下工作

水冷却系统主要由水箱、风扇、水泵、水管、水套、节温器和水温监测、控制装置等组成。2.散热器的功用和类型。

3.离心式水泵的功用和工作原理。4.如何检查、调整风扇V带的松紧度? 5.什么叫小循环?什么叫大循环? 6.水冷系的冷却强度为什么要调节?调节装置有哪些? 7.试分析汽车在路上行驶时,发动机开锅的故障原因。8.水冷系的节温器是否可以随便摘除,为什么? 9.如果蜡式节温器的石蜡漏失,节温器处于怎样的工作状态?发动机出现什么故障?

第三篇:发动机教案

《 汽车结构 》

《 汽车概论 》

教案

邹荣林

适用:2013级汽修班(1)(2)班

玉屏侗族自治县中等职业学校

汽车运用与维修专业

教案课时:1-2

课题:学习前的要求

课型:理论 教学目标:

1、安全教育。

2、操作基本要求。教学重点:

安全概念。

教学方式:

讲授。

教学过程:

一、纪律要求:

1、理论课要求:遵守课堂纪律,不玩手机,不打瞌睡,不说闲话,不吵闹,上课认真听,课后找资料复习。每个任务结束后,必须完成作业。

2、实训课要求:严格按照分组规定,服从老师安排,分组轮流操作练习,别人操作时,不操作的人按队形站好认真观看。不能动的设备坚决不动,不打闹,绝对不能用工具打闹。

二、安全要求:

1、人身安全:按规程操作,注意保护好自己和他人免受伤害。

2、设备安全:按规程操作,不野蛮操作,注意设备的安全。

三、正确操作规程:

1、对工具、设备的管理。

2、对工具的正确认识和使用,掌握使用工具的正确姿势。

3、螺栓拆松和拧紧的正确顺序。

四、5S:

整理

整顿

清洁

清扫

素养

教案课时:3-4

课题:学习要求、发动机概述

课型:理论

教学目标:

3、让学生对本模块的学习内容有一个清晰的概念。

4、对发动机的工作原理进行复习,使学生能从思想上进入到发动机内容的学习。教学重点:

发动机工作原理。

教学难点:

发动机工作原理。

教学方式:

讲授。

一、发动机的组成

曲柄连杆机构、配气机构、燃料供给系统、冷却系统、润滑系统、点火系统(汽油发动机)、起动系统。

二、汽车发动机类型

1、汽油机——燃用汽油的发动机。

2、柴油机——燃用柴油的发动机。

3、液化气发动机——燃用液化气的发动机。

三、发动机缸体结构类型: 直列式、V式、对置式。

四、四冲程发动机工作原理

1、进气冲程——在曲轴的带动下,活塞从上止点向下止点运动,进气门打开,排气门关闭,新鲜的气体进入汽缸。

2、压缩冲程——在曲轴的带动下,活塞从下止点向上止点运动,进排气门都关闭,气体被压缩。活塞将要到达上止点,火花塞放出电火花,混合器体燃烧。

3、作功冲程——巨大的爆发压力推动活塞往下运动,通过曲轴把动力输出。

4、排气冲程——在曲轴带动下,活塞向上止点运动,排气门打开,废气排出汽缸。教案课时:5-6 课题:发动机配气机构的检测与修理(学习准备、汽缸盖的拆卸)

课型:理论 教学目的:

通过课堂上的讲授,使学生熟悉配气机构的结构,清晰对汽缸盖进行拆卸的要点。教学重点:

汽缸盖的拆卸要点。

教学难点:

配气机构的结构分析。

教学方式:

讲授。

发动机配气机构的检测与修理(学习准备、汽缸盖的拆卸)

一、配气机构的作用——根据发动机的工作情况让新鲜的气体进入汽缸,并让燃烧后的废气排出汽缸。

二、配气机构的结构类型——目前发动机采用的都是顶置式配气机构(气门在汽缸的上方)。配气机构的零件都安装汽缸盖上。

根据凸轮轴的安装位置,分别有上置凸轮轴式、中置凸轮轴式与下置凸轮轴式。

三、汽缸盖的拆卸

1、拆卸汽缸盖罩。

2、拆卸凸轮轴——对于剪式齿轮机构,要用维修螺钉固定进气凸轮轴齿轮上的副齿轮,以取消剪形弹簧的张力作用以便于拆卸凸轮轴。

3、拆卸汽缸盖螺栓——按照正确的顺序进行(从外到内)。

4、取出汽缸盖。

5、用专用工具拆卸气门组零件。

四、汽缸盖的耗损分析

1、汽缸盖底平面的磨损与变形——进行平面度的检测(利用刀形尺与塞规进行六个方向的检测)。

2、汽缸盖的裂纹。

3、汽缸盖导管孔的磨损。

4、气门座的烧蚀与磨损。

本课内容小结:

1)配气机构的作用。2)配气机构的结构类型。3)汽缸盖的拆卸过程。汽缸盖的耗损分析。

练习:

4)任务三:评价与反馈

教案课时:7-8 课题:发动机配气机构的检测与修理(配气机构零件的检测)

课型:理论 教学目的:

通过堂上的讲授,使学生学会对气门、气门弹簧、凸轮轴磨损、凸轮轴弯曲、凸轮轴轴向间隙进行检测的方法。教学重点:

各零件的检测方法。

教学难点:

各零件的检测方法。教学方式:

讲授。

发动机配气机构的检测与修理(配气机构零件的检测)

一、凸轮轴磨损与弯曲、轴向间隙的检测

1、凸轮轴磨损的检测——对凸轮轴轴颈进行圆度与圆柱度的检测,对凸轮进行凸轮高度的检测,以确定凸轮轴的磨损,各数据超与技术要求,凸轮轴需要更换。

2、凸轮轴弯曲的检测——用支架百分表对凸轮轴进行径向圆跳动的检测。

3、凸轮轴轴向间隙的检测——用支架百分表作用在凸轮轴前端进行检测。轴向间隙用于满足凸轮轴膨胀的需要,此间隙过小容易造成凸轮轴的弯曲变形,间隙过大,容易造成凸轮轴在工作当中发生轴向串动而造成零件的磨损。

二、挺杆磨损的检测——挺杆高度与直径的检测,挺杆高度的减少会改变气门间隙的大小,从而使发动机的配气相位发生变化。

三、气门弹簧的检测——进行弹簧自由长度的检测(确定弹簧张力的改变),弹簧垂直度的检查(确定弹簧的变形),弹簧的变形是无法保证气门的正确工作。

四、气门耗损的检测与气门密封的检测

1、气门长度的检测——用游标卡尺进行检测,气门长度减少使配气相位发生变化。

2、气门杆部直径的检测——用游标卡尺或外径千分尺,杆部磨损无法保证气门正确与气门座的密合,同时也会造成机油的泄漏,造成烧机油。

3、气门头部工作锥面的检测——用压印法或划线发与气门座配合进行密封的检测。

4、气门杆部变形的检测——用滑动试验法进行检测。本课内容小结:

1)凸轮轴磨损与弯曲、轴向间隙的检测。2)挺杆磨损的检测。3)气门弹簧的检测。

4)气门耗损的检测与气门密封的检测。

教案课时:9-10 课题:发动机配气机构的检测与修理(气门间隙的调整)

课型:理论 教学目的:

通过堂上的讲授,使学生学会对上置凸轮轴式与下置凸轮轴式配气机构气门间隙的调整方法。教学重点:

气门间隙的分步调整法与两次调整法。

教学难点:

气门间隙的两步调整法。

教学方式:

讲授。

发动机配气机构的检测与修理

(气门间隙的调整)

一、为什么要留有气门间隙——满足气门膨胀的需要。

1、若间隙过大——气门组零件在工作中会产生噪音,而且使气门打开的时刻推后,发动机的配气相位发生变化,2、若间隙过小——气门因温度的作用而发生变形。

二、如何检查气门间隙——在气门完全关闭时,用塞规作用在气门杆端与凸轮之间。(进气门间隙少与排气门间隙)。

1、逐缸检查——该缸处于压缩冲程结束时。进排气门的间隙都可进行检查。

2、分两步检查——在第一缸处于压缩冲程结束时可检查一半的气门间隙,其余气门间隙在末缸处于压缩冲程结束时可检查。

三、如何调整上置凸轮轴式的气门间隙——改变挺杆上方调整垫片的厚度,气门间隙便得到调整。

四、如何调整下置凸轮轴式的气门间隙——松开锁紧螺母,旋动调整螺钉,通过塞规确定气门间隙是否符合,从新把锁紧螺母上紧。本课内容小结:

1)为什么要留有气门间隙。2)如何检查气门间隙。

3)如何调整上置凸轮轴式的气门间隙。4)如何调整下置凸轮轴式的气门间隙。

教案课时:11-12 课题:发动机配气机构的拆装与检测

教学目的:

通过对发动机实体的操作

1)学生学会了配气机构零件的拆装方法。2)学生学会了配气机构零件耗损的检测方法。3)学生学会了对气门间隙的检查与调整的方法。教学重点:

配气机构的检测与气门间隙的调整。

教学难点:

配气机构的检测与气门间隙的调整。

教学方式:

边讲授边实操。

发动机配齐机构零件的检测实操课实操教学安排:

课型:实操

1、实操前的安全动员。

2、进行分组(分成八个小组)。实操教具:

每小组一台丰田5A发动机,仪量具(外径千分尺、游标卡尺、支架百分表)一套、工具一套。实操教学过程:

一、重新强调传动带、正时带的拆卸程序,要点、注意问题。

二、各小组进行拆卸操作。1.进行传动带与正时带的拆卸。

2.有各小组长安排同学分别进行对缸盖的拆卸。

三、检测凸轮轴的轴向间隙。

四、拆卸拆卸气门组件。

五、配气机构零件耗损的检测。1.凸轮轴磨损与变形的检测。

2.气门长度尺寸、杆部直径变形、头部磨损、与气门座的密封检测。3.气门弹簧的检测。4.挺杆的磨损检测。

六、安装配气机构零件。

七、气门间隙的检测。

八、对正时安装正时带和传动带。

九、由各小组长和老师进行检查安装质量。

十、各小组进行评价与反馈。本课内容小结:

1)传动带、正时带的拆卸。2)汽缸盖的拆卸。3)配气机构零件的拆卸。4)配气机构零件的检测。5)配气机构的安装。6)正时带的安装与对正时。教案课时:13-14 课题:发动机汽缸体的检测与修理

课型:理论 教学目的:

1、让学生知道汽缸体发生耗损的原因。

2、让学生学懂如何对汽缸进行检测的方法。

3、让学生学懂对汽缸修复的方法。教学重点:

缸体耗损分析,汽缸磨损的检测。

教学难点:

汽缸磨损的检测。

教学方式:

讲授。

发动机汽缸体的检测与修理

一、汽缸体发生耗损的原因及修复的方法

1、耗损原因——各种不正常的振动作用、发动机长时间的高温作用会导致缸体出现变形或裂纹。缸体发生变形会导致曲轴主轴承座轴线发生改变无法保证曲轴的正常工作。出现裂纹:会造成漏油或漏水。

2、修复方法——缸体发生变形只能更换缸体。缸体出现裂纹:如果裂纹出现在并不重要的位置可以进行修复(焊补或粘补)。

二、汽缸磨损的原因、检测方法及修复的方法

1、汽缸磨损的原因——汽缸上部:由于高温而且润滑差再加上气体流动冲刷的作用而造成汽缸上部磨损大。汽缸中部的磨损:由于活塞运动的换向,活塞在汽缸中部位置时,汽缸所受到的侧向力较大,因此造成汽缸中部的磨损。汽缸下部的磨损:汽缸下部由于受到润滑油飞溅的作用,如果润滑油较脏,机械的颗粒就会附在汽缸的下壁,在活塞运动时就形成了磨料磨损,所以造成汽缸下部的磨损。

2、汽缸磨损的检测——分别从汽缸上、中、下三个截面进行检测,在每个截面的轴线与推力方向检测直径,最后计算出圆度与圆柱度及最大的磨损量。汽缸的圆度与圆住度及最大的磨损量都不能超于技术要求。

3、修复方法——根据圆度与圆柱度及最大的磨损量确定出对汽缸的修理等级。对汽缸可进行镗削修复或更换缸套。如果所有汽缸的圆度与圆柱度及最大的磨损量无超于技术要求可通过更换活塞环开修复。

4、汽缸通过修复或更换了缸套必须根据缸套尺寸重新选配活塞与活塞环。本课内容小结:

1)汽缸体发生耗损的原因及修复的方法。2)汽缸磨损的原因、检测方法及修复的方法。

教案课时:15-16 课题:汽缸磨损的检测

课型:实操 教学目的:

通过实操让学生真正学会对汽缸的检测。

教学重点:

汽缸的检测。

教学难点:

汽缸的检测。

教学方式:

实操。

汽缸磨损的检测实操课

实操教学安排:

实操前的安全动员。进行分组(分成八个小组)。实操教具:

每小组分配5A发动机一台,量具一套(包括有:量缸表一套、外径千分尺一套、游标卡尺一套)。实操教学过程:

1.讲述量缸表的结构、使用方法。2.对汽缸进行检测的程序。

3.学生动手操作并记录所检测出的各项数据。4.检查学生检测的动作是否符合要求。5.各小组进行评价与反馈。

本课内容小结:

1.学习量缸表的使用方法及使用量缸表检测汽缸。2.对汽缸上中下三个截面进行检测。

教案课时:17-18 课题:汽缸盖、汽缸体平面的检测

课型:实操 教学目的:

通过实操让学生真正学会对汽缸盖与汽缸体平面变形的检测。

教学重点:

平面变形检测的要领。

教学难点:

平面变形检测的要领。

教学方式:

实操。

汽缸盖与汽缸体平面变形的检测实操课

实操教学安排:

1.实操前的安全动员。2.进行分组(分成八个小组)。实操教具:

每小组分配给四个发动机缸体,量具一套(包括有:刀形尺、塞规)。

实操教学过程:

1.讲述刀形尺的使用方法与注意问题。2.讲述塞规的使用方法与注意问题。3.如何对缸盖与缸体平面进行检测。4.学生动手操作(边操作边记录数据)。5.各小组进行评价与反馈。

本课内容小结:

1.刀形尺、塞规的使用方法。2.对平面进行检测的要领与注意问题。

教案课时:19-20

课题:发动机传动带的检查与更换

课型:理论 教学目的:

1、通过堂上的讲授、分析使学生都清楚传动带安装在发动机什么位置,他的作用以及传动带的结构类型。

2、通过对传动带工作特点的分析,引导学生能判断传动带在工作中会产生哪些故障(损伤)。教学重点:

传动带的作用、类型及传动带产生故障的原因。教学难点:

传动带在工作中产生故障的原因。

教学方式:

讲授。

发动机传动带的检查与更换

理论讲授内容

一、传动带的作用

曲轴通过传动带带动各部件(液压助力泵、发电机、空调压缩机、水泵、空气压缩机等等)进行工作以保证发动机的正常工作。

二、传动带的结构类型

传动带由橡胶层与帘布层所构成,有V形传动带与多楔形传动带。

三、传动带在工作中所发生的故障

1、传动带调节过紧或过松。

过紧——容易造成传动带疲劳,使使用寿命缩短,同时也会造成所连接的部件负荷加大而变形。

过松——无法正常传递动力,部件不能正常工作。

2、安装不正确

由于安装不正确,所带动的部件也无法正常工作,同时产生噪音,传动带磨损加剧。

3、机械刮伤

大多是因为安装不正确引起。

4、被污染

被空气的粉尘、油污所污染。加剧老化,失去弹性,发生打滑,产生噪音,无法正常传递动力。

5、脱皮、起毛、裂纹

传动带质量有问题或长时间与高温接触,长时间超载荷工作。

四、传动带的拆卸与安装

1、传动带的拆卸——重复使用的传动带画上转向记号、按要求步骤进行操作。

2、传动带、张紧轮与拉紧弹簧的检查。

3、传动带的安装——安装的方法、传动带张紧度的调节。教案课时:21-24

课题:发动机传动带的拆卸与安装(丰田发动机)

课型:实操 教学目的:

通过学习学生能真正学会在实车上如何拆卸、检查与安装传动带。

教学重点:

传动带的正确拆卸与安装,传动带损伤的检查。

教学难点:

如何正确调节传动带的张紧度。

教学方式:

在学生实操中进行指导。

实操过程:

一、安全动员——全班进行。

二、小组长集中——分配实操设备、量具、工具。指导教师扼要讲述实操要点及过程。

三、各小组就位进行实操。

四、由老师对各小组的实操质量进行检查。

五、进行评价与反馈。实操内容:

1)熟悉传动带的安装要点。

2)传动带拆卸前的准备工作——画上转向记号。

3)拆卸传动带,对传动带、张紧轮、拉紧弹簧进行目视与检测。4)安装传动带并调节张紧度。5)检查安装质量。

发动机传动带的拆卸与安装实操课教学过程

实操前准备:

1.实操前的安全动员。2.进行分组(分成4个小组)。实操教具:

每小组丰田5A发动机一台,工具一套。

实操教学过程:

1、整体观察传动带的安装位置、传动带所带动的各部件的安装位置。

2、准备拆卸工具、在传动带上画上转向记号、进行拆卸。

3、安装传动带——由小组长安排分批进行轮换。

4、传动带张紧度的调节。

5、老师对各小组的实操质量进行检查。

6、工具、设备的摆放与收拾。

7、各小组进行评价与反馈。

教案课时:25-28 课题:发动机正时带的拆卸与安装(丰田发动机)

课型:实操 教学目的:

让学生进行实车操作,真正学会在汽车上如何拆卸与安装正时带。

教学重点:

正时带的拆卸与安装,正时带损伤的检查。

教学难点:

如何正确拆卸与安装。

教学方式:

边实操边讲授。

实操过程:

2、安全动员——在全班进行。

3、小组长集中——分配实操设备、工具。实操要点及过程。

4、各小组就位进行实操。

5、由老师对各小组的实操质量进行检查。

6、进行评价与反馈。实操内容:

1、熟悉正时带的安装要点。

2、对正时带进行拆卸。

3、对正时带进行目视检测。

4、对张紧机构进行检查。

5、安装正时带并调节张紧度。

6、检查安装质量。

发动机正时带的拆卸与安装实操课

实操教学安排:

1、实操前的安全动员。

2、进行分组(分成4个小组)。实操教具:

每小组丰田发动机一台,游标卡尺一套、工具一套。

实操教学过程:

1、整体观察正时带的安装位置、正时记号具体在什么位置。

2、进行拆卸。

3、对正时带、张紧轮、张紧弹簧进行检查——每个同学记录检查过程及检查中发现的问题。

4、安装正时带——由小组长安排分批进行轮换。

5、正时带安装前正时记号的检查。

6、正时带及张紧装置的安装。

7、转动曲轴进行正时带张紧度的调节。

8、老师对各小组的实操质量进行检查。

9、各小组进行评价与反馈。

教案课时:29-30 课题:活塞连杆组的检测与修理

课型:理论 教学目的:

1.让学生对活塞连杆组零件的结构更清晰。2.让学生清晰活塞连杆组各零件发生耗损的原因。3.让学生学懂活塞连杆组各零件的检测方法与修复的方法。

教学重点:

活塞、活塞环、连杆的检测与修复。

教学难点:

活塞、活塞环、连杆的修复方法。

教学方式:

讲授。

活塞连杆组的检测与修理

一、连杆的结构分析,发生耗损的原因、检测与修复的方法

1、连杆的结构分析——连杆由三部分组成(小头、杆身:杆身上面有供安装的标记、大头)。

2、发生耗损的原因——配合间隙不正确、润滑不正常、长时间高温的作用容易造成连杆各工作面的不正常磨损。连杆受到过载或不正常的冲击作用会导致连杆的变形。

3、连杆的检测——主要进行连杆扭曲与弯曲的检测(利用连杆检测仪进行检测)。

4、修复——发生弯曲不严重可进行校正(压校),发生扭曲一般更换。如果确实要进行校正,应先校扭曲再校弯曲。

二、活塞发生耗损的原因及检测与修复的方法

1、活塞的耗损——高温的作用以及润滑不良容易造成活塞的磨损。(群部尺寸及活塞销座孔尺寸的改变)

2、检测——利用外径千分尺检测活塞群部的直径,用内径卡检测销座孔直径。

3、修复——活塞发生耗损只能更换。

三、活塞环的检测方法

1、活塞环端口间隙的检测——活塞环置于汽缸中并保持垂直位置,此时开口处的间隙为端口间隙。

2、活塞环的侧隙检测——活塞环置于环槽中,环高与环槽的高度差为活塞环的侧隙。

本课内容小结:

2.连杆的结构分析,发生耗损的原因、检测与修复的方法。3.活塞发生耗损的原因及检测与修复的方法。4.活塞环的检测方法。

教案课时:31-32 课题:曲轴磨损、弯曲的检测

课型:实操 教学目的:

通过实操让学生学懂如何检测曲轴。

教学重点:

曲轴磨损、弯曲的检测要领。

教学难点:

曲轴磨损如何检测。

教学方式:

实操。

曲轴轴颈磨损、曲轴弯曲的检测实操课

实操教学安排:

1.实操前的安全动员。2.进行分组(分成八个小组)。实操教具:

每小组分配给一根曲轴,量具一套(包括有:外颈千分尺两套、支架百分表一套)。

实操教学过程:

1.讲述如何用外径千分尺对曲轴轴颈进行检测。

2.学生使用外颈千分尺对曲轴轴颈进行检测同时记录各数据。3.讲述如何用支架百分表对曲轴的弯曲进行检测。4.学生动手操作并记录弯曲的读数。5.各小组进行评价与反馈。

本课内容小结:

1.如何用外径千分尺检测曲轴轴颈的磨损。2.用支架百分表对曲轴弯曲进行检测。

教案课时:33-34 课题:活塞连杆组件的拆卸与检测

课型:实操 教学目的:

通过实操让学生真正学会活塞与缸壁之间间隙的检测,活塞环端隙、环槽间隙的检测。

教学重点:

活塞与缸壁之间间隙的检测,活塞环端隙、环槽间隙的检测。

教学难点:

活塞环端隙、环槽间隙的检测。

教学方式:

实操。

汽缸盖与汽缸体平面变形的检测实操课

实操教学安排:

1.实操前的安全动员。2.进行分组(分成八个小组)。实操教具:

每小组分配给5A发动机一台,工具、量具各一套。

实操教学过程:

1.讲述活塞连杆组件的拆卸要领。2.学生进行操作。

3.讲述活塞环端口间隙、环槽间隙的检测要领。4.学生动手操作(边操作边记录数据)。5.各小组进行评价与反馈。

本课内容小结:

1.活塞连杆组件的拆卸。2.活塞与缸壁之间间隙的检测。3.活塞环端隙、环槽间隙的检测。

教案课时:35-36 课题:发动机冷却系统的检测与修理

课型:理论 教学目的:

通过堂上的授课,让学生能学会对冷却系统进行故障分析。学生能对冷却系统主要部件进行检测与修理。教学重点:

冷却系统主要部件的检测与修理。

教学难点:

冷却系统主要部件的检测与修理。

教学方式:

讲授。

发动机冷却系统的检测与修理

一、冷却系统的组成、各主要部件的作用

1、冷却系统的组成——散热器、风扇、水泵、水套、节温器、水温传感器、水温表。

2、各部件的作用——散热器:存放冷却液、风扇:改变发动机的冷却强度、水泵:使发动机冷却液循环流动、水套:发动机存放冷却液的空间、节温器:控制冷却液的流动路线,从而改变冷却强度、水温传感器:把水温信息传给水温表、水温表;反映冷却液的具体温度。

二、冷却液的检查与更换——根据各种类型发动机的要求更换冷却液,如还没达到更换里程但冷却液已变质也应该更换。

三、风扇、节温器、散热器、水泵的检测与修理方法

1、风扇——一旦发生变形,运转时必定产生噪音、振动,所以要更换。

2、节温器——在工作中该打开时不打开,该关闭时不关闭必须要进行检测,经检测故障证实必须要更换,否则无法保证发动机正常的工作温度。

3、散热器——散热器应定期进行清洗,散热器出现裂纹可进行焊补。

4、水泵——水泵工作时有噪音可能是轴承损坏,水泵壳体的排泄口如有水蒸气冒出证明水泵内的机械密封装置已经失效,要对水泵进行更换。

本课内容小结:

2、冷却系统的组成、各主要部件的作用。

3、冷却液的检查与更换。

4、风扇、节温器、散热器、水泵的检测与修理方法。

教案课时:37-38 课题:冷却系统的的拆装与检测

课型:观摩、实操 教学目的:

1、让学生对冷却系统冷却液的循环路线有一个较清晰概念。

2、通过实操让学生对水泵、节温器的结构更清晰。

3、让学生学会如何检测水泵、节温器。教学重点:

如何检测水泵。

教学难点:

在发动机中冷却液大小循环的路线。

教学方式:

实操。

冷却系统的观摩、水泵、风扇、风扇离合器的拆装与的检测实操课

实操教学安排:

1、实操前的安全动员。

2、进行分组(分成八个小组)。

实操教具: 每小组分配5A发动机一台、工具一套。

实操教学过程:

1、由组长组织:要求每个同学都步熟悉发动机冷却液大小循环过程。

要求们个同学都能说出水泵与节温器在冷却系统中的作用。

2、学生进行操作。

3、各小组进行评价与反馈。

本课内容小结:

1、冷却系统的观摩。

2、在发动机中找出冷却液的大小循环路线。

3、水泵、节温器的拆装检测。

4、各小组进行评价与反馈。

教案课时:39-40 课题:发动机润滑系统的检测与修理

课型:理论 教学目的:

1.通过授课,让学生对润滑系统的作用、润滑油的流动过程更清晰。2.通过授课让学生能分析润滑系统故障发生的原因。3.通过授课学生学会对润滑系统主要另部件进行检测。教学重点:

机油泵的检测。

教学难点:

润滑系统的故障分析。教学方式:

讲授。

发动机润滑系统的检测与修理

一、润滑系统的组成、作用,润滑油的流动路线

1、润滑系统的组成——油底壳、机油泵、机油集滤器、机油滤清器、溢流阀、机油传感器、机油散热器、机油压力表、主油道、分油道。

2、主要部件的作用——油底壳:供机油的存放与散热。集滤器:过滤机油,保护机油泵。机油泵:吸油与压油并保证润滑油的循环流动。机油滤清器:过滤机油杂质。溢流阀:控制发动机主油道油压。机油传感器:把主油道油压信号传给油压表。机油散热器:降低机油温度。机油压力表:反映机油压力。

3、润滑油流动路线——

二、润滑系统的故障分析

1、油压过低——机油量不足、机油泵磨损、机油滤清器堵塞、机油溢流阀失效、发动机零件严重磨损,配合间隙过大。

2、油压过高——机油量过多、主油道堵塞、发动机工作温度过高、溢流阀失效、零件的配合间隙过小。

三、机油泵的检测方法及修复的方法

1、机油泵的检测——传动齿轮磨损的检测。

2、修复——磨损超于技术要求必须更换。本课内容小结:

2、润滑系统的组成、作用,润滑油的流动路线。

3、润滑系统的故障分析。

4、机油泵的检测方法及修复的方法。

教案课时:41-42 课题:发动机润滑系统的拆装、机油泵的拆卸与检测

课型:实操 教学目的:

通过实操让学生对发动机整个润滑系统、齿轮式与转子式机油泵的结构有个更清晰的了解,并学懂如何检测机油泵。

教学重点:

润滑油的流动过程、机油泵的结构。

教学难点:

润滑油在发动机中的流动过程。

教学方式:

实操。

机油泵的检测实操课

实操教学安排:

1、认识齿轮式与转子式机油泵的结构区别。

2、进行分组(分成4个小组)实操。

实操教具:

每小组分配给5A发动机一台、转子式机油泵,工具一套。

实操教学过程:

1、由各组长进行组织:要求每个同学都能在发动机中准确的找出润滑油流动经过的各个位置。

2、讲述齿轮式机油泵与转子式机油泵结构上的区别。

3、讲述如何对机油泵进行检测。

4、学生动手操作。

5、各小组进行评价与反馈。

本课内容小结:1、2、3、4、拆卸发动机润滑系统。熟悉润滑油的流动路线。

对齿轮式与转子式机油泵进行拆卸,清楚其结构与原理。对机油泵进行检测的。

发动机机械模块总复习

1、发动机传动带与正时带的区别、拆装程序与检查方法?

2、发动机四个冲程活塞的运动方向与进排气门的开闭状况?

3、齿轮式机油泵与转子式机油泵的结构区别?

4、连杆的检测项目?

5、气门什么情况下有间隙、间隙在什么位置、气门间隙的逐缸调整法与两次调整法?

6、冷却系统冷却液的大小循环过程?

7、曲轴磨损检测的项目?圆度与圆柱度如何求?

8、活塞环扩张器的作用?

9、外径千分尺、游标卡尺的作用?

10、如何检测凸轮轴的弯曲、轴向间隙、油膜间隙、凸轮与轴颈的磨损?

11、用什么方法检测发动机缸体与缸盖的泄漏?

12、汽缸与汽缸套的区别?

13、量缸表(内径百分表)的组成与作用、如何使用?

14、节温器的作用与工作原理?

15、如何检测活塞的油膜间隙、活塞环的端口间隙与环槽(侧隙)间隙?

16、如何检测机油的量与质量?如何检测机油压力?

17、如何检测汽缸压力(汽缸压力检测的步骤)?

18、如何冲洗散热器?

19、如何进行气门密封的检测? 20、发动机润滑油的流动路线。

21、如何进行汽缸磨损的检测?如何求汽缸的圆度与圆柱度?

22、如何使用气门弹簧压缩器正确拆卸气门组件?

23、用什么量具检测曲轴的弯曲?用什么量具检测曲轴轴颈的磨损?

24、如何检测缸体与缸盖的密封面(平面变形的检测)?

25、凸轮轴的组成。

26、有哪些因素会造成汽缸的磨损?

27、如何对节温器进行检测?

28、如何检测曲轴与凸轮轴轴颈的油膜间隙?

29、如何检测冷却液的量与质量? 30、水泵的作用与泵水原理。

31、支架百分表的作用。

32、刀形尺的作用?厚薄规(塞规)的作用?

33、缸盖、缸体、油底壳分别在发动机什么位置?

34、气门的检测有哪些项目?

35、气门弹簧的检测有哪些项目?

36、什么叫发动机的配气相位?

37、如何测量活塞的直径(检测活塞的什么位置)?

38、发动机总成更换前先做什么工作?

39、曲轴的结构(组成、各部位的连接关系)。

第四篇:汽车发动机燃油系统保养知识盘点

汽车发动机燃油系统保养知识盘点

现代汽车所用的燃料主要是汽油和柴油,发动机工作状况的好坏在很多情况下与汽车燃油的品质和汽车燃油系统的工作好坏有直接的关系。如果保养不当将会对汽车发动机造成严重的损害。

汽油发动机保养

汽油是含有适当添加剂精制石油馏分的石油产品,其品质性能的优劣对汽油发动机的动力性、经济性、可靠性及使用寿命等均有很大影响。

一般对汽油品质的基本要求是:良好的蒸发性、抗爆性、安定性(稳定性)和抗腐蚀性,汽油中含有多种腐蚀性物质,如水分、硫化物、有机酸和水溶性酸碱等物质,如果不注重保养将会腐蚀发动机供油系统部件,同时汽油在贮存及使用过程中,不可避免地受到外界污染,使得机械杂质及空气中的水分进入汽油中,这些机械杂质将有可能堵塞化油器量孔、汽油滤清器和喷油器等部件,同时这些杂质还会加剧化油器量孔、活塞环和气缸壁、喷油器等组件的磨损,引起发动机加速不良、起动困难、怠速发抖和发喘等故障。

汽油中的水分在冬季可能冻结,严重时会堵塞滤清器和油路,甚至使供油中断;另外,水分还会加速机件腐蚀,溶解抗氧剂,加速汽油结胶,使导出剂等添加剂失效等不良作用。汽油在贮存和运输使用过程中,容易发生氧化反应,生成胶质和酸性物质,使汽油的酸值增加,降低汽油的品质,当汽油中生成的胶质过多时,将会阻塞油路、气门被粘着关闭不严,引起混合气过稀;同时燃烧室、气门、活塞顶部积碳增多,导致发动机散热不良,进而产生爆振和早燃,火花塞上的积碳还可能造成点火不良,增加排放污染。

柴油发动机保养

柴油和汽油一样,主要由石油加工制得,高速柴油发动机一般用轻柴油。为了保证柴油的正常燃烧,对柴油的品质有严格的要求:良好的燃烧性;良好的蒸发性能;适宜的柴油 粘度;含硫量小;稳定性好等。柴油的辛烷值是代表柴油在燃烧室内点火性能的一个指标,发动机转速越高,要求柴油的点火性越好,对辛烷值的要求就越高。

柴油中含有石蜡成份,在柴油车中它有润滑柴油车上精密偶件和提高柴油热值的作用,可防止零部件发生过度磨损,从而延长机件的使用寿命。通常石蜡在柴油中呈溶解状态,但是当环境温度降低时(一般在凝点以上的温度),石蜡便开始结晶析出。温度进一步降低时,就会形成结晶体,堵塞滤清器,严重影响正常供油,最终使柴油失去流动性。在高温时,石蜡等物质还会发生氧化,在喷油器针阀等部位形成胶质,扰乱供油系统的正常工作,并严重影响汽车的驾驶性能和动力性能。

对于柴油发动机来说,既要保持良好的润滑,减少磨损,又要防止胶质和积碳生成,只有加入高科技配方的添加剂,提高柴油的品质和定期对整个燃油系统进行彻底的清洗保养,才能保证发动机在任何时候都能处于最佳的工作状态。

在过去,很多发动机故障是通过反复调整油、电路等来保持发动机的正常工作,如要得到彻底解决,必须拆卸部件进行清洗或更换;而且在拆卸过程中还有可能损坏零件,在装配时也无法达到原车的装配工艺水平,发动机的动力性、经济性难以得到彻底恢复。当今汽车在制造技术上发生了巨大变化和革新,汽车的油、电路都是由电脑直接控制,是无法调整的,发动机对油路及内部的积碳十分敏感,传统的拆卸清洗只能清洗局部的零部件,而无法对整个燃油系统进行彻底清洗和保养。

专家建议从新车开始就应对燃油系统进行定期保养,这样汽车在整个运行中都能保持燃油系统、进气门、燃烧室等部件的清洁,燃油系统的保养是汽车无故障运行最关键的系统之一。

山……东……万……通……汽……修……大……课……堂

第五篇:发动机原理—教案

【发动机原理】教案

教材: 《汽车发动机原理》

张志沛 主编

大连海运学院出版社

长安大学

汽车学院机电与动力研究所

目 录

绪 论----------------------------

第一章 发动机工作循环及性能指标--------------------------

§1-1 发动机理想循环概述---------------------------

5§1-2 发动机实际循环热量

这部分热量虽然在膨胀过程中还可能会释放出来,但由于活塞已接近下止

点,做功效果变差,热效率下降。二 传热、流动损失

(一)传热损失

理论上: 压缩、膨胀过程为绝热过程。

实际上: 大量热量通过汽缸壁传给冷却水或空气。

传热损失是发动机中的最大损失,占总损失量的30%以上。因此,许多研

究者致力于开发绝热发动机。

(二)流动损失

理论上: 闭口系统,没有气体流动损失。

实际上: 进、排气节流沿程损失,缸内进气、挤压、燃烧涡流损失。三 换气损失

理论上: 忽略进、排气过程。

实际上: 进、排气门提前开启,迟后关闭。而且有流动阻力。

换气损失中逆向循环所包围的面积为泵气损失。泵气损失包含在换气损失

之中。四 时间损失

理论上: 定容加热瞬间完成,定压加热速度与活塞运行速度密切配合。

实际上: 燃烧需要时间。五 补燃损失

理论上: 加热瞬间停止,膨胀过程无加热。

实际上: 虽然大部分(80%以上)燃料在燃烧过程中燃烧掉,但仍有小部分燃

料会拖到膨胀线上才燃烧,做功效果变差,热效率下降。六 泄漏损失

理论上: 闭口系统,无泄漏。

实际上: 活塞气环不会100%严密密封,总会有些气体窜到曲轴箱中,造

成损失。

§1-3 热平衡

总热量: QT = GT hu 分别转化为 一 有效功的热量 QE

Qe36.103Ne [ kJ/h ](1 kw/h = 36.103 kJ)

只有这部分热量做了功,是有用的,所以希望越大越好。一般

柴油机: 30~40% ; 汽油机: 20~30%。

Qe令 qeQT二 传递给冷却介质的热量 QS

QSGScS(t2t1)其中Gs-发动机冷却介质的每小时流量 [ kg/h ] cs-冷却介质比热 [ kJ/kg·℃ ] t1,t2 -冷却介质的进、出口温度 [℃]

三 废气带走的热量QR

QSqsQT

QR(GrGk)(cprt2cpt1)其中Gr-燃料量 [ kg/h ] Gk-空气量 [ kg/h ] cpr-废气比热 [ kJ/kg·℃ ] cp-空气比热 [ kJ/kg·℃ ] t1,t2 -进、排气温度 [℃]

四 燃料不完全燃烧的热损失QB QRqrQE

QBQT(1r)其中r-燃料效率

五 其它热量损失QL

QB qbQTQLQT(QEQSQRQB)

发动机热平衡方程式: qe

§1-4 指示指标

qlqt(qeqsqrqb)

qsqrqbql1

p-V图 p-φ图

发动机性能指标: 指示指标,有效指标

指示指标: 以工质在汽缸内对活塞做功为基础,评价工作循环的质量。有效指标: 以曲轴上得到的净功率为基础,评价整机性能。

示功图: 发动机缸内压力p随汽缸容积V(p-V图)或曲轴转角(p-图)变化的图示。

一 指示功和平均指示压力

(一)指示功Wi

一个循环工质对活塞所做的有用功。

应该:非增压:FiF1F2 增压:FiF1F2 因为: F2不容易测量, 实际将F2归到机械损失中考虑。所以: FiF1

WiFiab 其中 a,b - 横、纵座标比例尺

指示功大,说明 ○汽缸工作容积大 ○热功转换有效程度大。为突出后

者,比较不同大小发动机的热功转换有效程度,引入平均有效压力的概念。

(二)平均指示压力pi

单位汽缸工作容积所做的指示功。

Wi pi(假想参数)

Vh 其中Vh-每缸工作容积。

pi,柴 pi,汽686~981 [ kpa ] 784~1180 [ kpa ]

二 指示功率Ni

单位时间所做的指示功。

若: 缸数i,每缸工作容积Vh [ m ],冲程数 ,平均指示压力 pi[ pa ],转速 n [ r/min ]。则

3n2piVhin NiWii [ w ] 6030piVhin 103 [ kw ]

30 若: 每缸工作容积Vh [ L ],平均指示压力 pi[ bar ]。则

piVhin Ni [ kw ]

300

三 指示比油耗和指示热效率

(一)指示比油耗gi

单位指示功率的耗油量。

GT gi103 [ g/kw·h ]

Ni GT-每小时耗油量 [ kg/h ]

(二)指示热效率i

Wi i

Qi Qi-做Wi指示功所消耗的热量。

36.106 i

gihu hu-燃料的低热值。

i,柴0.43~0.50 gi,柴=170~200 [ g/kw·h ] i,汽0.25~0.40 gi,汽=230~340 [ g/kw·h ]

§1-5 有效指标

一 有效功率和机械损失功率

(一)有效功率Ne

单位时间所做的有效功。

peVhin Ne103 [ kw ]

30 其中 pe-平均有效压力。

(二)机械损失功率Nm

发动机内部损耗的功率。

机械损失包括: 发动机内部摩擦损失;驱动附件损耗,如: 机油泵、燃油泵、扫气泵、冷却水泵、风扇、配气机构;和泵气损失等。

pmVhin Nm103 [ kw ]

30 NeNiNm

其中 pm-平均机械损失压力。

二 有效扭矩Me

功率输出轴输出的扭矩。

2n NeMe [ w ]

602n Me [ kw ]

36010Men  [ kw ] 9550

三平均有效压力pe

单位汽缸工作容积所做的有效功。

peVhin 由于 Ne103 [ kw ]

30piVhin Ni103 [ kw ]

30peNe 所以

pepipm piNi

Me pe314 [ kpa ].Vhi peMe

pe,柴588~883 [ kpa ] pe,汽588~981 [ kpa ]

四 升功率和比重量

(一)升功率Nl

单位汽缸工作容积所发出的功率。

Ne Nl

iVhpen 103 [ kw/l ] 30

(二)比重量Ge

发动机净重量G与所发出有效功率Ne的比值。

G Ge [ kg/kw ]

Ne Nl,Ge  发动机强化程度高。

Nl,车柴11~26 [ kw/l ] Ge,车柴4~9 [ kg/kw ] Nl,拖柴9~15 [ kw/l ] Ge,拖柴5.5~16 [ kg/kw ] Nl,汽22~55 [kw/l ] Ge,汽1.35~4 [ kg/kw ] 可见,汽油机的强化程度要比柴油机的高。

五 有效比油耗和有效热效率

(一)有效比油耗ge

单位有效功率的耗油量。

GT ge103 [ g/kw·h ]

Ne GT-每小时耗油量 [ kg/h ]

(二)有效热效率e

We e

Qe Qe-做We有效功所消耗的热量。

3.6106 e

gehu e,柴 e,汽0.30~0.40 ge,柴=218~285 [ g/kw·h ] 0.20~0.30 ge,汽=285~380 [ g/kw·h ] 由此可见,柴油机的热效率比汽油机的高,经济性比汽油机好。

§1-6 机械损失 一 机械效率m

对于不同类型的发动机,绝对损失大的,其相对损失却不一定也大。必须有

一个衡量标准,故引进机械效率的概念。

有效功率与指示功率的比值。

NepeNmpm m 11NipiNipi NeNim 性能好,所以应尽量提高m。

m,柴0.7~0.85 m,汽0.7~0.9

二 机械损失的测定

(一)倒拖法-只能在电力测功机上试验

在压缩比不很高的汽油机上得到广泛应用。

发动机与电力测功机相连。起动发动机,冷却水温度、机油温度达正常值。然后使发动机在给定工况下稳定运转。切断发动机的供油(Ni0,pi0)。

将电力测功机转换为电动机使用,在给定转速下倒拖发动机,并维持冷却水温度和机油温度不变。由于此时NmNe,因此从电力测功机上所测得的倒拖功率Ne即为发动机在该工况下的机械损失功率Nm。

(二)灭缸法-仅适用于多缸机

当发动机调整到以给定工况稳定运转后,先测出整个发动机的有效功率Ne。之后,在柴油机油门拉杆或齿条位置、或汽油机节气门开度固定不动的情况下,停止向某一汽缸供油或点火。调整测功机,使发动机恢复到原来的转速,重新测定有效功率Ne,1(其余五个汽缸的有效功率),Ne,1必然小于Ne(一缸熄火),两者之差即为灭掉缸的指示功率Ni,1NeNe,1。因为Ni,1NiNi,x1(NeNm)(Ne,1Nm,1)NeNe,1。逐次灭缸,则整台发动机的指示功率为Nii1 如果各缸负荷均匀,则仅测一个缸,即灭火一次即可,Ni 其它还有示功图法,油耗线法等。

三 影响机械效率的因素

(NeNe,i)x,其中x为总缸数。

xx(NeNe,1)。这样,整个发动机的机械损失功率为NmNiNe,机械效率为mNe/Ni。(一)转速

其中cm-活塞平均运行速度。

pm与cm几乎呈直线关系。m与n似呈二次方关系。n  □ 惯性力  活塞对缸壁的侧压力  轴承负荷

□ 各摩擦副相对速度  摩擦损失

□ 泵气损失,驱动附件损耗

 pm  m

若要提高转速来强化发动机,则m将成为主要障碍之一。

(二)负荷

发动机的负荷 □ 柴油机: 油门拉杆或齿条位置

□ 汽油机: 节气门开度

转速n一定,负荷 时,发动机燃烧剧烈程度,平均指示压力pi;而由于转速不变,pm平均机械损失压力pm基本保持不变。则m1,机械效率下降。

pi 当发动机怠速运转时,有效功率Ne0,指示功率Ni全部用来克服机械损失功率Nm。即NiNm,因此,m0。

由于车用柴油机普遍在高转速、较低负荷下工作,机械效率下降严重。因此,机械效率对于车用柴油机尤为重要。

(三)润滑油品质和冷却水温度

润滑油粘度影响润滑效果

润滑油温度影响润滑油粘度

冷却水温度影响润滑油温度

即冷却水、润滑油温度通过润滑油粘度间接影响润滑效果。润滑油粘度(牌号);冷却水温度  润滑油温度  润滑油粘度

 润滑效果  摩擦  Nm,pm  m 润滑油粘度(牌号);冷却水温度  润滑油温度  润滑油粘度

油膜破裂趋势  摩擦  Nm,pm  m 润滑油中杂质  摩擦  Nm,pm  m

要求: 定期保养、清洗机油滤清器,5000~10000公里换机油。

§1-7 燃烧热化学 一 燃料的完全燃烧

(一)理论空气量L0 目的: 1 kg燃料完全燃烧所需要的空气量L0

汽油: gC2 已知条件: 1 kg燃料中所含gC kg 碳,gH kg 氢气,gO kg氧气

0855.[ kg/kg ],gH0145.[ kg/kg ],gO0 [ kg/kg ] 柴油: gC087 [ kg/kg ].[ kg/kg ],gH0126.[ kgkg ],gO0004.3 化学反应方程式

CO2CO2 H2O2H2O 需要总的O2量

CO2CO2 H21O22H2O 1 kmol 1 kmol 1 kmol 1 kmol kmol 1 kmol

21111 1 kg kmol kmol 1 kg kmol kmol 121242

gHgHgCgC gC kg kmol kmol gH kg kmol

4212125 燃料中所含的O2量

gO gO [ kg ] = [ kmol ]

326 所需空气中的O2量 = 总的O2量-燃料中所含的O2量 所需空气量(目的)(1)kmol 空气中氧气成分约占21%,所以

kmol 1gCgHgO()[ kmol/kg ] L00.2112432(2)kg 空气的折合分子量为28.95,即 1 kmol 空气 = 28.95 kg 空气,所以

28.95gCgHgO()[ kg/kg ] L00.21124323(3)m 1 kmol 空气 = 22.4 m 空气,所以

22.4gCgHgO()[m3/kg ] L00.2112432

(二)过量空气系数和空燃比 1 过量空气系数 

L 

L0燃烧1kg燃料实际供给的空气量 

完全燃烧1kg燃料理论上所需要的空气量 表示混合气的浓稀程度。 大  混合气稀; 小  混合气浓

一般,柴油机:  > 1;汽油机:   1。2 空燃比 A/F A/FL0

空气量 

燃料量 表示混合气的浓稀程度。A/F 大  混合气稀;A/F 小  混合气浓

(三)分子变更系数 1 理论分子变更系数 0

M2 0

M1燃烧后工质的摩尔数 

燃烧前工质的摩尔数 0  容积变化大  膨胀做功好  t(1)完全燃烧: gHgO432 01L0(2)不完全燃烧:

gHgO0.21(1)L0432 01L02 实际分子变更系数 

M2Mr0r  M1Mr1r 其中Mr-1 kg 燃料燃烧后残余废气的摩尔数。rMr/L0-残余废气系数。

二 燃料的不完全燃烧第五章 发动机噪声及排放污染

噪声: 汽车的主要噪声源 — 发动机。

汽油机的主要噪声源 — 风扇噪声和配气机构噪声。

柴油机的主要噪声源 — 燃烧噪声。

柴油机的噪声比汽油机的大。

排放: 汽油机的CO、NOx和HC排放比柴油机的多,柴油机的炭粒排放比汽油机的多。

§5-1 发动机噪声污染及防治

GB规定: 城市噪声声压级白天 — Lp  42 [ dB ],夜间 — Lp  37 [ dB ]。一 噪声的评价指标

(一)噪声的物理参数 1 声压 p 声波通过介质时,波峰处的压力升高量 [ pa ]。2 声压级 Lp — 无因次参数

p Lp20lg [ dB ]

p0其中p0 — 1000 [ Hz ]时的基准声压,即听阀声压,p052105 [ pa ]。

人耳能听到的听阀声压210 [ pa ],产生疼痛的痛阀声压 = 20 [ pa ]。相差100万倍左右。3 声强 I 单位时间、单位面积上通过的声能 [ W/m ]。4 声强级 LI — 无因次参数

2I LI10lg [ dB ]

I0其中I0 — 1000 [ Hz ]时的基准声强,L01012 [ W/m2 ]。声功率 W 声源在单位时间内所辐射的总能量 [ W ]。WsInds

其中S — 包围声源的封闭面面积;In — 声强在微元面积ds法线方向的分量。

(1)在自由场中,声波球面辐射,则 I球W4r2W [ W/m ]

2(2)在开阔地面上,声波半球面辐射,则 I半球2r2 [ W/m ] 声功率级 Lw — 无因次参数

W Lw10lg [ dB ]

W01012 [ W ]。

声压级 Lp,声强级 LI和声功率级 Lw的范围均为 0~120 [ dB ]。其中W0 — 基准声功率,W07 频率与频带

人耳能听到的声音频率范围为20~20,000 [ Hz ]。

将其分为若干个频率段 — 频带或频程。

常用倍频程和1/3频程。

倍频程的中心频率 — 31.5,63,125,250,500,1000,2000,4000,8000,16000„

中心频率f中,上限频率f上和下限频率f下的关系为

1f中; f上2f下。

f上2f中; f下2 频谱图 — 横坐标: 频率(频带),纵坐标: 声压级 Lp,声强级 LI或声功率级 Lw。

(二)主观评价 — 响度级

即使声压级相同,而频率不同,人耳所感受到的声音响度就会不同,主观评价参数 — 响度级 [ 方 ]([ phon ])。

以1000 [ Hz ] 的纯音为基准声音,当某噪声的响度与某声压级的纯音响度相同时,则该纯音的声压级 [ dB ] 即为该噪声的响度级 [ phon ]。

如图的ISO等响曲线由大量试验得出 100 Hz以下的噪声,虽然声压级 [ dB ] 较高,但响度级 [ phon ]却低,人耳不敏感。

低频、低声压级 [ dB ] 的噪声,人耳听不到。同一声压级 [ dB ]下,人耳对频率为3000~4000 Hz的噪声(波谷)最为敏感,其响度级 [ phon ] 最高。声压级高于100 [ dB ] 时,等响曲线平缓,响度级 [ phon ] 仅与声压级 [ dB ] 有关,而与频率 [ Hz ] 几乎无关。说明对于高 [ dB ] 的噪声,人耳已分辨不

出高、低频了。

二 发动机噪声分析

(一)车辆噪声源 与发动机转速n有关的噪声源

进、排气噪声;旋转件噪声 — 风扇,空气压缩机,发电机和空调等。2 与车速有关的噪声源

传动噪声 — 变速器,传动轴等;空气动力噪声 — 轮胎噪声,车体噪声等。

(二)发动机噪声源 — 主要噪声源 1 直接传向大气的噪声源

进、排气噪声和风扇噪声等 — 属于空气动力噪声。2 发动机表面辐射噪声源

由发动机零部件的机械振动引起。p(1)燃烧噪声 — ,pmax,还与发动机零部件的强度、刚度有关。

(2)机械噪声 — 发动机零部件之间的间隙撞击和零部件弹性变形,导致零部

件振动引起。

三 发动机噪声的防治

(一)降低燃烧噪声

p1 采用油膜蒸发型混合气形成方式 — M过程  ,pmax。

p2 尽量使喷油先缓后急 — 推迟喷油开始时刻  ,pmax。

3 使用十六烷值高的燃料  i。

(二)加强结构强度

加固主轴承,多加和加固加强筋。

(三)采用隔声罩壳

材料: 钢板、玻璃纤维和其它消声材料。

部位: 曲轴箱侧壁和排气总管。

(四)采用排气消声器

排气消声器 — 声滤波器,随频率变化。阻性消声器 — 主要用于小轿车

声学性能主要取决于声吸收构造和材料的流动阻力。降低噪声的频带较广。2 抗性消声器 — 主要用于载货汽车

声学性能主要取决于消声器的几何形状,造成排气声能阻抗失配。阻抗失配使部分声能在消声器内来回反射震阻碍向外辐射。3 阻抗复合式消声器 — 用于各种汽车

以抗性消声器为基础,同时采用吸声材料,可使排气噪声大幅度降低。

(五)低噪声发动机设计

在满足基本性能的前提下,按降声原理设计结构参数。

§5-2 发动机排放污染及防治 一 发动机的污染源

(一)排气污染 — 占发动机总污染量的65~85% 1 一氧化碳 CO 2 氮氧化合物 NOx 碳氢化合物 HC 4 燃料液滴和炭粒 5 各类铅、硫化合物

(二)曲轴箱通风污染 — 占发动机总污染量的20%左右

主要是碳氢化合物 HC。

(三)汽油箱通风污染 — 占发动机总污染量的5%左右

主要是碳氢化合物 HC。

(四)化油器浮子室及油泵接头处的泄漏污染 — 占发动机总污染量的 5~10% 主要是碳氢化合物 HC。

(五)含铅、磷汽油所形成的铅、磷污染

本课程只讨论第一项 — 发动机的排气污染。

二 发动机排放污染物的形成、危害和防治

(一)一氧化碳 CO 1 形成

C + O  CO [ + O ]  CO2 [ 中间产物 ] 产生的原因是缺氧。

汽油机上 —  < 1 的浓混合气;

柴油机上 —  > 1,但局部过浓的混合气。2 危害

煤气中毒 — 人体血液中的血红素对CO的亲和力比对O2的高,引起含CO的血红素所占比例增高,造成人体缺氧窒息。3 防治

(1)稀薄燃烧与高能点火

使混合气的 ,而又能够正常燃烧。(2)缩小燃烧室的激冷区

激冷区 — 燃烧室中由两个以上冷表面构成的狭窄空间,如挤气间隙。

激冷效应 — 靠近激冷区的可燃混合气,热损失过多而不能着火。

缩小燃烧室的激冷区  燃烧易于完全  CO。

(二)氮氧化合物 NOx 1 形成

(1)燃烧温度高(2)高温持续时间长

(3)火焰前锋面中氧气的浓度高

产生的原因是高温。2 危害

(1)与肺中的水蒸汽粘合而形成稀硝酸,引起肺水肿和肺气流阻力明显上升。(2)与HC反应生成光化学过氧化物,是光化学烟雾的主要成分。3 防治

(1)降低压缩比   缸内温度  NOx。(2)减小点火提前角   缸内温度  NOx。(3)废气再循环,缸内喷水,采用乳化油, 或   缸内温度  NOx。(4)分层燃烧  降低混合气的均匀性  缸内温度  NOx。

(5)加强燃烧室内气流运动混合气混合、燃烧迅速高温持续时间NOx。

(三)碳氢化合物 HC 1 形成

(1)局部混合气过浓或过稀使氧化反应减慢,热损失相对增加,不能着火。(2)某微小单元的混合气面容比大,热损失大,不能着火。(3)激冷效应。2 危害

(1)3.4苯并芘 — 致癌物质。

(2)苯甲醛和丙烯醛 — 强烈刺激眼睛和呼吸器官。(3)光化学烟雾的主要成分。3 防治

(1)降低压缩比   膨胀冲程中燃烧室壁面温度和排气温度  HC。(2)改善燃烧室形状,降低面容比  散热损失  HC。(3)稀薄燃烧与高能点火  燃烧完全程度  HC。

(4)减小点火提前角   HC在膨胀和排气冲程中燃烧掉。(5)缩小燃烧室的激冷区  燃烧易于完全  HC。

(6)加强燃烧室内气流运动  混合气混合、燃烧完全  HC。

(7)曲轴箱强制通风

HC — 空气滤清器  进气管  缸内再燃烧。

(四)燃料液滴和炭粒 1 燃料液滴

柴油机冷起动或低负荷运行时冒蓝、白烟。蓝、白烟之间没有严格的成分差异,均为燃料液滴或水蒸汽,只是微粒的直径不同而对光线的反射不同而已。2 炭粒

柴油机高负荷运行时冒黑烟。

(1)形成

缺氧,致使燃烧中间产物C-C,H-C裂化,再聚合成炭粒。

柴油机缓燃期中形成最多。(2)危害

A 燃烧不完全  经济性,动力性。B 污染大气。

C 炭粒沉积在活塞、燃烧室和排气门等零件表面,使运动件摩擦损失增大,甚

至卡死。(3)防治

A 稀薄燃烧与高能点火  燃烧完全程度  炭粒。B 改善雾化质量  混合气混合、燃烧完全  炭粒。C 加强燃烧室内气流运动  混合气混合、燃烧完全  炭粒。D 改进发动机的结构和使用,加速混合气形成,提高燃烧速率。

E 采用乳化油  缸内温度  中间产物的热裂反应明显减少。F 加入消烟添加剂 — 钡盐,但有毒。G 后期处理

小颗粒的炭粒经过静电、过饱和水蒸汽、超声波而聚合成较大颗粒的炭粒,再通过除尘过滤器予以净化。

(一)  1-汽油机 假设燃料中的C 燃烧全部生成了CO和CO2。其中CO是中间产物,即不完

全燃烧产物。CO2是最终产物,即完全燃烧产物。

gC2 化学反应方程式

gCOgCO2 CO2CO

CO2 H23 需要总的O2量

CO2

1O2H2O 21O2CO CO2CO

2C2gCO2gCO2gCOgCO kmol kmol gCO kg kmol gCO kg

224121212gCgCO2gCO kmol kmol gCO kg

1224 H2 kmol 1O22H2O

kmol gH kmol 24 燃料中所含的O2量 gHgH kg 4gO gO [ kg ] = [ kmol ]

325 空气中的O2量 = 总的O2量-燃料中所含的O2量

gCO2gHgO1 0.21L0(gCgCO2)2412432gCgHgOgCgCO2 0.21L0()124322424gCgCO21gCgHgO 0.21L0[L0()]

24240.2112432所以 gCO24021.L0(1)

gCOgC240.21L0(1)gCgCOgCO 分析

(1)当LL0时, = 1,A/FL0

gCO2gC

gCO0,gCO2gC(2)  gCO0,(3)  使gCgCO时

gCO0,C全部生成CO。此时的过量空气系数称为临界值。记为cr。

gC 所以 cr1

240.21L0(4)  cr

此时理论上gCgCO,析出炭粒。

一般柴油机的cr0.6~0.72。

(二) > 1-柴油机

混合气混合不均匀,局部过浓或过稀,造成燃烧不完全。缸内情况十分复杂。

三 燃料和可燃混合气的热值

(一)燃料的热值

kg 燃料完全燃烧所产生的热量 [ kJ ]。

加入水的汽化潜热的热值-高热值

不加入水的汽化潜热的热值-低热值 hu

发动机缸内高温,水只能以气态存在,故应取不加入水的汽化潜热的热值,即低热值。

汽油: hu44100 [ kJ/kg ];柴油: hu42500 [ kJ/kg ]

(二)可燃混合气的热值

hu Hu [ kJ/kmol ]

M1

§1-8 发动机混合气的着火和燃烧方式 P 一 混合气的着火

(一)柴油机-低温多级自燃 1 t1阶段-混合阶段

在压缩过程终了时,燃料喷入汽缸内形成 可燃混合气。燃料遇到温度较高的空气,开始 氧化,但速度缓慢,示功图上的压缩线没有明 显的变化。混合阶段,为着火做准备。2 t2阶段-第一级反应

燃烧的实质是燃料的氧化反应,当反应速 度很快时,火焰就会出现。经过t1时间后,反

应加剧,出现冷火焰,缸内压力超过压缩压力。在这一阶段,反应生成醛类、过氧化物和一氧化碳等中间产物。要求混合气较浓, = 0.4~0.5。3 t3阶段-第二级反应

温度、压力升高较大,产生许多化学反应的活性中心,出现蓝火焰。混合气稀得多,略小于1。t1t2t3时间后-第三级反应

活性中心剧增,化学反应加速,热积累剧烈,发生爆炸,出现热火焰。混合气更稀,  1。

t1t2t3-着火延迟期

(二)汽油机-高温单级点燃 压缩的是燃料与空气的混合气体, 在此过程中, 已经进行了一些化学反应。火花点火, 局部温度高达20000℃以上, 该处燃料分子直接分裂成大量的自由原子与自由基, 迅速反应出现热火焰, 瞬间扩大到整个燃烧室内。所以, 汽油机着火过程:

压缩混合气  点火(经短暂着火延迟期) 热火焰

三 燃烧方式

(一)同时爆炸燃烧

取某一部分为系统, 着火前后整个系统各个部分的相完全均匀一致。即相只随 t(时间)座标变化, 而不随 x(位移)座标变化, 为单相系, 均匀系。

柴油机上, 由于混合气分配不是十分均匀, 总有某一部分混合气最先着火(一般在喷油嘴附近), 取这一部分为系统, 则系统内实现的就是同时爆炸燃烧。

汽油机上, 由于火焰有传播速度(虽然很快, 但相对同时爆炸燃烧却很小), 传播逐次进行, 故显然不是同时爆炸燃烧。但火花塞间隙处的少量混合气在电火花作用下, 可实现同时爆炸燃烧,从而形成火焰中心。

(二)逐渐爆炸燃烧 汽油机-火焰传播。两相系-混合气相(未燃区),燃烧产物相(已燃区)。

加热从火花塞开始,紧靠火花塞的那一部分混合气首先被加热, 使氧化或活性中心增多, 发生燃烧。燃烧又加热下一层„„, 一层一层传播。燃烧主要在火焰前锋面内进行。火焰前锋面前方的未燃区中是混合气,火焰前锋面后方的已燃区中为燃烧产物和一小部分在火焰前锋面中没有燃烧掉的燃料继续燃烧。

(三)扩散燃烧

柴油机的燃烧方式, 三相-燃料相, 空气相, 燃烧产物相。

柴油燃点比汽油低, 但在日常生活中汽油却比柴油易燃, 原因就在于汽油的挥发性好, 油与空气形成混合气较快, 物理准备过程已经就绪, 一点即燃。柴油机中燃烧的快慢却主要取决于物理准备过程进行的快慢。油滴遇热蒸发形成燃料蒸汽, 然后才能燃烧, 并非油滴与空气接触就可燃烧。为防止燃烧产物将油滴与空气隔开, 将组织空气相对于油滴的气流运动, 将燃烧产物抛在后面。

发动机的换气过程

燃烧是做功之本。

燃烧需要空气与燃料。重量比 容积比

燃料 1 1 液态

空气 15 1000 气态

燃料受机械控制,容易加入。而汽缸容积就那么大,要想多加空气就要困难得多。因此,对发动机换气过程的研究就显得尤为重要了。

§2-1 四冲程发动机的换气过程 一 配气定时

与工程热力学中介绍的不同, 进排 气门的开启、关闭也需要时间, 故

在下止点前排气-排气提前角40~80 在上止点后关闭-排气迟闭角10~35 在上止点前吸气-进气提前角 0~40 在下止点后关闭-进气迟闭角40~80 进气提前角+排气迟闭角-气门叠开角

二 换气过程

(一)排气过程 1 自由排气阶段 A 排开 p >>p’  p = p’ 靠缸内压力将气体挤出气缸,其中 p-缸内压力, p’-排气管内压力。2 强制排气阶段 B p = p’  p  p’

靠活塞上行将废气挤出气缸。3 超临界排气 C 排开  p = 1.9 p’

在气阀最小截面处, 气体流速等于该地音速

akRT m/s。其流量与压差(pp’)。

(二)进气过程和气门叠开角

由于节流作用, 缸内产生负压;(p0p)使新鲜介质进入缸内。

气阀叠开角:非增压:20~60 CA。

太大(引起) 废气回流进气道。

太小  扫气作用不明显。

增压:110~140 CA。

进气管p, 扫气明显, 气阀叠开角可以增大很多。如6135 型高柴:非增压:40, 增压:124。扫气的作用: 清除废气, 增加气缸内的新鲜充量。2 降低排气温度。3 降低热负荷最严重处(如气阀、活塞等)的温度。

三 换气损失

理论循环换气功与实际循环换气功之差。

如图:换气损失功-X+(Y+W), 其中(W+Y)

为排气损失功,X为进气损失功。

(一)排气损失功Y

W是因排气门提前开启而损失的膨胀功, 称为自由排气损失。Y是活塞作用在废气上的推出功, 称为强制排气损失功。

排气提前角  W,Y。

综合效果, 要求(Y+W), 故(W+Y)有一个最佳值(W+Y)min。对应排气提前角亦有一个最佳值, n (W+Y)min。

(二)进气损失功X

进气损失功小于排气损失功,即X < Y

(三)泵气损失功(X+Y-D)

在实际示功图中, 把(W+d)归到指示功中考虑。而把泵气损失功(X+Y-d)归到机械损失中考虑。

§2-2 四冲程发动机的充气效率

一 充气效率

(一)定义

为比较不同大小、不同类型发动机的充气品质和换气过程的完善程度, 不受气缸工作容积Vh 的影响, 引入充气效率v的概念。

由于有进气阻力等因素的影响, 实际进入气缸中的新鲜充量必然小于理论上进气状态下充满工作容积的新鲜充量。二者之比称为充气效率v, 即

实际进入汽缸的新鲜充量 v

进气状态下充满汽缸工作容积的新鲜充量GmV1 v

G0m0Vh 其中:G,m,V1-实际充量的重量,质量和体积;

G0,m0,V1-理论充量的重量,质量和体积;

进气状态:非增压:空气滤清器后进气管内的气体状态, 通常取为当地的大气

状态。

增 压:增压器出口状态。

严格地说,充气效率应为

实际进入汽缸的新鲜充量 v

以标准大气状态充满汽缸工作容积的新鲜充量更合理。这样,在后面将要讲到的大气修正中,不同的压力和温度下进气量的比值就等于其充气效率之比。否则,按照前头的定义式,大气温度越高,充气效率反而会越高,讲起来似乎无法接受。而且也不具备可比性。

(二)实际测量 vV1'Vh'

'实际流量

理论流量3 其中:V1-实际测量 [ m/h ] ' VhVh[L]ni600.03Vhin[m3/h]

10002 充气效率是衡量换气过程进行得完善程度的重要指标。

柴油机 0.75~0.90 汽油机 0.70~0.85

二 充气效率的分析式

充入汽缸的新鲜充量 = 缸内气体的总质量-缸内残余废气质量

(一)进气门关闭时缸内气体的总质量

ma(VcVh')a

' 其中Vc-余隙容积;Vh-进气门关闭时缸内工作容积;

a-进气终了缸内气体密度。

(二)排气门关闭时缸内残余废气的质量

mrVrr

(三)充入汽缸的新鲜充量

vVh0

(四)充气效率的分析式 其中0-大气状态下气体密度。其中Vr-排气门关闭时缸内容积;r-排气门关闭时缸内残余废气密度。

(VcVh')aVrr

m(VcVh')aVrr vVh0m0

VcVh'VrarVcVc Vh0Vc

Vh'Vhe-有效压缩比;VrVc。

其中1-压缩比;1VcVc 一般e(08.)。若假设e,有.~09ar v

(1)0 带入理想气体状态方程式,得

1T0papr

v1p0TaTr 其中p0,T0-大气压力和温度;pa,Ta-进气终了时缸内的压力和温度;

pr,Tr-排气终了时残余废气的压力和温度。

pa,Ta v的分析式为定性分析v的影响因素提供了依据。

§2-3 影响充气效率的各种因素 一 进气终了压力pa

(一)进气阻力pa

pav;pr,Trv。

pa  pa  v

p0pa

pa对pa的影响最大。进气系统的沿程阻力和局部阻力均会使pa增大。

(二)转速

n   pa  pa  v

(三)负荷

汽油机:负荷   节气们开度 (质调节) pa  pa  v

柴油机:负荷   循环供油量 (量调节)(与pa无关) 热负荷  Ta  v(不大)

二 进气终了温度Ta

Ta

(一)转速

负荷一定:n Tavav

综合pa、Ta的影响,n   v。

(二)负荷

转速一定:负荷   热负荷  Ta  v

柴油机:进、排气管分置。

避免排气管对进气管加热,使Ta  v

汽油机:进、排气管同置。

虽然Ta  v,但燃油受热增发快,可以改善混合气形成。

三 排气终了压力pr

pr  残余废气量 v

pr  排气门处的阻力  n,所以 n  pr  v(影响较小)四 排气终了温度Tr

Tr  v 五 压缩比

  v

v公式仅为定性分析用的,是粗略的。还有许多因素未予考虑。如:压力升高比,绝热指数k,进气马赫数Ma,热传输和过量空气系数等。

§2-4 提高充气效率的措施

减小进气系统阻力。

沿程阻力,局部阻力(节流阻力)。

汽油机:空气滤清器  化油器  进气管  进气道  进气门

柴油机:空气滤清器  进气管  进气道  进气门

一 减小流动阻力

(一)进气门 1 进气门直径d进

进气门流通面积0.20~0.25 活塞顶面积 d进  pa  v(影响大)

d排  pr  v(影响小)

一般:d进 > d排 一般: 2 四气门

流通面积f1 40%左右。但结构复杂,造价较高。

f1  v  Ne(可达30%),ge 3 气门升程h h,时面值  v 4 阀顶过渡圆角R R  f1  v

R  流动阻力  v

R应适中。

(二)进气管 表面光洁度和流通面积

表面光洁度,流通面积  沿程阻力  v 2 转弯和节流阻力

转弯半径R,截面突变  v 3 截面形状

考虑汽油机的雾化,蒸发,则

管壁面积  沉积  蒸发  混合气分配不均匀

截面形状 圆形 矩形 D形

流动阻力 小 大 中

底部蒸发 小 中 大

柴油机不存在底部蒸发问题,故多采用流动阻力小的圆形进气管。

(三)进气道

转弯半径R,表面光洁度,各管口与垫片孔口对中  流动阻力  v

设计时还要考虑组织进气涡流。

(四)空气滤清器

通道面积,除尘效果  流动阻力  v

经常清洗,更换纸芯。

(五)化油器

喉口截面积  流动阻力  v,但雾化效果。

解决这对矛盾,采用双喉口。小喉口:雾化;大喉口:进气。

二 合理选择配气定时

(一)配气定时的综合评定 良好的充气效率以保证发动机的动力性能。2 合适的充气效率以适应发动机的扭矩特性。3 较小的换气损失以适应发动机的经济性能。必要的燃烧室扫气以保证高温零件的热负荷得以适当降低,达到可靠运行。5 合适的排气温度。

调整:1,2-进气迟闭角;3-排气提前角;4,5-气门叠开角

(二)进气迟闭角i n  气流惯性   缸内气体易倒流进气管  v n  一部分气体来不及进入汽缸  v 3 i  对应v,max的n 1 转速n一定时,总有一个进气迟闭角i使得充气效率v为最大。

所以,高速发动机转速大,要获得好的充气效率和动力性,进气迟闭角应大

一些。n  i,最佳

(三)排气提前角o

V1 o    v, 其中-后期膨胀比。

V4 考虑经济性,在排气损失最小的前提下,尽量减小排气提前角。

(四)气门叠开角i,o

i,o  缸内气体易倒流进气管;i,o  pr,Ta v

增压发动机气门叠开角应大一些。

§2-5 进气管内的动态效应 一 现 象

195柴油机:进气管长度L = 300 mm L = 1140 mm 气体在进排气管中有压力波动现象,有效组织、利用压力波动,可以提高充

气效率。

进气门开闭时:pi  pa  v

排气门开闭时:po   pr  v

动态效应与进排气管的长度和直径有关。

二 波的动态机理 ''

闭口端:进:压缩波  反射: 压缩波 -同型波

进:膨胀波  反射: 膨胀波 -同型波

开口端:进:压缩波  反射: 膨胀波 -异型波

进:膨胀波  反射: 压缩波 -异型波

三 进气动态效应

(一)惯性效应

阶段:进气门开  进气门闭

 膨胀波

 压缩波(进气门闭)

(二)波动效应

阶段:进气门闭  下一循环进气门开

 压缩波

 膨胀波

 膨胀波

 压缩波(进气门开)

压力波动是周期性的。

a 压力波固有频率:f1 [ 1/s ] 其中a-进气管内声速。

4Lnn 发动机吸气频率:f2 [ 1/s ]

602120f130a 令:q f2nL 当q = 1,2,3„ 时,进气门开,则pa  v。

当q = 1,2,3„ 时,进气门开,则pa  v。

222

四 结 论 惯性效应(本循环),振幅大,衰减小。

波动效应(两循环),振幅小,衰减大。高速发动机,进气管短;低速发动机,进气管长。3 进气管直径  流动阻力  压力波强度

进气管直径  压力波振幅  压力波强度 4 多缸机上,进气管应分支,且等长。避免急转弯,则压力波振幅不会衰减太大。排气管需要膨胀波,则pr  扫气作用  v

§2-6 单位时间充气量与循环充气量

单位时间充气量 G [ kg/h ],循环充气量 G [ kg ],则

n GGi60 [ kg/h ] 2 n  G,但n  pa  G

G  单位时间供油量g  与功率Ne有关。

G  循环供油量g  与扭矩Me有关。

图中虚线为不考虑进气损失的G和G曲线;

实际的G和G曲线如图中实线所示。

第三章 柴油机混合气形成和燃烧

§3-1 柴油机混合气形成 一 两种基本形式

(一)空间雾化

将燃料喷在燃烧室空间使之成为雾状,再利用空气运动达到充分混合。

特点: 1 对燃料喷雾要求高(采用多孔喷嘴) 燃烧易于完全,经济性好。2 对空气运动要求不高  后期燃料易被早期燃烧产物包围,高温裂解

 排气冒烟。

p3 但初期空间分布燃料多,燃烧迅速  ,pmax  工作粗暴。



(二)油膜蒸发(M过程)

空间雾化型混合气蒸发方式要求将燃料尽量喷在燃烧室空间,而油膜蒸发型混合气蒸发方式则有意将燃料喷在燃烧室壁面上,使之成为薄薄的一层油膜附着在燃烧室壁面上,只有一小部分燃料分布在燃烧室空间。经燃烧室壁面和燃烧加热,边蒸发,边混合,边燃烧。初期蒸发、燃烧慢,后期蒸发、燃烧迅速(先缓后急)。

特点: 1 对燃料喷雾要求不高(采用单、双孔喷嘴),对空气运动要求高。

p2 放热先缓后急  ,pmax  工作柔和,噪声小,经济性较好。

3 但低速性能不好,冷起动困难。对进气道、燃料供给系统和燃烧室结构参数

之间的配合要求很高,制造工艺要求严格。

二 燃料的喷雾

(一)喷雾的作用

只有当燃料与空气充分接触,形成可燃混合气时,才有可能燃烧。接触面积越大,可燃混合气越多,燃烧越完善。

ml 油滴: 1 个,d = 9.7 mm,S = 245 mm

雾化: 2.9910个,d = 40 m,S = 15.10 mm

面积增大 5090 倍,燃烧反应机会大大增加。

(二)喷雾的形成 1 油束

燃油喷射 - 高压、高速。

一级雾化-汽缸中空气的动力作用将油束撕

裂成片、带、泡或大颗粒的油滴。

二级雾化-空气动力作用将片、带、泡或大

颗粒的油滴再粉碎成细小的油滴。

油束中央速度高,但浓度也高,油滴集中,颗粒大。边上油滴松散,颗粒小。但也有说法正 好相反,中央油滴速度高,颗粒小,边上颗粒大。2 着火条件

浓度、温度为着火的必要条件

中间油粒大, 浓度偏高。

外侧混合气形成快,物理准备快,但初期温度不 高,化学准备没有跟上。等温度适合于着火了,油粒 又过分发散,也不会着火。要控制好浓度与温度的进

2762程,使之正好配合,方可着火。

(三)喷雾特性 油束射程L

并不一定越大越好,这要根据混合气形成的机理与燃烧室形状具体分析。

L   燃料喷到壁面上多  空间混合气太稀。

L   燃料集中  混合气分布不均匀,空气利用。2 喷雾锥角

反映油束的紧密程度。

孔式喷嘴 —   油束松散,粒细。

轴针式喷嘴 —   油束紧密,粒粗。3 雾化质量(雾化特性)

细微度 — 油滴平均直径

细:雾化好

均匀度 — 油滴最大直径-油滴平均直径 匀:雾化好

粒细均匀度好,粒粗均匀度差。

(四)喷油规律

单位时间(或曲轴转角)的喷油量随时间(或曲轴转角)的变化规律。

喷油规律影响放热规律,放热规律影响动力性、经济性和排放。1 喷油延迟角

喷油提前角 — 开始喷油  上止点的曲轴转角。

’ — 上止点  停止喷油的曲轴转角。

喷油延迟角’ — 开始喷油  停止喷油的曲轴转角。2 喷油延迟角对性能的影响

’  喷油持续时间长, 工作柔和,但油耗增大, 排放变差。

’  喷油持续时间短, 油耗下降, 排放好,但工作粗暴。喷油延迟角的比较

a.’  油耗, 排放好,但工作粗暴。b.先急后缓

  工作粗暴。

’  油耗 , 排放差。

c.先缓后急

  工作柔和。

’  油耗 , 排放好, 尽量采用,但很难做到。

(五)喷油嘴 1 孔式喷嘴

主要用于直喷式燃烧室中。

孔数: 1~5个, = 0.25~0.8 mm。

雾化好,但易阻塞。孔数越少,雾化越好,但也易阻塞。2 轴针式喷嘴

主要用于分隔式燃烧室中。

 = 1~3 mm,通道间隙  = 0.025~0.05 mm。

雾化差,但有自洁作用,不易阻塞。三 气流运动对混合气形成的影响

(一)气流运动的作用

(二)气流运动

组织气流运动,加速混合气形成。1 进气涡流

使进气气流相对于汽缸中心产生一个力,形成涡流。(1)切向气道

特点: 气道母线与汽缸相切。

优点: 结构简单,气流阻力小  v

缺点: 涡流强度对进气口位置敏感。(2)螺旋气道

特点: 进气道呈螺旋型。

优点: 能产生强烈的进气涡流。

缺点: 工艺要求高,制造、调试难度较高 2 挤气涡流

活塞上行: 将活塞顶隙的气体挤出流向燃烧室中,形成挤气涡流。

活塞下行: 燃烧室中的气体流向活塞顶隙处,形成反涡流。

挤气间隙  挤气涡流强度

挤气面积  挤气涡流强度

挤气涡流虽然不如进气涡流强,但它的形成正好处于压缩冲程终了,此时进气涡流已经衰减得很弱,所以挤气涡流就显得相当重要了。3 燃烧涡流

燃烧在燃烧室中产生压力差,形成燃烧涡流。

尤其是分隔式的涡流室型燃烧室,汽缸盖内的 副燃烧室中的燃料燃烧后,高压混合气流和火焰高 速喷向活塞顶部的主燃烧室中,由于主燃烧室的导 向作用,形成燃烧涡流,或称二次涡流。

(三)热混合作用 1 刚性涡流

涡流中心质点速度为零,越向边缘速度越大。2 势涡流

涡流中心质点速度最大,压力最小。越向边缘速度越小,压力越大,壁面处速度为零。

一般认为涡流为势涡流。热混合作用(主要在涡流室型燃烧室的涡流室中产生)

涡流中的质点受两个力作用,离心力使质点向外运动,压差力使质点向中心运动。

若 ’ — 质点密度, — 空气密度。

当 ’ =  时,— 质点作圆周运动。

当 ’ >  时,— 离心力为主,质点呈螺旋形向外运动。

当 ’ <  时,— 压差力为主,质点呈螺旋形向中心运动。

液体油、燃油蒸汽: ’ > 400 ,向外运动。

燃烧产物: ’ < 0.3 ,向中心运动。

燃烧产物将新鲜空气挤向外围与燃油混合,并使混合气与燃烧产物分开,火焰呈螺旋形向中心运动,这就是热混合作用。

§3-2 柴油机的燃烧过程

一 燃烧过程的特点和柴油机燃烧的主要研究方向

(一)燃烧过程的特点 高压喷油在汽缸内部形成可燃混合气。2 压缩自燃。

(二)柴油机燃烧的主要研究方向 1 喷油雾化 2 喷油规律 3 气流运动 4 燃烧室结构

配合要好。

二 燃烧过程

p- 示功图曲线下的面积表示有用功的大小。

(一)着火延迟期i 或称滞燃期 1-2(着火延迟角i)— 喷油嘴针阀打开向缸高压喷油。

此时,缸内温度虽已远远超过柴油的自燃温度(可达 400~800 ℃),但 并不马上着火。

燃烧需要: 物理准备 — 雾化、吸热、蒸发、扩散、混合 化学准备 — 分解、氧化(焰前反应)2 — 缸内压力脱离压缩线开始急骤增高。

一般: i = 0.0007~0.003 [s];对应的曲轴转角称为着火延迟角i。分重要。

(二)速燃期 2-3 2 点开始着火,压力急骤增高,接近等容燃烧。持续喷油,即随喷随燃。3 — 最高压力点。p3pmax。

为表示2-3阶段压力升高的急骤程度,引入概念 尽管着火延迟期i很短,但却对燃烧过程、尤其是柴油机的燃烧过程影响很大,因此十pp3p2 压力升高率: [ kpa/degCA ] 32p ,pmax  冲击载荷,工作粗暴,柴油机寿命

 44 p ,pmax  做功不利,柴油机性能



(三)缓燃期 3-4 4 — 最高温度点。T4Tmax 1700~2000 ℃。放热量达70~80%。

喷油在这一阶段停止。

V,p,接近等压燃烧。废气量,氧气、燃油量  燃烧。

(四)补燃期 4-5 5 — 放热量达95~97%。

补燃期在膨胀过程中。

补燃期  t,ge,动力性,冷却水温度,排气温度,排放差。

所以,应尽量减少补燃。柴油机由于随喷随燃,混合时间短,补燃要比汽油机严重。

三 影响着火延迟期i的因素

(一)压缩温度Tc和压力pc — 直接影响因素

pc,Tc  i

lni  i

(二)压缩比

  pc,Tc  i

(三)喷油提前角 — 影响最大的因素

  虽然喷油时的压力较高,但着火时刻推迟,使燃烧

 pc,Tc  i

  pc,Tc  i

高速时: mini 低速时: mini 所以,有一个使i为最小的。

10~15 [ degCA ] 5~10 [ degCA ] 一 般:  = 5~10 [ degCA ]

(四)转速n n  漏气、散热损失  pc,Tc;

喷油压力  雾化;气流运动  蒸发

 混合气形成好转  i。

但n  着火延迟角i

(五)十六烷值

十六烷值  柴油的自然性 

缸内p,T大时,影响不大;

缸内p,T小时  i。

(六)增压

增压  pc,Tc  i

四 着火延迟期i对柴油机性能的影响

i  i期间喷入缸内的燃料量  着火前可燃混合气量

p  ,pmax。

p i  ,pmax  冲击载荷,工作粗暴,柴油机寿命。

 i  混合气形成欠佳  柴油机性能

五 放热规律

燃烧放热率Q/随曲轴转角  变化的关系。

由喷油规律和实测示功图,经计算机计算而得。

(一)放热规律

 阶段 — 在速燃期内,约占3 degCA。Q/。

 阶段 — 放热量约80%,约占40 degCA。Q/。

 阶段 — 在膨胀过程内,放热量约20%。

(二)燃烧过程三要素 1 放热开始时刻 2 放热规律 放热持续时间

(三)希望 — 先缓后急

工作柔和,经济性、动力性好,排放少,补燃少。上止点

§3-3 柴油机供油系统的工作特性及其对燃烧过程的影响 一 燃油喷射

(一)供油系统的组成

油箱  输油泵  滤油器  低压油管  喷油泵  高压油管  喷油器(喷油嘴)

(二)喷油过程

普遍采用柱塞式喷油泵。

柱塞上行,使喷油泵内压力升高,当压力升高 到一定值时,克服喷油泵上方出油阀弹簧预紧力和

高压油管内的残余油压,顶开出油阀,通过高压油 管向喷油器供油。

上行2点过了4点之后,打开回油口,使泵内 油压下降。当泵内油压小于出油阀弹簧预紧力和高 压油管内的残余油压力时,出油阀落座,喷油停止。

下行2点过了4点之后,回油停止,重新进油。

(三)喷油延迟时间

从喷油泵内燃油顶开出油阀进入高压油管至油压压开喷油嘴针阀的时间。

原因 — 高压油管中燃油压缩 + 节流作用

(四)几何供油规律

从几何关系求出的油泵凸轮每转一度(或每秒)喷油泵供入高压油管的燃油量 [ ml/degPA或ml/s ]随曲轴转角 (或时间 t)的变化关系。dgpdtdgpfpwp [ ml/s ] fpwp [ ml/degPA ]

d2其中fp — 柱塞面积 [ mm ];

wp — 柱塞速度 [ ml/degPA ]。

几何供油规律与喷油规律不同。

二 喷油泵速度特性及其校正

(一)节流作用 理论上(不存在节流)

上行—当3点与5点重合时,才开始供油。

当2点与4点重合时,既开始回油,停止供油。实际上(存在节流)

上行—当3点不到5点时,由于通道小,节流,已经开始供油。

关闭进油口时 — 供油提前。

当2点过了4点以后,通道小,节流,才开始回油,停止供油。

开启回油口时 — 供油持续。

所以,实际供油比理论供油时间长,供油量大。

(二)喷油泵速度特性

每循环供油量随转速n的变化关系。n  节流作用  循环供油时间

 循环供油量 g

(三)车用的适应性

车用 — 希望n  g  Me

(例如: 低速大负荷工况)

喷油泵速度特性 — n  g  Me

因此,喷油泵速度特性不适合于车用,必须进行校正。

(四)校正 1 出油阀校正

可变减压容积和可变减压作用。n  节流作用  g  Me

可使循环供油量曲线变得较平坦,但若要适合于车用,还需进行调速器 校正。调速器校正

n  g  Me

在第六章发动机特性中介绍。

三 不正常喷射现象

(一)二次喷射

高压油管内压力波引起。

喷射时间  雾化不良,燃烧不完全,补燃严重,排污,炭烟,零件过热。

(二)断续喷射

进入喷油嘴燃油量不稳定,压力波动引起。

喷油时间正常,但针阀运动次数,喷油嘴易磨损。

(三)隔次喷射

低速、尤其是怠速时,油压不足,压不开针阀。下一循环时油压聚足,压开针阀喷射。

怠速运转不稳定。

§3-4 柴油机的燃烧室 一 燃烧室的分类

(一)直喷式 开式 — 中、大型,中、低速船舶、发电用柴油机

不组织进气涡流,空间雾化型混合气蒸发方式。

2 半开式 — 中、小型,中、高速车用柴油机(1) 型

(2)球型

(3)复合式(U型)

(二)分隔式 涡流室型 — 小型高速车用柴油机 预燃室型 — 小、中、大型,中、高速车用柴油机

二 直喷半开式燃烧室

(一) 型 应用: 黄河JN151,6135Q柴油机;日野ED100,6128柴油机等。2 混合气形成方式: 空间雾化。3 主要结构参数

dk0.4~0.6(1)D 其中dk — 燃烧室喉口直径;D — 汽缸直径。

dk ,油束射程  燃油喷在燃烧室局部空间,空气利用率。

Ddk ,油束射程,气流运动  燃油喷在燃烧室壁面上,雾化差。

DVk(2)0.75~0.85 Vc 其中Vk — 燃烧室容积;Vc — 活塞位于上止点时的压缩容积。

Vk   空气利用率,散热面积  燃烧好。

VcVk 所以,希望尽可能大。

Vc4 主要特点

(1)长型多孔(3~5 个)喷嘴,孔径 d = 0.25~0.4 [ mm ]。

针阀开启压力 19.6 [ Mpa ],喷雾夹角 140~160。(2)i  工作粗暴。

(3) > 1.3, 大  空气利用率

 空气停留时间  NOx(4)结构简单,散热面积,冷起动性好,经济性好。

(二)的改进型 1 四角型

日本五十铃公司研制。

主要特点:

下载发动机教案- - 第4章燃油供给系分解word格式文档
下载发动机教案- - 第4章燃油供给系分解.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    发动机类型教案

    曲柄连杆机构 教 案 南阳工业学校机电系 教师:王世红 2012年11月9日 曲柄连杆机构教案 授课时间: 月 日 授课班级:12级学生; 教学目标: 1、能够识别发动机曲柄连杆机构的每个......

    汽车发动机结构与检修教案第四单元冷却系

    第一讲 冷却系 教学内容冷却系计划 学时2 教学目标 1、熟悉冷却系的功用、分类和组成 2、掌握冷却系主要零件的结构和工作原理项目内容 解决措施教学重点 循环水路动画......

    数字分解教案

    第三课分与合的内容从小数分解到大数,5以内是一个阶段,10以内又是一个阶段,这些s问题是否考虑到了?如何在教学中体现这两个阶段性并加以总结?10的是一个重点,关乎到后面的加减法,在......

    CAD教案分解

    第一~二次课 屏幕广播软件,FTP登录使用方法 一、讲在课前的几句话: (一)为什么学习本门课程 (语言-符号/图形-文字) 图形是人类社会生活与生产过程中进行信息交流的重要媒体。采......

    Word教案分解

    Word教案 Word教案一 ---- 基本操作(2008-11-11 10:31:57)标签:电脑 word 教案 视图 制位表 杂谈 分类:信息技术教育 第一节 Word的基本操作 Word 2003主要是对文件和文字......

    分解质因数教案

    《分解质因数》教学设计 教学目标: 1、在自主写算式、小组合作验证等学习活动中,经历认识质因数、分解质因数的过程。 2、知道质因数,会把一个数分解质因数。 3、在小组合作中......

    分解质因数教案

    分解质因数 清平镇中心小学 马维青 教学目标: 1、 使学生理解质因数和分解质因数的概念。 2、 初步学会用短除法分解质因数。 3、 培养学生分析和推理的能力。 教学过程: 一、......

    汽车发动机实习教案.

    课题一发动机解体 一、授课目的 使学生对发动机整体总成件有一个感性认识。 二、重点、难点 了解发动机的性能及结构总成。 三、课程安排 1.首先,使学生对发动机外部总成及......