第一篇:相变材料种类及优缺点比较
非直接接触
为了提高热导率,相变材料装在浅而大的盘状容器中;也可以将PCM装入有导热流体包围的小圆柱管中;或者是壳管换热器的壳中。
部分填充PCM的蜂窝结构,以及将PCM置于球状的塑料容器中(即相变胶囊),很好的解决了相变时体积变化导致泄漏、导热面积减小引起热阻增大的问题。组合相变材料
直接接触的换热器 固—固相变材料
水和盐与不溶流体的使用,扰动解决了PCM的过冷和相隔离的问题,而且微/纳胶囊较大的面积/体积比,使得导热率加强。
材料在固态、液态、气态中发生转变的过程叫做相变。材料在相变过程中,会放热或者吸热,而物体会维持恒温。而这种特性为我们热控制带来了福音。
相变材料是由多组分构成的,包括主储剂、相变点调整剂、防过剂、防相分离剂、相变促进剂组分。
相变材料的分类:
按照其相变过程可分为固——固相变、固——液相变、固——气相变和液——气相变材料四种,目前应用较多的是固——液相变材料。
按照其化学组成可分为无机相变材料、有机相变材料和复合相变材料。无机相变材料包括结晶水合盐(可逆性不好)、熔融盐、金属合金等无机物;有机相变材料包括石蜡、羧酸、酯、多元醇等有机物;混合相变材料主要是有机和无机共融相变材料的混合物。(多种相变材料混合可以获得合适的相变温度)三种各自的特点 存在的问题:
过冷、相分离、相变时体积变化、腐蚀容器、液相泄露;有机相变材料熔点低,易燃、导热率低。
近年来出现的产品:
为解决固液相变时泄露和腐蚀,产生了胶囊相变材料,为增加表面积/体积比,微/纳米胶囊相变材料及其应用;定型相变材料综合了是将相变材料与高分子材料复合,既避免固-固相变材料潜热低的问题,又回避了固——液相变材料液体泄露的问题;金属泡沫相变材料等 相变材料,应满足的要求有:合乎需要的相变温度;足够大的相变潜热;性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。改善相变材料导热性能的办法是,在相变材料中加人金属、陶瓷材料和热解石墨等导热系数高的填料,填料通常有以下结构形式:粉末、纤维、肋片及蜂窝;利用2种或者3种相变温度不同的材料按相变温度高低顺序进行放置,可得到合适的相变温度点,同时加快导热速度。1)、添加粉末、纤维填料会导致导热系数增加程度有限。例如,在石蜡中添加20%重量比的A1粉末,表观导热系数为0.48W/m“K,导热系数增加了不到3倍(原石蜡导热系数为0.15W/m”K);相变热控装置的温度均匀性难以保持。在相变材料中添加粉末、纤维填料,很难保证填料始终均匀分布在相变材料中,长期运行会导致聚集、沉淀等不良后果,导致其强化传热性能逐渐降低,并使得相变热控装置的温度均匀性变差;2)、添加肋片、蜂窝填料会导致相变材料的充装性差。使用填料增加相变材料导热性能,需保证相变材料的可充装性。使用肋片、蜂窝填料时,由于每个肋片或蜂窝间没有空隙,相变材料充装时非常困难,只有采取打孔或预留空间等办法解决,但会影响装置的强度及传热性能,效果不好;肋片、蜂窝填料与相变热控装置壳体热阻大。由于肋片、蜂窝坟料是由很薄的金属片制成,无法用焊接工艺将它和壳体金属板联接,只能采用胶粘的方法,显然,这将增加接触热阻,降低装置传热性能。
2002年,南京理工大学将高孔隙率通孔型泡沫铝或泡沫石墨等材料用于相变储热单元,设计、制造了高传热性能的相变储热装置(见图5所示),试验侧试结果表明泡沫功能材料增加了相变材料的导热系数,提高了相变储热单元的传热性能,提高了相变热控装置的温度均匀性、可充装性及可靠性。例如,孔隙率为92 %的泡沫铝与石蜡的组合表观导热系数可达5W/m.K以上,导热系数提高了30倍以上。而且,由于所采用的泡沫铝为通孔型,且孔径在4mm以上,相变材料很容易充满整个装置,不会产生死角,泡沫铝相变热控装置充装性能好。另外,由于泡沫铝的孔隙率大(92%以上),相变传热装置使用的泡沫铝重量轻,用于航天器或行星登陆车热控将不会使相变装置的重量及储能量有太大变化[4]0 应用和封装方面的总结(民用产品的启示,包括封装结构和预冷预热等): 储能利用,如用在建筑、太阳能热水器、工业废热利用、太阳帆板电池、功能工质、医用暖片
作为散热器的中间部分,缓冲散热: 1.对周期性的,间断性的大功率热载荷可以减小散热面
2.与主动热控的强制对流、自然对流等措施结合(风扇排热或者液体工质散热),通过增加热容来增强热控系统的热控能力;若预先加热或者冷冻,可进一步提高其热控能力或者增加热控系统的安全系数。即能承担更大的热载荷。如大型电池的控温。3.与热管结合使用,可将某一部分的废热用来控制其他部分的温度水平
恒温控制:由于相变时温度维持在相变点,可实现对对温度敏感的电子元器件的精确控温
航天服
军事上隐身:通过隐藏设备温度,改变红外光谱,而起到隐形或者隐身的作用。相变材料应用于航天领域
利用相变材料熔化时吸收大量潜热、凝固时放出大量潜热的特性,由于相变热控装置只发生物理状态的转变、无运动部件且不消耗航天器能量、可靠性高,特别适用于航天器内周期性工作的大功率仪器设备或受周期性高热流影响的设备的温度控制。可用于月球车间断性工作的电子设备,以保证月球车电子设备温度维持恒定,不受月球外表面的温度巨幅变化的影响,也不受月球车内仪器的发热变化的影响。
相变材料已成功应用于航天器热控领域,在行星登陆车上也有许多应用。例如,在“阿波罗15号”飞船的月球车上,采用了三个相变材料装置,第一个装置是将相变材料与信号运算器和电池相连,月球车出动执行任务时,信号运算器产生的热量被相变材料吸收,使之熔化;月球车返回后,将相变材料储存的热量通过辐射器向空间发散,相变材料重新凝固,为下次出动执行任务做好准备。第二、第三个装置将相变材料分别与驱控电子组件和月球通讯继电器连成一体。月球车出动时,后者产生的热量由相变材料吸收,返回后通过百叶窗辐射器散热,为再次工作做好准备。另外,相变材料用来保持阿波罗登月中宇航服系统的温度。美国03 /05火星漫游车也应用了十二烷相变材料来控制锂电池的温度,该相变储热单元与可变热导LHP组合使用,火星登陆车的电池装在储热装置中,通过相变材料的熔化、凝固维持电池的温度水平川(见图4)。相变控温的特点
1.它属于吸收型被动温控,与常规散热型有很大的不同。它不靠温差散热,因此不受外界环境温度变化的影响,使元件或设备始终稳定在需要的温度上。尤其在大功率密度和要求低的平衡温度时,是常规散热无法解决的难题,而采用相变温控可迎刃而解。在低气压或真空条件下需要散热的设备采用这种温控技术效果更好。
2.与主动温控比较,它不用电,没有运动部件,可用于振动、冲击、加速度等恶劣的力学条件下工作,可靠性很高。
3.在一定条件下,它可取代水冷和风冷进行散热,如对半导体致冷器件的热端温控,不用水冷或风冷,节水节电,具有较大的经济价值。
4.它在低温条件下(如一40℃)工作,它还储存热能,可使设备以极大的速率恢复到正常的工作温度。
5.它能周期性工作,长久使用。6.在低的平衡温度条件下,它比热沉法散热器体积可缩小2.6倍左右;重量可减轻4.5倍左右。7.工艺较复杂。
航天应用
1.电子元器件组件的温控 2.热能储存
在电子组件的温控中,相变材料储存和释放能量的过程可以推广到热环境发生变化的航 天器上。例如一个沿着地球轨道飞行的卫星,会遇到出入地球阴影发生强烈变化的周期性热 环境,在这种情况下,可用相变材料将太阳能储存起来,阻尼轨道周期中产生大的温度变 化。例如一个载人舱,在整个轨道中要求儿乎等温的条件,可用一层相变材料包络整个载人 舱,吸收或释放轨道中太阳能,为舱内提供一个接近相变材料熔点的等温条件。
在无大气的行星或月球上着陆的航天器也会遇到强烈变化的热环境。由于星体的自转,存在着白天和黑夜,又由于没有空气调节,白天黑夜温差很大。着陆的航天器用相变材料屏 蔽起来,白天储存太阳能,夜间放出能量用于保温,可使舱内人员和设备正常工作。3.长距离温控
实现长距离温控,可用热管将热源与中心相变材料温控系统连结起来,远距离的热源发 出的热通过热管被相变材料吸收,这部分热又可用于其他部件的温控。这种将废热又转变成 有用能量的措施,对长距离空间航程是很有价值的。4.精密仪器温控
对于温度范围要求很严格的高敏感仪器,如制导和控制仪器中的导航陀螺,其温度精度 必须维持在0.5k以内,才能保证正常工作。采用相变材料进行温控可使这些仪器温度维持在
一个很小的范围内。5.孤立元件温控
装在天线、航天器外边的帆板彬条上以及辐射器上的仪器,在结构上远离主航天器,对 这些仪器或元件采取主动温控往往是不可能的或者是很困难的。采用相变材料对这些部件进 行温控则是很有效的。并且使主飞行器和这些部件之间避免了使用热管、接热片等,可大大 减轻重量并增加可靠性。
相变材料种类及优缺点比较:
目前相变储能材料的复合方法有以下几种: 胶囊型相变材料、与高分子材料复合制备定形相变材料、将相变材料吸附到多孔基质中 相变储能材料使用存在的问题:耐久性、经济性、储能密度
耐久性问题。首先,相变材料在循环相变过程中热物理性质的退化。其次,相变材料从基体材料中泄露出来,表现为在材料表面结霜。再则,相变材料对基体材料的作用,在相变过程中产生的应力使得基体材料容易破坏 相变贮热材料,尤其有机相变材料,往往存在热导率较低,导热性较差之不足;为解决固液相变材料液相泄露和无机盐对容器的腐蚀问题,把固液相变材料封闭在球形的胶囊中,Hawlader等以石蜡为相变材料,以阿拉伯胶囊体材料,制备了定形相变贮热材料;复合型相变贮热材料,相变温度可以根据需要来调节,兼具有无机相变材料和有机相变材料的种种优点,受到广泛的关注。
理想的固-液相变材料应具有以下性质:(1)熔化潜热高,从而在相变中能贮能或放出较多的热量;(2)相变温度适当,能满足需要;(3)固-液相变的可逆性好,能尽量避免过冷或过热现象;(4)固-液两相导热系数大;(5)固-液相变过程有较小的膨胀收缩性;(6)相变材料的密度大,比热容大;(7)无毒,无腐蚀性;(8)成本低,制造方便。
目前国内外研制的固-液相变材料主要有:(1)无机水合盐。这类材料熔化热大,导热系数高,相变时体积变化小。但由于它们的结晶水模数在相变中有变化,使得相变的可逆性变差,有过冷范围且有腐蚀性。(2)有机物。用作固-液相变的有机物常是一些醇、酸、高级烷烃等,由于官能团不同,它们在性质上相差很大。有些材料具有合适的相变温度和较高的潜热,并且无毒、无腐蚀性。但有些材料在高温或强氧化剂存在时会燃烧、分解等,因此要加以选择,以确保安全。
与显热储能相比,相变储能具有储能密度高、体积小巧、温度控制恒定、节能效果显著、相变温度选择范围宽、易于控制等优点,在航空航天、太阳能利用、采暖和空调、供电系统优化、医学工程、军事工程、蓄热建筑等众多领域具有重要的应用价值和广阔的前景。
从材料的化学组成来看,可分为无机相变材料、有机相变材料和混合相变材料三类。无机相变材料包括结晶水合盐、熔融盐、金属合金等无机物;有机相变材料包括石蜡、羧酸、酯、多元醇等有机物;混合相变材料主要是有机和无机共融相变材料的混合物。
通常,相变材料是由多组分构成的,包括主储剂、相变点调整剂、防过剂、防相分离剂、相变促进剂组分。而有机物相变材料则相变潜热低,而且易挥发、易燃烧、价格昂贵。
作为相变材料,应满足的要求有:合乎需要的相变温度;足够大的相变潜热;性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。
固-液相变材料主要优点是价格便宜,但是存在过冷和相分离现象,从而导致储能不理想;易产生泄漏问题,污染环境;腐蚀性较大,封装容器价格高等缺点[5]。
与固-液相变材料相比,固-固相变材料具有不少优点。可以直接加工成型,不需容器盛装;固-固相变材料膨胀系数较小,相变时体积变化较小;不存在过冷和相分离现象,不需要加入防过冷剂和防相分离剂;毒性很低,腐蚀性很小;无泄漏问题,对环境不产生污染;组成稳定,相变可逆性好,使用寿命长;装置简单,使用方便。固-固相变材料主要缺点是相变潜热较低,价格较高。无机物相变材料一般具有腐蚀性、存在过冷和相分离的缺点,而有机物相变材料则存在导热系数低、部分有机物相变材料还存在性能不稳定的缺点
有机相变材料具有相变温度适应性好、相变潜热大、理化性能稳定、在固态时成型性较好等诸多优点;但是有机相变材料导热性能较低,密度小,相变过程中体积变化大,并且有机物熔点较低,不宜在高温场所中应用,且易挥发,易燃 无机物主要包括高温熔融盐、部分碱及混合盐。高温熔融盐主要有氟化盐、氯化盐、硝酸盐、硫酸盐等,它们具有较高的相变温度,从几百摄氏度至几千摄度,因而相变潜热较大。碱的比 热高,熔化热大,稳定性好,在高温下蒸汽压力很低,且价格便宜,是一种较好的中高温储能物质。混合盐熔化热大,熔化时体积变化小,传热较好,最大的优点是物质的熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度至上千摄氏度的储能材料。无机物类相变材料的导热系数也较低,而且还存在与容器的相容性问题, 金属及其合金导热系数高,相变潜热大但是金属相变材料的相变温度都比较高,且硅铝合金相变储热材料的缺陷在于合金处于高温液态时化学活性比较强,容易与容器发生化学反应,所以样品与容器的相容性问题成为硅铝合金相变储热材料应用的关键。
相变储能材料的导热强化,克服单纯相变储能材料存在的导热系数低,有腐蚀性等缺点。与金属复合的相变复合材料、与陶瓷复合的相变复合材料和与碳质纳米材料复合的相变复合材料。
金属基主要包括铝基(泡沫铝)和镍基等,相变储能材料主要包括各类熔融盐和碱。金属作为强化材料可以提高材料的导热性能,但是金属在高温下化学活性比较强,容易与容器发生反应,并且成本比较高,所以只能用于特殊的用途。
与陶瓷复合提高相变储能复合材料导热性能陶瓷基相变储能复合材料主要是将相变材料分布于陶瓷基体的超微多孔网络中,相变材料受热熔化时吸收潜热,而液态相变材料受陶瓷基体毛细张力的作用不会流出,从而使相变前后维持复合材料原来的形状。主要优点有:可供选择的无机盐种类多;可同时利用显热和潜热,蓄热密度大;无需封装,不存在腐蚀问题;不存在过冷和相分离的问题。无机盐/陶瓷基复合相变储能材料[15]具有独特的蓄热性能和机械性能,可用于工业余热回收、太阳能、电力调峰等领域,目前备受关注的是Glück A[16]等和张仁元[17]等研究的用无机盐/陶瓷基复合储能材料代替工业窑炉中的显热耐火砖和用于空间站太阳能发电系统的蓄热器。
微/纳米胶囊相变材料的应用
3.1建筑领域
在建筑材料中添加PCM的一种成功的方法就是将MCPCM混入砖瓦、墙板、天花板、地板等建筑结构材料中进行太阳能贮存[20,21]。白天接受太阳辐射,吸收太阳能,夜间释放出来以保持室内温度,减少室内温度波动,使室内保持良好的热舒适,减少空调系统的设备容量,转移用电负荷。在沙漠和温差较大的地区特别有效。3.2纺织服装领域
将MCPCM与普通纤维共混后熔融纺丝制备可调温纤维,或者也可直接进行织物涂层整理[22,23]。其用途有很多方面,例如,相变材料微胶囊可应用在民用服装如运动服装上。运动员在进行剧烈的运动时,会产生大量的热量,体内的微气候的温度急剧升高,从而人体的温度也急剧升高。在运动服装上应用相变材料微胶囊,可以利用相变材料微胶囊吸收存储和重新释放身体的热量,避免身体过热与发冷,使身体始终保持较舒适的状态。蓄热调温纺 织品还可应用于职业服装如消防服、野战服、冷库工作服、潜水服飞行服等以及室内装饰、床上用品和睡袋方面。此外,还可具有医疗用途[24],涂层织物用于手术服,可防止液体透过,防止部分细菌感染。蓄热调温织物用做医用恒温绷带,可防止局部温度过高,防止出汗引起伤口感染,影响伤口愈合,也可防止冻伤。还可用于烧伤病人服装。3.3军事领域
MCPCM还可用于军事红外线伪装领域[25]。将MCPCM分散在基质中以涂料或遮障的形式用于军事目标上,通过改变、调节相变物质的含量、组成等,使其尽可能吸收目标放出的热量,使得军事目标的温度与周围环境的温度保持相同,从而可以达到最佳的伪装效果。3.4功能热流体领域
功能热流体是指热流体为连续相、其他添加剂(有相变或没有相变)为分散相的多功能流体[26]。在传热流体中添加可发生相变(固–液或固–固相变的微胶囊是当前功能热流体研究领域的一个热点问题。将相变材料包裹在微胶囊状的壳体内形成潜热微封装材料,并将其添加到液体工质中,可提高热流体的比热容,从而起到强化传热的作用。
在热流体中添加纳米胶囊相变材料并将得到的热流体称为功能纳米相变热流体。功能纳米相变热流体除保留微胶囊相变热流体的优点外,因相变材料在尺度上从微米级变为纳米级,增大了表面积与体积的比率,从而提高了传热速率;此外,功能热流体的输送泵功也将减小,并大大降低长时间运行时粒子之间碰撞破坏的可能性,相变材料的相变效率也将提高。在MCPCM(微胶囊)中发生相变的物质被封闭在球形胶囊中,从而可有效解决相变材料的泄漏、相分离以及腐蚀性等问题,有利于改善相变材料的应用性能。纳米胶囊相变材料(NCPCM)在保留微胶囊相变材料优点的同时,因胶囊尺寸从微米级降为纳米级,使胶囊表面积与体积的比率增大,有利于提高相变材料的传热速率;同时,在使用过程中还可大大降低长时间使用时粒子之间碰撞破坏的可能性。
将石蜡与一热塑弹性体SBS复合制备了在石蜡熔融状态下仍能保持形状稳定的复合相变蓄热材料,复合材料保持了石蜡的相变特性,相变潜热可高达纯石蜡潜热的80%,在复合相变材料中加入膨胀石墨后,热传导性有了显著提高,其放热时间比纯石蜡缩短了61%。组合相变材料
为了得到合适相变温度的相变材料,同时又能提高相变材料的导热性能,可将现有的几种相变材料采用一定的方法进行组合,得到新的相变材料。相变材料的组合方式主要有2种:一种是沿传热流体流动方向分别放置相变温度不同的2种或2种以上的相变材料储热单元;另一种是在同一储热单元内或沿垂直于传热流体流动的方向上,合理组合放置相变温度不同的2种或2种以上的相变材料。结果表明,采用组合相变材料,潜热储、放热过程传热速率提高15%。
(1)储能系统体积趋向于小巧和轻便,要求相变材料的储能性能更高。这对于采取合适的强化传热手段提出了更高的要求。
(2)相变材料的可逆性和稳定性还要进一步提高。如相变材料在多次储热-放热循环后储能性能的劣化、相变材料和基体材料或添加物之间的相容性问题等。这不仅关系到相变材料的导热性能,也关系到其使用寿命。
(3)经济性问题,即材料成本问题。应该在满足使用的前提下寻找成本更低的相变材料,并在制备工艺和封装技术等方面研究出更经济的方法,导热增强方式及优缺点比较:
金属颗粒和翅片结构
由金属构成的翅片结构能够起到增加受迫对流进而增强换热的作用,Liu等[5]研究表明翅片结构可以有效地增加热传导和自然对流,可以使热导率增加67%,并分析了翅片大小和齿距对导热的影响作用,提出减少宽度和翅距均可以增加导热性能;
碳纤维
碳纤维能与绝大多数相变材料相容,耐腐蚀能力较强,且纤维直径很小,有利于在材料中均匀布置 膨胀石墨
膨胀石墨是以鳞片石墨为原料采用特殊工艺,使鳞片石墨沿层间方向膨化而成的产物。它既保留了天然鳞片石墨的导热性好、无毒害等优良性质,又具有天然鳞片石墨所没有的吸附性、生态环境协调性以及生物相容性等特征。在以石蜡为相变材料时多辅以膨胀石墨来提高其热导率。
有机相变材料成型性好、没有过冷和相分离现象、性能稳定、无毒性,但是有机材料导热系数小,相变过程中增加了储能和释能时间,降低了热控系统的效率 纳米流体
美国Argonne国家实验室的Choi等提出了纳米流体的概念:即以一定的方式和比例在液体中添加纳米级金属或金属氧化物粒子,形成新的强化传热工质。纳米流体导热系数增大的原因,一是固体颗粒的加入改变了基础液体的结构,增强了混合物内部的能量传递过程,使得导热系数增大;二是纳米粒子的小尺寸效应,使得粒子与液体间有微对流现象存在,这种微对流增强了粒子与液体间的能量传递过程,增大了纳米流体的导热系数
三种主要的强化传热方法,分别是泡沫金属、金属固体和金属翅片、膨胀石墨 泡沫金属是一种内部充满气泡的金属制品,既有金属特性又有气泡特性。其重量减轻为其致密固体的1/2~1/50,且仍能保持致密固体的大部分强度,具有比表面积大、导热系数高等优点。复合相变材料的传热性能大大提高,但是储能能力有所降低。并且指出,如果与风扇或制冷工质回路等主动冷却系统相结合,可以很好地解决高热流密度、短时和间歇性大功 率组件的温控问题
热流方向与翅片方向一致即构成并联时,翅片能有效提高热流方向的导热能力。但是,当翅片与热流方向垂直时,填充在翅片间的相变材料构成主要热阻,有效导热系数基本等于相变材料的导热系数,这时,翅片的强化泡沫金属复合相变材料和膨胀石墨复合相变材料的热传导性,结果表明,两者都能明显提高导热效率,进而缩短储放热时间,结果还显示,泡沫金属明显优于膨胀石墨。,电子设备能有效抗击高的热流、并且能保证操作的可靠性和稳定性 这种复合相变材料能大大提高相变材料的导热系数和储热能力。并且发现泡沫石墨的孔径大小和韧带的厚度对导热系数和储热量也有影响,孔径越小、韧带越厚,结果导热系数越高。孔径越大、韧带越薄,储热量越大。在选取提高导热系数的添加物时,应该满足下面几个条件:导热系数高;物质密度不能太高;材料应该与相变材料相容;具有一定的耐腐蚀能力;价格相对便宜,易购得。在对各种强化传热方法回顾以后,可以得出以下几点结论:
1)添加金属颗粒会显著增加系统的总重量,并且分布不均匀容易造成传热不稳定,整体效能较低,因此发展前途有限;
2)加入碳纤维改善导热性能是一种较先进的方法,虽然碳纤维的技术加工存在一些困难,但物理和化学性能优良,以后应加强这方面的研究;
3)膨胀石墨主要与高聚物(如石蜡)混合,多应用于中高温领域的性能改进,研究者对这方面的关注较多,技术已臻于完善;
4)纳米流体作为新型材料,性能优越,而且还有许多新工质及新工艺等待开发,考虑到其在低温领域有很大的应用空间,以后应加大研究力度;
5)泡沫金属既有金属特性又有气泡特性,多种潜在的优良特性还有待于开发,应该对此做进一步的深入研究。
相变材料的利用
A.太阳能供暖系统上的应用
相变储热材料用于储热具有环保、高效、节能、安全等多项优势,非常适合于太阳能供暖系统储热,以替代传统的取暖设备。组合式相变储热单元换热器为方形结构,主要由钢板、折流板、高密度聚乙烯管组成。内部结构由3个区构成,每个区内都有几十根高密度聚乙烯 管,管外径25mm,壁厚1.5mm,相变储热材料用石蜡封装在管内,每根管内都留有5%~10%的空余空间,用来避免储热材料受热膨胀将管胀裂。3个区内的石蜡相变点温度值是不相同的,沿高温水流动方向依次降低,根据实际需要,各区之间相差2.5~5.5℃。每个区内各有2块折流板,用以增加流体的扰动,提高换热效果,这种供暖系统在实际中已有应用。B.太阳能热水系统上的应用 C.热泵干燥机组中的应用 D.工业加热过程的应用 E.医药工业中的应用
相变贮热材料在太空中的应用日趋活跃,可用于太阳能热动力发电、航天器仪器仪表的恒温控制、舱外航天服等方面。
许多医疗电子治疗仪要求在恒温条件下使用,这样就需要利用温控储热材料来调节,使仪器在允许的温度内工作。日本有专利报导用NaSO410H2O和MgSO47H2O的混合物作为相变材料用于仪器室的控温,可使室温保持在25℃左右。也可将特种仪器埋包在用相变材料制成的热包中,来维持仪器使用的温度。近年来国内市场有种热袋,相变材料是水合盐,相变温度55℃左右,利用一块金属片作为成核晶种材料,当用手挤压金属片时,使它的表面成为晶体生长中心,从而结晶放热,再配备某些具有活血作用的中药袋,从而达到理疗的作用,对于治疗类风湿等疾病具有一定的疗效。相变储能复合材料在电子行业中的应用
近年来随着电子设备向高速、小型、高功率等方向发展,集成电路的集成度、运算速度和功率迅速提高,导致集成块内产生的热量大幅度增加。如果集成块产生的热量不能及时扩散,将使集成块的温度急剧上升,影响其正常运行,严重的还可能造成集成块烧坏。而如果在集成块上应用相变材料,可以有效缓解其过热问题。因为相变材料在其发生相变过程中,在很小的温升范围内,吸收大量热量,从而降低其温度上升幅度。
相变材料的应用:
出现了一系列具有超高热流密度、短时和间歇工作的大功率组件,如激光武器、行波管和机动飞行控制系统等.这类系统的短时峰值发热量大大地超过了平均发热量
太阳能热发电、工业热利用及余热回收、电力负荷调节等方面/,以及各种设备的温控上面。近年来,相变材料作为一种辅助冷却手段被广泛应用航天器和航空电子设备、个人计算机、通信设备、便携式计算机、手机等的热控制。相变材料被动热管理策略能用于瞬态性或者周期性热源的散热。被选择的相变材料熔点需低于设备允许最高工作温度,理想的相变材料应具有高的潜热质量比、显热质量比、高的热导率、相变时体积变化小的特点。
A. 装有PCM的薄盘贴合在处理器或者处理器盒子上。使用于手机散热,装置体积小。能管理的热量小,适用于小功率散热。B. 单纯增大PCM容量,由于PCM热导率低,其管理热量的能力仍不能提高,必须在PCM中加肋片 C. 先加一个导热的盘状肋,再在其上面加一些针状肋,这种结构大大减小了暴露在空气中的散热面积。
相变材料的封装结构:
利用相变材料熔化时吸收大量潜热、凝固时放出大量潜热的特性,由于相变热控装置只发生物理状态的转变、无运动部件且不消耗航天器能量、可靠性高,特别适用于航天器内周期性工作的大功率仪器设备或受周期性高热流影响的设备的温度控制。可用于月球车间断性工作的电子设备,以保证月球车电子设备温度维持恒定,不受月球外表面的温度巨幅变化的影响,也不受月球车内仪器的发热变化的影响。
相变材料已成功应用于航天器热控领域,在行星登陆车上也有许多应用。例如,在“阿波罗15号”飞船的月球车上,采用了三个相变材料装置,第一个装置是将相变材料与信号运算器和电池相连,月球车出动执行任务时,信号运算器产生的热量被相变材料吸收,使之熔化;月球车返回后,将相变材料储存的热量通过辐射器向空间发散,相变材料重新凝固,为下次出动执行任务做好准备。第二、第三个装置将相变材料分别与驱控电子组件和月球通讯继电器连成一体。月球车出动时,后者产生的热量由相变材料吸收,返回后通过百叶窗辐射器散热,为再次工作做好准备。另外,相变材料用来保持阿波罗登月中宇航服系统的温度。美国03 /05火星漫游车也应用了十二烷相变材料来控制锂电池的温度,该相变储热单元与可变热导LHP组合使用,火星登陆车的电池装在储热装置中,通过相变材料的熔化、凝固维持电池的温度水平川(见图4)。
常用的相变材料有石蜡类、非石蜡类有机物、水化盐、熔盐低熔共晶物等,由于一般相变材料的导热系数很小,在0.1一1.0W/m“K量级之间,在相变过程中,低导热系数会导致相变材料内温度梯度增加,传热速率小,热响应速度慢,使得控温对象温度比设计高,相变热控装置性能低。因此,提高相变热控装里整体表观导热系数,提高装里传热效率,是应用相变材料热控技术的关键。以往,改善相变材料导热性能的办法是,在相变材料中加人金属、陶瓷材料和热解石墨等导热系数高的填料,填料通常有以下结构形式:粉末、纤维、肋片及蜂窝。高导热系数的填料的加人在一定程度上提高了相变材料的导热性能,但也存在以下问题:1)、添加粉末、纤维填料会导致导热系数增加程度有限。例如,在石蜡中添加20%重量比的A1粉末,表观导热系数为0.48W/m”K,导热系数增加了不到3倍(原石蜡导热系数为0.15W/m"K);相变热控装置的温度均匀性难以保持。在相变材料中添加粉末、纤维填料,很难保证填料始终均匀分布在相变材料中,长期运行会导致聚集、沉淀等不良后果,导致其强化传热性能逐渐降低,并使得相变热控装置的温度均匀性变差;2)、添加肋片、蜂窝填料会导致相变材料的充装性差。使用填料增加相变材料导热性能,需保证相变材料的可充装性。使用肋片、蜂窝填料时,由于每个肋片或蜂窝间没有空隙,相变材料充装时非常困难,只有采取打孔或预留空间等办法解决,但会影响装置的强度及传热性能,效果不好;肋片、蜂窝填料与相变热控装置壳体热阻大。由于肋片、蜂窝坟料是由很薄的金属片制成,无法用焊接工艺将它和壳体金属板联接,只能采用胶粘的方法,显然,这将增加接触热阻,降低装置传热性能。
2002年,南京理工大学将高孔隙率通孔型泡沫铝或泡沫石墨等材料用于相变储热单元,设计、制造了高传热性能的相变储热装置(见图5所示),试验侧试结果表明泡沫功能材料增加了相变材料的导热系数,提高了相变储热单元的传热性能,提高了相变热控装置的温度均匀性、可充装性及可靠性。例如,孔隙率为92 %的泡沫铝与石蜡的组合表观导热系数可达5W/m.K以上,导热系数提高了30倍以上。而且,由于所采用的泡沫铝为通孔型,且孔径在4mm以上,相变材料很容易充满整个装置,不会产生死角,泡沫铝相变热控装置充装性能好。另外,由于泡沫铝的孔隙率大(92%以上),相变传热装置使用的泡沫铝重量轻,用于航天器或行星登陆车热控将不会使相变装置的重量及储能量有太大变化[4]0
相变温控的特点
1.它属于吸收型被动温控,与常规散热型有很大的不同。它不靠温差散热,因此不受外界环境温度变化的影响,使元件或设备始终稳定在需要的温度上。尤其在大功率密度和要求低的平衡温度时,是常规散热无法解决的难题,而采用相变温控可迎刃而解。在低气压或真空条件下需要散热的设备采用这种温控技术效果更好。
2.与主动温控比较,它不用电,没有运动部件,可用于振动、冲击、加速度等恶劣的力学条件下工作,可靠性很高。
3.在一定条件下,它可取代水冷和风冷进行散热,如对半导体致冷器件的热端温控,不用水冷或风冷,节水节电,具有较大的经济价值。
4.它在低温条件下(如一40℃)工作,它还储存热能,可使设备以极大的速率恢复到正常的工作温度。
5.它能周期性工作,长久使用。6.在低的平衡温度条件下,它比热沉法散热器体积可缩小2.6倍左右;重量可减轻4.5倍左右。7.工艺较复杂。
航天应用
1.电子元器件组件的温控 2.热能储存
在电子组件的温控中,相变材料储存和释放能量的过程可以推广到热环境发生变化的航 天器上。例如一个沿着地球轨道飞行的卫星,会遇到出入地球阴影发生强烈变化的周期性热 环境,在这种情况下,可用相变材料将太阳能储存起来,阻尼轨道周期中产生大的温度变 化。例如一个载人舱,在整个轨道中要求儿乎等温的条件,可用一层相变材料包络整个载人 舱,吸收或释放轨道中太阳能,为舱内提供一个接近相变材料熔点的等温条件。
在无大气的行星或月球上着陆的航天器也会遇到强烈变化的热环境。由于星体的自转,存在着白天和黑夜,又由于没有空气调节,白天黑夜温差很大。着陆的航天器用相变材料屏 蔽起来,白天储存太阳能,夜间放出能量用于保温,可使舱内人员和设备正常工作。3.长距离温控
实现长距离温控,可用热管将热源与中心相变材料温控系统连结起来,远距离的热源发 出的热通过热管被相变材料吸收,这部分热又可用于其他部件的温控。这种将废热又转变成 有用能量的措施,对长距离空间航程是很有价值的。4.精密仪器温控
对于温度范围要求很严格的高敏感仪器,如制导和控制仪器中的导航陀螺,其温度精度 必须维持在0.5k以内,才能保证正常工作。采用相变材料进行温控可使这些仪器温度维持在
一个很小的范围内。5.孤立元件温控
装在天线、航天器外边的帆板彬条上以及辐射器上的仪器,在结构上远离主航天器,对 这些仪器或元件采取主动温控往往是不可能的或者是很困难的。采用相变材料对这些部件进 行温控则是很有效的。并且使主飞行器和这些部件之间避免了使用热管、接热片等,可大大 减轻重量并增加可靠性。
这些装满相变材料的管有两个作用:一方面它们作为肋片增大传热面积同时它们含有PCM能储存以低昂热量。这些管的两边及上部用墙壁封装,风扇开在敞开的一面,这样风扇产生的空气流能均匀地通过所有管子,确保高的热导率。普通风扇0.01 m3/s 热导率能达到180e220 W/(m2 K).。当风扇失效时,PCM仍能保证安全工作。
本次试验设置三个变量
能量水平:方向垂直,分别输入6 W, 9 W, and 12 W,即2.4 kW/m2, 3.6 kW/m2, and 4.8 kW/m2 方向:功率输入为12 W,分别相对重力方向水平、竖直、倾角45度 熔化/凝固的时间(直到达到循环稳定状态):输入12W,竖直放置
第二篇:地砖种类及优缺点
地砖一般可分为:抛光砖、玻化砖、釉面砖、马赛克等
一、釉面砖
1、顾名思义,釉面砖就是砖的表面经过烧釉处理的砖。它基于的分别,可分为两种:
1)陶制釉面砖,即由烧制而成,较高,强度相对较低。其主要特征是背面颜色为红色。
2)瓷制釉面砖,即由瓷土烧制而成,吸水率较低,强度相对较高。其主要特征是背面颜色是灰白色。
要注意的是,上面所说的吸水率和强度的比较都是相对的,目前也有一些陶制釉面砖的吸水率和强度比瓷制釉面砖好的。
2、釉面砖的釉面根据光泽的不同,还可以分为下面两种:
1)亮光釉面砖。适合于制造“干净”的效果。
2)哑光釉面砖。适合于制造“时尚”的效果。
3、常见问题
釉面砖是装修中最常见的砖种,由于色彩图案丰富,而且防污能力强,被广泛使用于墙面和地面之中,常见的质量问题主要有两方面:
1)龟裂
龟裂产生的根本原因是坯与釉层间的应力超出了坯釉间的热膨胀系数之差。当釉面比坯的热膨胀系数大,冷却时釉的收缩大于坯体,釉会受拉伸应力,当拉伸应力大于釉层所能承受的极限强度时,就会产生龟裂现象。
2)背渗
不管那一种砖,吸水都是自然的,但当坯体密度过于疏松时,就不仅是吸水的问题了,而是渗水泥的问题。即水泥的污水会渗透到表面。
4、常用规格
正方形釉面砖有152×152mm、200×200mm、长方形釉面砖有152× 200mm、200×300mm等,常用的釉面砖厚度5mm及6mm。
二、通体砖
通体砖的表面不上釉,而且正面和反面的材质和色泽一致,因此得
名。
通体砖是一种耐磨砖,虽然现在还有渗花通体砖等品种,但相对来说,其花色比不上釉面砖。由于目前的室内设计越来越倾向于素色设计,所以
通体砖也越来越成为一种时尚,被广泛使用于厅堂、过道和室外走道等装
修项目的地面,一般较少会使用于墙面,而多数的防滑砖都属于通体砖。
通体砖常有的规格有300x300mm、400x400mm、500x500mm、600x600mm、800x800mm等等。
三、抛光砖
抛光砖就是通体坯体的表面经过打磨而成的一种光亮的砖种。抛光砖属于通体砖的一种。相对于通体砖的平面粗糙而言,抛光砖就要光洁多了。抛光砖性质坚硬耐磨,适合在除洗手间、厨房和室内环境以外的多数室内空间中使用。在运用渗花技术的基础上,抛光砖可以做出各种仿石、仿木效果。
也许是业内的大意,也许是业内的故意,抛光砖却留下了一个致命的缺点:易脏。这是抛光砖在抛光时留下的凹凸气孔造成的,这些气孔会藏污纳垢,以致抛光砖谈污色变,甚至一些茶水倒在抛光砖上都回天无力。
也许大家意识到这点,在后来一些质量好的抛光砖在出厂时都加了一层防污层,但这层防污层又使抛光砖失去了通体砖的效果。如果要继续通体,就只好继续刷防污层了。装修界也有在施工前打上水蜡以防粘污的做法。
抛光砖的常用规划是400x400mm、500x500mm、600x600mm、800x800mm、900x900mm、1000x1000mm。
四、玻化砖
为了解决抛光砖出现的易脏问题,市面上又出现了一种叫玻化砖的品种。玻化砖其实就是全瓷砖。其表面光洁但又不需要抛光,所以不存在抛光气孔的问题。
玻化砖是一种强化的抛光砖,它采用高温烧制而成。质地比抛光砖更硬更耐磨。毫无疑问,它的价格也同样更高。
玻化砖主要是地面砖,常用规划是400x400mm、500x500mm、600x600mm、800x800mm、900x900mm、1000x1000mm。
五、马赛克
马赛克(Mosaic)是一种特殊存在方式的砖,它一般由数十块小块的砖
组成一个相对的大砖。它以小巧玲珑、色彩斑斓被广泛使用于室内小面积
地墙面和室外大小幅墙面和地面。它主要分为:
1、陶瓷马赛克。是最传统的一种马赛克,以小巧玲珑著称,但较为单调,档次较低。
2、大理石马赛克。是中期发展的一种马赛克品种,丰富多彩,但其耐差、防水性能不好,所以市场反映并不是很好。
3、。玻璃的色彩斑斓给马赛克带来蓬勃生机。它依据玻璃的品种不同,又分为多种小品种:
1)熔融玻璃马赛克。以等为主要原料,在高温下熔化成型并呈
乳浊或半乳浊状,内含少量气泡和未熔颗粒的玻璃马赛克。
2)烧结玻璃马赛克。以为主要原料,加入适量等压制成一定规格尺寸的生坯;在一定温度下烧结而成的玻璃马赛克。
3)金星玻璃马赛克。内含少量气泡和一定量的金属结晶颗粒,具有明
显遇光闪烁的玻璃马赛克。
4、常用规格
马赛克常用规格有20×20mm、25×25mm、30×30mm,厚度依次在4mm-4.3mm之间。市面上还有其他五花八门的砖的名称,但不管其叫法如何乱法,基本上
都可以划入上述的品种之一种。
下面介绍一下砖的选择:
瓷砖的选择,除了颜色依你喜欢的外,其他的必须用科学态度去决择。
首先从包装箱内拿出任意四块瓷砖,放在平坦的地面。然后对比一下,四
块砖是否平坦一致?看看瓷砖对角与对角的地方是否嵌接?再就是用手掌
敲击瓷砖表面,听声音:好的瓷砖声音比较低沉;而不好的瓷砖声音明亮,并有明显回响。当然,从声音上来评好坏是相对的。但第一种比较却不可
轻视。国产与进口的最大分别主要就在瓷砖制品的规格一致性上。
抛光砖目前主要指利用瓷质砖硬度高、耐磨的特点,对其表面进行抛光,使其生产镜面效果而制得的瓷质砖。抛光砖种类主要有:普通抛光、纯色抛光、渗花抛光、自由布料抛光,微粉抛光、大颗粒抛光、全颗粒抛光等系列
抛光砖是用黏土和石材的粉末经压机压制,经烧制而成,正面和反面色泽一致,不上釉料、烧好后,表面再经过抛光处理,这样正面就很光亮,背面是砖的本来面目。既然是抛光,所以也就不耐脏了,用拖布拖过之后,会留有水的印迹。第二个缺点就是抛光砖因为光滑了,所以也就不防滑了。第三个问题就是有颜色的液体容易渗入。但好的品牌,因为压机好,密度高,加上烧制的温度高,密度非常高,所以也就不容易渗入,但是这不是绝对的,再好的抛光砖,如果有墨汁或者酱油之类的无意落在上面过几分钟再擦,也必然会留有永远都擦不去的痕迹,因为污渍已经渗入到砖里面了。
玻化砖,也叫玻化石、通体砖,专业的名称应该是瓷质玻化石。它由石英砂、泥按照一定比例烧制而成,然后用专业磨具打磨光亮,表面如玻璃镜面样光滑透亮,笔者在实践过程及了解市场销售人员得知:玻化砖在吸水率、边直度、弯曲强度、耐酸碱性等方面都优于普通釉面砖及一般的大理石,又因为此种砖好多有仿大理石的花色,纹理比天然大理石的纹理分布更加一致和匀称,所以深受蛛蛛们的喜爱。
但是玻化砖也不是完美的,它的缺陷就是经过打磨后,毛气孔暴露在外,灰尘、油污等容易渗入。应该有好些使用者发现,买来时玻化砖光亮如镜,时间一长发现有污渍渗入,结果很难去除。目前来说,这是一个行业公认的难题,但有些厂家经过研究已经通过新技术解决了这个难题,在产品出厂前就做好表面防污处理,将毛气孔堵死,使污物不致渗入。但是并不是说所有这类产品的厂家都有这道防污处理的工序,因为这道工序并没有列入该类产品的国家标准中,很多品牌的产品没有经过防污处理就能作为合格产品出厂销售,消费者不了解情况,铺装使用时不注意,就会发生污迹斑斑的情况。蛛蛛们要在购买前问清楚,如是未做防污处理的玻化砖在使用中要打蜡,使用一般的地板蜡就可以了。铺装前为避免施工过程中损伤砖面,应做好成品保护工作。
玻化砖与抛光砖区别:首先可以肯定的是,玻化砖属于抛光砖。只是它的生产技术高于普通意义上的抛光砖,玻化砖就是指完全烧透的砖,即全瓷的陶瓷产品。目前市场上通常所说的抛光砖是指普通的抛光砖,就是砖体的瓷化程度要差,属于没有烧透的陶瓷产品。抛光砖和玻化砖最大差别就是体现在瓷化程度上,也就是说玻化砖的硬度更高、密度更大、吸水率更小。(玻化砖的吸水率小于等于0.1%)。玻化砖的防污性能要远远高于普通的抛光砖。
玻化砖及抛光砖适用范围:客厅、卧室、走道等
釉面砖:顾名思义,就是表面用釉料一起烧制而成的,主体又分陶土和瓷土两种,陶土烧制出来的背面呈红色,瓷土烧制的背面呈灰白色。釉面砖表面可以做各种图案和花纹,比抛光砖色彩和图案丰富,因为表面是釉料,所以耐磨性不如抛光砖。
一般来说是在瓷砖的胚体烧制一定温度后再在瓷砖的表面施釉经过高温高压烧制而成,由瓷砖胚体和表面的很薄的一层釉层构成。釉层主要是增加瓷砖的美观效果,同时起到防污的作用。依据所施釉料的不同,釉面砖又分为亚光和亮光两种。亚光:反光原理属于漫射,表面有点粗糙不平,光感柔和;亮光属于反射原理,砖面平整光亮。
厨房应该选用亮光的釉面砖,哑光釉面表面上虽然有一层很薄的釉面,擦洗起来也还不算难,但是时间长了,瓷砖表面的釉面难免脱落,此时油渍进入砖面之中,清理起来会很难。
优质釉面砖参数指标:
(1)吸水率:应该不大于21%
(2)耐急冷急热性:耐急冷急热性是指釉面砖承受温度急剧变化而不出现裂纹的性质,试验采用的冷热温差应为130摄氏度左右
(3)弯曲强度:釉面砖的弯曲强度平均值不小于16Mpa,当砖的厚度大于或等于7.5mm时,弯曲强度平均值不小于13Mpa.(4)抗龟裂性:经抗龟裂性试验,釉面无裂纹。
(5)釉面抗化学腐蚀性:釉面抗化学腐蚀性是指釉面在酸碱溶液的作用下抗腐蚀的能力。釉面抗化学腐蚀性一般需由供需双方商定级别。家庭使用没有特别要求。
釉面砖适用范围:厨房(亮光)、卫生间、阳台等
挑选瓷砖小方法:
一是看规格,好的砖几块摞在一起,尺寸一致。
二是看吸水率,一般越小越好。在砖的背面倒上一些水,看水的渗透速度,一般来说,墙砖的吸水率远高于地砖
三看渗透性(适用玻化砖),倒一滴墨水于砖表面,过5-10分钟擦去墨水,看是否已经渗透进去
四听声音,不过一般非业内人士这招用不上,因为大家听的太少了。
地板砖作为家装一个重要组成部分,越来越受到人们的关注。
地板砖分类究竟有哪些?一般来讲,按照其材质的不同可以分为以下几类:
一是用陶土烧制的,因吸水率较高而必须烧釉。这种砖的强度较低,现在很少使用。二是用瓷土烧制的,为了追求装饰效果也烧了釉,这种瓷砖结构致密、强度很高、吸水率较低、抗污性强,价格比陶土烧制的瓷砖稍高。瓷土烧制的釉面砖,目前广泛使用于家庭装修,有80%的购买者都用这种瓷砖作为地面装饰材料。
三是石材地板砖,通常是采用天然石材,多为天然大理石和天然花岗岩制作而成。天然大理石质地致密但硬度不大,容易加工、雕琢和磨平、抛光等。大理石抛光后光洁细腻,纹理自然流畅,有很高的装饰性。大理石吸水率小,耐久性高,可以使用40-100年。
四是塑料地板砖,这种地板砖的砖体上呈网状分布有漏水凶,砖体下分布着支撑物。拼接方式采用搭扣式。能有效地防水、防滑,并且拼接方便、牢固可靠。
按照功能,地板砖又可分为地砖、墙砖及腰线砖等。
地砖,顾名思义就是铺在地面上的砖,按花色分为仿西班牙砖、玻化抛光砖、釉面砖、防滑砖及渗花抛光砖等。
墙砖:按花色可分为玻化墙砖、印花墙砖。
腰线砖:多为印花砖。为了配合墙砖的规格,腰线砖一般定为60mm×200mm的幅面。地板砖按工艺分为:釉面砖、通体砖、抛光砖、玻化砖、陶瓷锦砖。
釉面砖是指砖表面烧有釉层的砖。这种砖分为两类:一是用陶土烧制的;另一种是用瓷土烧制的。
通体砖:这是一种不上釉的瓷质砖,有很好的防滑性和耐磨性。一般所说的“防滑地砖”大部分是通体砖。由于这种砖价位适中,颇受消费者喜爱。
抛光砖:通体砖经抛光后就成为抛光砖,这种砖的硬度很高,非常耐磨。
玻化砖:这是一种高温烧制的瓷质砖,是所有瓷砖中最硬的一种。有时抛光砖被刮出划痕时,玻化砖仍然安然无恙。
陶瓷锦砖:又名马赛克,规格多,薄而小,质地坚硬,耐酸、耐碱、耐磨、不渗水,抗压力强,不易破碎,彩色多样,用途广泛。
第三篇:加速器种类及优缺点[范文]
大学物理自主学习之勇攀高峰
中荷学院2012级卓越班
闫醒阳 20125357
带电粒子加速器
加速器的种类:
倍压加速器、直线加速器、回旋加速器、同步加速器、对撞机与储存环,静电加速器等等。
a倍压加速器
原理:倍压加速器也称高压倍加器,是最早的一种低能加速器。它是利用电压倍加原理产生高电压来加速粒子的。
倍压加速器一般由高压电源、加速管、离子源或电子枪、高压电极、绝缘支柱和其他附属设备所组成。若使用正离子源,其高压电源的正极接到加速器的高压电极上,负极接地,中间是加速管,离子源放在高压电极中。真空管道是用来保持加速器的真空。当正离子源产生的正离子发射出来后,受到高压电极的排斥作用,就会沿加速管急速地到负极,能量逐步增高,正离子得到加速。反过来,若使用负离子源或电子枪,这时高压电极的极性就要反接,即将高压电源的负极接到高压电极上,就能加速电子和负离子。
优缺点:由于倍压加速器的输出粒子流强度高,结构比较简单,运行比较可靠,造价低和建造快,因而得到了广泛的应用。
b直线加速器
原理:直线加速器是采用高频电场来加速粒子的。直线加速器既能加速质子和重离子,也能加速电子,加速质子的称为质子直线加速器,加速电子的称为电子直线加速器。质子直线加速器的能量从几十到几百兆电子伏。电子直线加速器的能量可从几兆到几十兆电子伏。直线加速器可作为高能加速器(或对撞机)的注入器,此外在医疗和工业探伤方面也有广阔的应用前景。
质子直线加速器一般采用高频电场来加速。加速器的外壳是1-2米的大圆筒,内壁是铜制成的,光洁如镜。沿加速腔的轴线方向,装有好多个金属圆管,称为漂移管。漂移管之间的间隙称为加速间隙。漂移管一个比一个长,而间隙也是一段比一段大。当施加高频电源后,在加速间隙中产生较高的高频电场。我们知道,高频电场的方向和大小是随时间迅速变化的,漂移管设计得很巧妙,它好像一个个“防空洞”,洞中设有高频电场,当粒子的飞行方向与电场方向相同时则使粒子加速,当粒子飞行方向与电场方向相反时,粒子正好躲在“防空洞”中,而不会受到电场反向造成的减速;当电场方向又变得和粒子飞行方向一致时,粒子刚好从前一个“防空洞”出来,在第二个加速间隙中得到加速,电场改变时,又正好躲在下一个“防空洞”。就这样粒子每经过一个加速间隙就受到一次加速,经过若干个这样的间隙,就能使粒子具有较高的能量。
优缺点:直线加速器具有束流强度高、能量可逐节增加等优点,缺点是需要昂贵的高频、微波功率源.而且直线加速器的优点是从零速开始加速很方便,绝大部分回旋加速器的起始加速段(注入器)都是直线加速器;而且加速重粒子在能量损失方面比起同步加速器来说比较有优势,因为重粒子偏转需要的向心加速度更大;另外事实上都造到很大的时候直线加速器反而比较不占地方。
c回旋加速器
原理:回旋加速器属于圆形加速器的一种,它与直线加速器一样,利用高频交流电压来使粒子做多次加速,以获得能量。所不同的是将两个半圆空心电极(称为D型盒)放在磁场中以代替质子直线加速器中的圆柱形电极。两个D型盒分别接在电源的两个电极上,从而它们之间就有了一定的电压。另外,由于D型盒是金属制成的,在每个D型盒的内部,电场为零,所以带电粒子在D型盒内的运动是匀速的,而在两个D型盒之间的间隙则会作加速运动(电场对它加速),如图5-5所示。即当带电粒子从离子源(a处)进入D型盒之后,因为有磁场的约束,就绕着圆弧形的轨道前进,通过abc弧后又来到D型盒的边缘,这时两个D型盒之间的电场正好能对粒子加速。当粒子到达d点时,速度已比刚才增快了,因此它就将沿着一个半径稍大的def圆弧运动,到达f点时再次被电场加速。这个过程不断地持续下去,粒子的速度越来越快,能量越来越高,粒子的回旋半径也越来越大。
优缺点:回旋加速器可以反复回旋加速以累积能量,另外如果有足够的资金和场地的话,也可以造得非常大——半径越大越接近直线,这样偏转的时候由于同步辐射(切伦科夫辐射)损失的能量越少。
d同步加速器
原理:针对回旋加速器的缺点,人们对它进行了一次大手术,即挖掉了磁体的中心部分,以减轻总重量,这样磁极由磁柱变成了磁环。粒子不再像回旋加速器那样沿钟表发条形的轨道回旋了,它从一开始就进入了半径固定的环形跑道(轨道)里加速。当然为了不使磁场强度的调整幅度变化太大,先利用其它低能量加速器即注入器对粒子进行预加速。待达到一定的速度后,再送入这种加速器中继续“培养”。这好像奥运会田径赛跑的预选赛一样,只有达到奥运会规定的成绩,取得报名资格的选手,才有可能到奥运会上决一雌雄。
同步加速器可以加速电子,也可以加速质子等较重粒子。所以同步加速器又可分为电子同步加速器、质子同步加速器和强聚焦电子或质子同步加速器等。优缺点:(针对于电子加速器)①具有从红外线到硬X射线广泛范围内的光滑连续谱。如使用单色器,可获得一定波长的单色光。
②辐射强度高,一个储存环的辐射总功率常在数千瓦以上。③天然准直性好,其发散度一般小于1毫弧度。
④辐射亮度高,一般比X射线转靶的标识辐射亮度高10倍,比连续轫致辐射亮度高10倍。
⑤具有天然的偏振性。在轨道平面上是完全偏振光,其电矢量平行于轨道平面。⑥洁净度很高。因同步辐射是自由电子发光的,不产生其他粒子本底。⑦可实现脉冲化,脉宽可达 0.01~1纳秒或更短。
⑧光通量、能量分布及偏振度等均可准确计算,并和实验值很好地相符合,因此可做为标准光源。
电子同步加速器多用于光核反应和介子物理等方面的研究。同步辐射装置作为性能良好的新型光源,在原子、分子物理、固体物理、表面物理、天体物理、化学、生物学、医学、环境科学、能源科学、材料科学、光刻技术、显微技术和光学标准计量等等许多科学技术领域里,得到越来越广泛的应用。
e.静电加速器
原理:以静电型高压发生器作为高压电源的加速器。按照加速粒子的不同,它可分为正离子静电加速器(简称质子静电加速器)和电子静电加速器两类.假设高压电极对地的电容是C,当它上面积累的电荷是Q时,它对地的电压可由
来决定。这关系式对时间微分后得
式中Ia是有效充电电流,它等于输电带送到高压电极的电流(输电电流)减去通过各种途径从高压电极漏去的电流(泄漏电流)。当电压上升到某值时,泄漏电流恰好等于输电电流,即Ia=0,此值即为此高压发生器的平衡电压。这种高压发生器,要改变电压极性是很方便的,只要改变喷电电源极性即可实现。
优缺点:60年代中,范德格喇夫静电高压发生器的重要改进是用输电链(或梯)代替输电带。输电链(梯)是利用在链(梯)上产生感应电荷的办法充电并输送电荷的,它的主要优点是:输电不靠电晕放电,电流波动小,发生器的高压自然稳定度高;工作寿命长;内部清洁等。同质子静电加速器相比,电子静电加速器的结构比较简单,所占空间也较小。这是由于负极性高压电极的击穿电压比正极性高;电子枪及其所需电源比离子源要简单得多,因此对于相同能量的电子静电加速器来讲,它的高压电极尺寸就比较小,这样钢筒的尺寸也就可相应减小。其次,由于电子静电加速器是作为β辐射源(高速电子流经扫描器后通过薄窗引出)和γ辐射源(高速电子轰击重元素──金、钨等来产生很强的γ射线)使用的,对电子束的能量分散度没有很高的要求,因此它不必配备分析器和稳压装置,用于实验的辐照室就直接安置在离加速管出口不远的地方
f对撞机与储存环
原理:对撞机是在高能同步加速器基础上发展起来的一种装置,其主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定束流强度及一定能量时使其在相向运动状态下进行对撞,以产生足够高的相互作用反应率,从而便于测量。用高能粒子轰击静止靶(粒子)时,只有质心系中的能量才是粒子相互作用的有效能量,它只占实验室系中粒子总能量的一部分。如果射到靶上的粒子能量为 E,则对靶中同种粒子作用的质心系能量约为(E为粒子的静止能量)。可见,随着Eo的增高,用于相互作用的那部分能量所占的比例将越来越小,即被加速粒子能量的利用效率越来越低,但是,如果是两个能量为 E的相向运动的同种高能粒子束对撞,则质心系能量约为2E,即粒子全部能量均可用来进行相互作用。可见,为了得到相同的质心系能量,所需的加速器能量将比对撞机大得多。如果对撞机能量为 E,则相应的加速器能量应为2E2/E。例如,能量为2×300GeV的质子、质子对撞机,同一台能量o为 180000GeV的质子加速器相当,建造这样高能量的加速器。在目前的技术水平及经济条件仍然是不可及的。但建造上述能量或更高一些能量的对撞机是完全可行的,这就是近20年来对撞机得到广泛发展的原因之一。优缺点:由于电子冷却及随机冷却技术(见加速器技术和原理的发展)的成功,使反质子束的性能大大得到改善,而且束流可以积累到足够的强度,从而有可能在同一环中进行质子-反质子对撞
中荷学院2012级卓越班 闫醒阳 20125357
第四篇:立体车库种类及优缺点分析
立体车库种类及优缺点分析
一: 升降横移类机械式停车设备:采用以载车板升降或横移存取车辆的机械式停车设备。
特点:由于型式比较多,规模可大可小,对地的适应性较强,因此使用十分普遍。钢结构部分、载车板部分、链条传动系统、控制系统、安全防护措施等。在停车设备的市场份额约占70%。
不足点:每组设备必须留有至少一个空车位;为链条牵动运行过程不具有防止倾斜坠落功能。
2、垂直循环类机械式停车设备:采用垂直方向做循环运动来存取车辆的机械式停车设备。
特点:省地,在58m2的地方建起大型垂直循环类机械停车库,可容纳34辆轿车,可省去购置土地的大量费用。在停车设备的市场份额约占3-5%。
不足点:设备结构复杂,没有完善的闭锁和监测系统,采用足够的安全措施和消防系统,相对比较故障率高。最远车位一般一次取车需2分钟,高峰取车时间依次取车时间过长,依次取车第20辆约需30分钟以上,实用性差,因此有的用户开始拆除。
3、水平循环类机械式停车设备:采用一个水平循环运动的车位系统来存取停放车辆的机械式停车设备。
特点:可以省去进出车道,提建于狭长地形的地方,降低拉通风装置的费用,若多层重叠可为大型停车场。但因一般只有一个出入口,所以存取车时间较长。在停车设备的市场份额约占3-5%。不足点:但因一般只有一个出入口,所以存取车时间较长,最远车位一般一次取车需2分钟,高峰取车时间依次取车时间过长,依次取车第20辆约需30分钟以上,实用性差,因此有的用户开始改造。
4、多层循环类机械式停车设备:采用通过使载车板作上下循环运动而实现车辆多层存放的机械式停车设备。
特点:无需坡道,节省占地,自动存取,建于地形细长且地面只允许设置一个出入口的场所。在停车设备的市场份额约占1-2%。不足点:设备结构复杂,相对比较故障率高。最远车位一般一次取车需2分钟,高峰取车时间依次取车时间过长,依次取车第20辆约需30分钟以上,实用性差,因此有的用户开始改造。
5、平面移动类机械式停车设备:在同一层上用搬运或起重机平面移动车辆或泊车板平面横移存取车辆,亦可搬运机和升降机配合实现多层平面移动存取车辆的机械式停车设备。
特点:一般设置在地上或半地下,准无人方式,地平面层为自走式,不仅降低建立立体车库投资费用,而且地平面层可停放大尺寸车辆。在停车设备的市场份额约占2-3%。
不足点:设备结构复杂,相对比较故障率高。存车超过20辆时,高峰取车时间依次取车时间过长,依次取车第20辆约需30分钟以上,实用性差。
6、堆垛类机械式停车设备:以巷道堆垛机或桥式起重机将进到搬运器的车辆水平且垂直移动到存车位,并用存取机构存取车辆的机械式停车设备。
特点:巷道堆垛类立体停车库设备是20世纪60年代后欧洲根据自动化立体仓库原理设计的一种专门用于停放小型汽车的立体停车设备。是一种集机、光、电、自动控制为一体的全自动化立体停车设备,它的出现解决了人们希望解决的大型自动化停车难题;全封闭车库,存车安全等特点。该类车库主要适用于大型密集式存车。在停车设备的市场份额约占3-5%。
不足点:设备结构复杂,设有完善的闭锁和监测系统,采用足够的安全措施和消防系统,相对比较故障率高。最远车位一般一次取车需2分钟,高峰取车时间依次取车时间过长,依次取车第20辆约需30分钟以上,实用性差,因此有的用户开始改造。
7、垂直升降类机械式停车设备:垂直升降类汽车停车设备亦可称为塔式立体停车设备,通过提升机的升降和装在提升机上的横移机构将车辆或载车板横移,实现存取车辆的机械式停车设备。
特点:整个存车库可多达20~25层,即可停放40~50辆车,占地面积不到50m2,空间利用率最高。适宜建筑在高度繁华的城市中心区域以及车辆集中停放的集聚点。在停车设备的市场份额约占3-4%。
不足点:设备结构复杂,设有完善的闭锁和监测系统,采用足够的安全措施和消防系统,相对比较故障率高。最远车位一般一次取车需2分钟,高峰取车时间依次取车时间过长,依次取车第需30分钟以上,实用性差,因此有的用户开始改造。
8、简易升降类机械式停车设备:车位分成上、下二层或二层以上,借助升降机构或俯仰机构使汽车存入或取出的简易机械式停车设备叫做简易升降类机械式停车设备。简易升降类机械式停车设备一般为准无人方式,即人离开后移动汽车的方式。
特点:这类停车设备的结构简单、操作容易,多用于私人住宅、企事业单位、地下室等。该类停车设备可充分利用地下室空间场所,在面积一定时将至少增加二倍以上的停车位。在停车设备的市场份额约占5-8%。
不足点:整体结构设计不科学,力学结构不合理,二层以下可以,三上升降运行时摆动幅度过大,风力过大时发生摇晃,连设计人员自己都担心,留有巨大的安全隐患,是停车设备需要技术改进的产品,否则将被淘汰。
9、汽车专用升降机:汽车专用升降机是专门用作不同平面的汽车搬运的升降机,它只起搬运作用,无直接存取的作用。
特点:可以代替汽车进出车库的斜坡道,大大节省空间,提高车库利用率,汽车专用升降机常用于地下或楼层、屋顶或建筑内自走式车库存取汽车的搬运
第五篇:地板的种类及各自优缺点
地板的种类及各自优缺点
现在市场上的地板分类很多,但按照普遍认可的观点,大致可以分为实木地板、多层实木复合地板、三层实木复合地板、强化复合地板、竹木地板以及软木地板等种类。下面分别对这几种地板的特征、优缺点进行介绍。
一、实木地板
实木地板是木材经烘干,加工后形成的地面装饰材料。它具有花纹自然,脚感舒适,使用安全的特点,是卧室、客厅、书房等地面装修的理想材料。实木的装饰风格返璞归真,质感自然。
实木地板的优点是:
1、隔音隔热。实木地板材质较硬,缜密的木纤维结构,导热系数低,阻隔声音和热气的效果,优于水泥、瓷砖和钢铁。、调节湿度。实木地板的木材特性是,气候干燥,木材内部水分释出;气候潮湿,木材会吸收空气中水分。木地板通过吸收和释放水分,把居室空气湿度调节到人体最为舒适的水平。
3、冬暖夏凉,冬季,人在木地板上行走无寒冷感;夏季,实木地板的居室温度要比瓷砖铺设的房间温度低2℃~3℃。
4、绿色无害,实木地板用材取自原始森林,使用无挥发性的耐磨油漆涂装,从材种到漆面均绿色无害。
5、华丽高贵,实木地板取自高档硬木材料,板面木纹秀丽,装饰典雅高贵,是中高端收入家庭的首选地材。
6、经久耐用。实木地板的缺点:
1、难保养:实木地板对铺装的要求较高,一旦铺装得不好,会造成一系列问题。如果室内环境过于潮湿或干燥时,实木地板容易起拱、翘曲或变形。铺装好之后还要经常打蜡、上油。
2、价格高:实木地板一直都保持在较高价位,预算紧张的家庭还得掂量掂量。
3、稳定性差:如果室内环境过于潮湿或干燥时,实木地板容易起拱、翘曲或变形。
4、性价比低:实木地板的市场竞争力不如其他几类木地板,特别是在稳定性与耐磨性上与多层复合地板的差距较大。
5、以假乱真:对于一般消费者来说,是无法辨认木材真伪的。经过加工的地板对消费者来说更无法鉴别木种,故一些不法商家为了牟取暴利,就用一些价格较便宜的木种冒充名贵木种,比如用“灰木莲”冒充“柚木”。
二、实木复合地板
实木复合地板可以分为三层实木复合地板和多层实木复合地板2种。
1、三层实木复合地板
三层实木复合地板是由三层实木单板交错层压而成,其表层为优质阔叶材规格板条镶拼板或整幅木板;芯层由普通软杂规格木板条组成;底层为旋切单板,三层结构用胶层压而成。圣象三层实木所推出的实木层、实木龙骨层和平衡层的新结构,不仅可以免去铺装龙骨的麻烦,也让地板更加稳固。
三层实木复合地板兼具实木地板和复合地板的优点,同时克服了实木地板易变形、开裂、划伤,复合地板脚感硬、保暖性差、花色不自然等缺点。三层实木复合地板完全不同于复合地板,也不同于传统的多层实木复合地板。代表了目前国际上地板的流行趋势。
2、多层实木复合地板
多层实木复合地板是以多层胶合板为基材,以规格硬木薄片镶拼板或单板为面板,层压而成。实木复合地板表层为优质珍贵木材,不但保留了实木地板木纹优美,自然的特性,而且大大节约了优质珍贵木材的资源。表面大多涂以五层以上的优质UV涂料,不仅有较理想的硬度、耐磨性、抗刮性,而且阻燃、光滑,便于清洁。芯层大多采用可以轮番砍伐的速生木材,也可用廉价的小径材料、各种硬、软杂材等来源较广的材料,而且出材率高,成本则大为降低。其弹性,保暖性等也完全不亚于实木地板。正因为它具有实木地板的各种优点,摈弃了强化复合地板的不足,又节约了大量优质珍贵木材资源。
三、强化地板
强化地板一般是由四层材料复合组成,即耐磨层、装饰层、高密度基材层、平衡(防潮)层。合格的强化地板是以一层或多层专用浸渍热固氨基树脂。覆盖在高密度板等基材表面,背面加平衡防潮层、正面加装饰 层和耐磨层经热压而成。
强化地板的结构
第一层:耐磨层。主要由Al2O3(三氧化二铝)组成,有很强的耐磨性和硬度,一些由三聚氰胺组成的强化复合地板无法满足标准的要求。
第二层:装饰层。是一层经密胺树脂浸渍的纸张,纸上印刷有仿珍贵树种的木纹或其它图案。第三层:基层。是中密度或高密度的层压板。经高温、高压处理,有一定的防潮、阻燃性能,基本材料是木质纤维。
第四层:平衡层。它是一层牛皮纸,有一定的强度和厚度,并浸以树脂,起到防潮防地板变形的作用。
强化地板的优点:
1、耐磨:强化地板表层为耐磨层,它由分布均匀的三氧化二铝构成,一般来说,三氧化二铝分布越密,地板耐磨转数越高。
2、花色品种较多,花色时尚、可以仿真各种天然或人造花纹。
3、容易护理:在日常使用中,只需用拧干的抹布、拖布或吸尘器进行清洁,如果地板出现油腻、污迹时,用布沾清洁剂擦拭即可。
4、安装简便:强化地板可直接安装在地面或其他地板表面,无须打地龙。
5、与实木地板相比,强化地板最表面的耐磨层是经过特殊处理的,能达到很高的硬度,即使用尖锐的硬物如钥匙去刮,也不会留下痕迹。
6、性价比优良(价格便宜)。
强化地板的缺点:
1、怕水怕潮:强化地板在铺装好之后一旦进水,若不及时擦拭,就很容易因吸水膨胀而导致发泡、变形。其抗潮性能也不强,在潮湿的环境下稳定性较差。
2、装饰效果差:强化地板表层为耐磨层与装饰层,都是采用仿生技术印刷的纸张,与天然实木相比,整体铺设效果失真,视觉效果较为生硬。
四、竹木地板
竹木复合地板是竹材与木材复合再生产物。它的面板和底板,采用的是上好的竹材,而其芯层多为杉木、樟木等木材。其生产制作要依靠精良的机器设备和先进的科学技术以及规范的生产工艺流程,经过一系列的防腐、防蚀、防潮、高压、高温以及胶合、旋磨等近40道繁复工序,才能制作成为一种新型的复合地板。优点:
外观自然清新、文理细腻流畅、防潮防湿防蚀以及韧性强、有弹性等;同时,其表面坚硬程度可以与木制地板中的常见材种如樱桃木、榉木等媲美。另一方面,由于该地板芯材采用了木材作原料,故其稳定性极佳,结实耐用,脚感好,格调协调,隔音性能好,而且冬暖夏凉,尤其适用于居家环境以及体育娱乐场所等室内装修。从健康角度而言,竹木复合地板尤其适合城市中的老龄化人群以及婴幼儿,而且对喜好运动的人群也有保护缓冲的作用。色差小,因为竹子的生长半径比树木要小得多,受日照影响不严重,有明显的阴阳面的差别,因此竹地板有丰富的竹纹,而且色泽匀称﹔表面硬度高也是竹地板的一个优点。竹地板因为是植物粗纤维结构,它的自然硬度比木材高出一倍多,而且不易变形。理论上的使用寿命达20年。稳定性上,竹地板收缩和膨胀要比实木地板小。
但在实际的耐用性上竹地板也有缺点:受日晒和湿度的影响会出现分层现象。
五、软木地板
软木地板被称为是“地板的金字塔尖消费”。软木主要生长在地中海沿岸及同一纬度的我国秦岭地区的栓皮栎橡树,而软木制品的原料就是栓皮栎橡树的树皮(该树皮可再生,地中海沿岸工业化种植的栓皮栎橡树一般7-9年可采摘一次树皮),与实木地板相比更具环保性(全程从原料的采集开始直到生产出成品的全过程)、隔音性,防潮效果也会更好些,带给人极佳的脚感。软木地板柔软、安静、舒适、耐磨,对老人和小孩的意外摔倒,可提供极大的缓冲作用,其独有的隔音效果和保温性能也非常适合应用于卧室、会议室、图书馆、录音棚等场所。软木地板优点
1、脚感柔软舒适 软木地板[3]具有健康、柔软、舒适、脚感好、抗疲劳的良好特性。每一个软木细胞就是一个封闭的气囊,受到外来压力时细胞会缩小,内部压力升高,失去压力时,细胞内的空气压力会将细胞恢复原状。软木的这种回弹性可大大降低由于长期站立对人体背部、腿部、脚踝造成的压力,同时有利于老年人膝关节的 保护,对于意外摔倒可起缓冲作用,可最大限度地降低人体的伤害程度。
2、防滑性能好 同时,软木地板具有比较好的防滑性,来讲,防滑的特性与其他地板相比也是它最大特点。软木地板防滑系数是6,老人在上面行走不易滑到,增加了使用的安全性。
3、能够吸收噪音 软木地板是业内公认的静音地板,软木因为感觉比较软,就像人走在沙滩上一样非常安静。这一块主要是从结构上来讲的,因为软木本身是多面体的结构,像蜂窝状,充满了空气,有50%是空气,人走上去之后感觉踩在50%的空气上面,很软。软木地板缺点
1、耐磨抗压性差
物体的变形分为弹性变形与塑性 变形,弹性变形是可以恢复的但是塑性变形就不可以,如果超越了弹性变形数值范围外,就变成了塑性变形,就不可恢复。如果用尖锐的鞋跟去踩软木地板,发生的 压坑就可能是不能恢复的。日常生活中,最好穿软底鞋在软木地板上行走,防止将沙粒带入室内,建议在门口处铺一块蹭脚垫,并及时清除带入室内的沙粒,减少对地板的磨损。
2、清洁不易
正是这样的结构,会更容易存灰,需要正确的使用和维护,清洁打理上更精心一些。普通软木地板的防水、防腐性能不如强化地板,水分也更容易渗入,要防止油墨、口红等弄在地板上,否则就容易渗入不易清洁。