第一篇:工业废水中可生物降解COD定量检测方法
工业废水中可生物降解COD定量检测方法
废水的可生化性是指废水中所含污染物可被微生物降解的性质,即废水中有机污染物被生物降解的难以程度。它是废水的重要特性之一。废水中所含有机物除一部分容易被微生物分解、利用外,还含有一部分不易被微生物降解甚至对微生物的成长产生抑制作用的有机物。确定污水处理工艺时这些有机物的相对含量十分重要,决定了废水采用生物处理的可行性及难易程度。因此,确定污水的可生物降解性COD的含量,对选择污水处理工艺、判断出水能否达标及制定污水治理规划具有重大意义。COD(Chemical Oxygen Demand)(化学需氧量)是水中有机物消耗氧的含量,是反应废水污染程度的重要指标之一,是水质监测的重中之重,与我们的生活息息相关。化学需氧量COD是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。
常规可生物降解性判断,对于可生化性的判定方法,在实验室条件下主要有BOD5/CODCr(B/C)比值法、耗氧速率法、瓦勃呼吸仪法、生化模型试验法、脱氧酶活性法和三磷酸腺苷(ATP)含量测定法、微生物反应动力学等。实际运用中可操作性较强的只有B/C比值法和好氧呼吸法。其中以B/C比值法最常见。传统观点认为B/C体现了废水中可生物降解的有机污染物占有机污染物总量的比例,可用该值评价废水在好氧条件下的微生物可降解性。
废水的可生物降解性判断方法很多,但都是定性判断,无法对生化出水的COD进行准确预估,尤其是成分复杂的工业废水误差更大。针对工业废水提出了可生物降解性COD的定量检测分析方法,将其细分为易降解、可降解、难降解和不可降解4类,同时给出了具体的分类方法及分类标准。经具体实验验证,该方法可以弥补B/C判定废水可生化性时工业废水误差较大的缺陷。
第二篇:转基因大豆制品半定量检测方法研究
转基因大豆制品半定量检测方法研究
转基因作物发展迅速,2004年总种植面积8100万公顷,增长率为20%。估计2010年将达到1.5亿公顷,并将有多达30个国家的1500万农民种植生物技术作物。
转基因作物在带来巨大经济效益、社会效益与环境效益的同时,也产生了许多认识和观念问题。各国政府纷纷制定相应的法律和法规,转基因的定性检测国内外已有很多报道。瑞典转基因检测方法即是检测35S启动子,欧盟则要求检测35S启动子和NOS终止子。随着各国转基因法律和法规越来越严格,定量检测显得日趋重要。Marc Vaïtilingom等用Real-Time PCR定量检测抗草甘膦大豆,能定量分析含转基因成分仅为0.01%的样品。实时PCR技术自动化程度高、快速、灵敏度极高,但所需仪器十分昂贵,检测费用也高,方法的标准化程度不高。本研究旨在利用普通PCR扩增,结合国内的实际,建立一套经济、简便的半定量检测方法。
定性检测了转基因大豆制品中插入的具有抗除草剂特性的CP4-EPSPS目的基因。用普通PCR扩增,以大豆凝集素(lectin)基因为内置标准,利用已知转基因成分标准含量样品与未知含量样品进行扩增对比。经聚丙烯酰胺凝胶电泳后银染、成像,用凝胶分析软件(Quantity One 4.5)进行数据处理,从而确定未知样品转基因含量。
随着各国有关转基因成分(GMO)标签法的建立和不断完善,建立适合我国的转基因食品国家标准检测方法是刻不容缓的课题。本研究通过普通PCR与凝胶分析软件的结合,利用分辨率较高的聚丙烯酰胺凝胶电泳和银染技术,建立了一套经济、简单可行的转基因成分半定量检测方法。
实践证明,该方法经济且具有较高的准确性。
关键词:转基因大豆 PCR检测 半定量检测
第三篇:实验十五开放实验——工业废水中化学需氧量(COD)的测定(精)
实验十五 开放实验——工业废水中化学需氧量(COD)的测定
一、(高锰酸钾法)实验目的
1、掌握酸性高锰酸钾法测定水中COD的分析方法。
2、了解测定COD的意义。
二、实验原理
化学需氧量系指用适当氧化剂处理水样时,水样中需氧污染物所消耗的氧化剂的量,通常以相应的氧量(单位为mgL1)来表示。COD是表示水体或污水的污染程度的重要综合性指标之一,是环境保护和水质控制中经常需要测定的项目。COD值越高,说明水体污染越严重。COD的测定分为酸性高锰酸钾法、碱性高锰酸钾法和重铬酸钾法,本实验采用酸性高锰酸钾法。方法提要是:在酸性条件下,向被测水样中定量加入高锰酸钾溶液,加热水样,使高锰酸钾与水样中有机污染物充分反应,过量的高锰酸钾用一定量的草酸钠还原,最后用高锰酸钾溶液返滴过量的草酸钠,由此计算出水样的耗氧量。反应方程式为
2
2MnO45C2O416H2Mn210CO28H2O
三、药品 1、0.013molL1Na2C2O4标准溶液:准确称取基准物质Na2C2O40.44g左右溶于少量的蒸馏水中,定量转移至250mL容量瓶中,稀释至刻度,摇匀,计算其浓度。2、0.005molL1KMnO4溶液:将实验三十中0.02molL1KMnO4溶液稀释4倍。
3、硫酸(1:2)、硝酸银溶液(w为0.10)
四、实验步骤
1、取适量水样于250mL锥形瓶中,用蒸馏水稀释至100mL,加硫酸(1:2)10mL,再加入w为0.10的硝酸银溶液5mL以除去水样中的Cl(当水样中Cl浓度很小时,可以不加硝酸银),摇匀后准确加入0.005molL1KMnO4溶液10.00mL(V1),将锥形瓶置于沸水浴中加热30min,氧化需氧污染物。稍冷后(~80℃),加入0.013molL1Na2C2O4标准溶液10.00mL,摇匀(此时溶液应为无色),在70~80℃的水浴中用0.005molL1KMnO4溶液滴定至微红色,30s内不腿色即为终点,记下KMnO4溶液的用量为V2。
2、在250mL锥形瓶中加入蒸馏水100mL和1:2硫酸10mL,移入0.013molL1Na2C2O4标准溶液10.00mL,摇匀,在在70~80℃的水浴中,用0.005molL1KMnO4溶液滴定至溶液微红色,30s内不腿色即为终点,记下KMnO4溶液的用量为V3。
3、在250mL锥形瓶中加入蒸馏水100mL和1:2硫酸10mL,在70~80℃下,用0.005molL1KMnO4溶液滴定至溶液微红色,30S内不褪色即为终点,记下KMnO4溶液的用量为V4。
按下式计算化学需要量CODMn:
CODMn/mgL1V1V2V4f10.00cNa2C2O416.001000/VS式中,f10.00/V3V4,即1 mLKMnO4相当于fmLNa2C2O4标准溶液; VS为水样体积;
16.00为氧的相对原子质量。
注:
(1)水样量根据在沸水浴中加热反应30 min后,应剩下加入量一半以上的0.005molL1高锰酸钾溶液量来确定。
(2)废水中有机物种类繁多,但对于主要含烃类、脂肪、蛋白质以及挥发性物质(如乙醇、丙酮等)的生活污水和工业废水,其中的有机物大多数可以氧化90%以上,像吡啶、甘氨酸等有些有机物则难以氧化,因此,在实际测定中,氧化剂种类、浓度和氧化条件等对测定结果均有影响,所以必须严格按操作步骤进行分析,并在报告结果时注明所用的方法。
本实验在加热氧化有机污染物时,完全敞开,如果废水中易发挥性化合物含量较高时,应使用回流冷凝装置加热,否则结果将偏低。
水样中CL-在酸性高锰酸钾中能被氧化,时结果偏高。
实验所用的蒸馏水最好用含酸性高锰酸钾的蒸馏水重新蒸馏所得的二次蒸馏水。(3)
(4)(5)
五、思考题
1.哪些因素影响COD的鉴定结果,为什么?
2.可以采用哪些方法避免废水中CL-对测定结果的影响?
第四篇:乳品中抗生素的检测方法
上海千测标准技术服务有限公司
乳品中抗生素的检测方法
乳品中抗生素的检测方法经多年的实践,人们认识到抗生素可以增强牲畜抗病能力、提高养殖业产投比。但过量使用,将降低畜牧产品品质,影响乳品发酵。而含有抗生素残留的动物性产品,进入人类食物链,会使体内菌株产生抗生素抗性,扰乱机体内环境平衡,菌群失调而不利于健康;也会对易感人群产生过敏反应、激素障碍变态反应。因此,FAO及WHO早在1969年就提出应规定各种动物性食品中的抗生素残留允许标准,WHO于1979年规定原料奶及消毒牛奶中不得有抗生素。近年来,国内对奶制品中的抗生素残留也非常关注,无抗奶(Antibiotic-FreeMilk)的生产和消费已成为大势所趋。但我们对奶制品中抗生素的检测缺乏必要的研究,检测技术还十分落后。本文旨在对抗生素的检测方法进行总结,为在我国开展相关工作奠定基础。我国关于奶制品中抗生素检测的国家标准方法最早出现在《牛乳检验方法——GB5409—85》中,采用TTC法。1994年制订的《食品卫生微生物学检验?鲜乳中抗生素残留量检验——GB/T?4789.27—1994》,也采用TTC法。2001年9月,农业部发布的《无公害食品生鲜牛乳》行业标准中,检测方法同《GB5409—85》,并不得检出。《绿色食品消毒牛乳标准》也做了类似规定。可看出,我国还未将抗生素纳入常规检测,作为必检项目;所采用的TTC法精确性和时效性都比较差。
展望新世纪的乳制品工业,为了保障人体健康,适应WTO的要求,增强国内乳制品业的国际竞争力,必须将抗生素的检测纳入议事日程。
首先是要制定相应的法规和检测程序,将乳制品中抗生素的检测、报告、处罚和管理等纳入法制化轨道,适应市场经济就是法制经济的要求。
其次是要修订、制订乳制品标准,将抗生素的检测纳入国标体系。解决国内标准混乱,与国际标准冲突的问题,加大采用国际标准的比例,同国际标准接轨。
再次是要进行抗生素检测方法筛选工作,提高国产试剂盒的研制能力。努力研究发展一些简单、快速、经济和便携化的能检测多种抗生素残留的分析技术;发展高效、高灵敏的联用技术和多残留组分确证技术。
第五篇:超声检测技术中的缺陷定性方法
超声检测技术中的缺陷定性方法
夏纪真
南昌航空工业学院
注:发表于《无损探伤》1988年第四期
内容提要:本文对目前超声检测技术中缺陷定性评定所应用的主要方法进行了综合介绍。超声无损检测技术中的三大关键问题是缺陷的定位、定量和定性评定。迄今为止,广大的超声检测技术人员已作了大量实验研究工作,在对缺陷的定位和定量评定方面取得了很大进展,并逐步趋于成熟与完善。如在众多有关超声检验的技术规范中,对诸如确定缺陷埋藏深度及在探测面上的投影位置,评定缺陷的当量大小,延伸长度以及缺陷投影面积等都有明确的方法规定,对保证产品构件的质量和安全使用具有重大作用。然而,在对缺陷定性评定方面却存在相当大的困难,这主要是由于缺陷对超声波的反射特性取决于缺陷的取向、几何形状、相对超声波传播方向的长度和厚度、缺陷的表面粗糙度、缺陷内含物以及缺陷的种类和性质等等,并且还与所使用的超声检测系统特性及显示方式有关,因此,在超声检测时所获得的缺陷超声响应是一个综合响应。在目前常用的超声检测技术上还难以将上述各因素从综合响应中分离识别出来,给定性评定带来了困难。
在实际检测过程中,由于难以判明缺陷性质,往往会使一些含有对使用条件是非危险性的、或者在后续加工过程中可以被改善甚至消除的缺陷的产品被拒收,造成不必要的浪费,同时也可能忽视了一些含有危险性缺陷(如裂纹类缺陷)的产品,对产品的安全使用造成潜在威胁。
本文的目的是试图把迄今为止广大超声检测人员在缺陷定性评定方面进行的主要研究工作做一综合介绍,以期促进对缺陷定性评定方法研究的发展。
超声检测技术对缺陷定性评定的主要方法
一.波形判断法(经验法)
目前应用最广泛的是A扫描显示型超声脉冲反射式检测仪。经过长期的超声检测实践,许多超声检测人员对其大量接触的材料、产品及制造工艺有充分的了解,并通过大量的解剖分析验证,积累了丰富的经验,在检测时能通过A扫描显示型超声脉冲反射式探伤仪,根据示波屏上出现缺陷回波时的波形形状,例如视频显示或射频显示,起波速度,回波前沿的陡峭程度及回波后沿下降的速度(下降斜率),波尖形状,回波占宽以及移动探头时缺陷回波的变化情况(波幅、位置、数量、形状、动态包络等),还可以根据观察多次底波的次数,底波高度损失情况,再根据缺陷在被检件中的位置,分布情况,缺陷的当量大小(与反射率有关),延伸情况,结合具体产品、材料的特点和制造工艺作出综合判断,评估出缺陷的种类和性质。有时还可以通过改变发射超声波脉冲的频率、改变声束直径大小(采取聚焦或采用不同直径的探头等)来观察缺陷的回波变化特征,从而识别是材料中的冶金缺陷还是组织反射。
在这方面已经有不少经验总结和资料报道,例如判断钢锻件中的白点、夹杂物、残余缩孔、粗晶、中心疏松、方框形偏析,以及焊缝中的气孔、夹渣、未焊透、未熔合、裂纹等等。必须指出,这种判断方法在很大程度上依赖超声检测人员的经验、技术水平和对特定产品、材料及制造工艺的充分了解,其局限性是很大的,难以推广成为通用的评定方法。此外,作为A扫描显示的缺陷回波所显示的缺陷信息也极其有限,主要显示的是波幅大小、位置和回波包络形状,而缺陷对超声响应的相位、频谱等重要信息则无法显示出来,但是后两者与缺陷性质和种类有着密切关系,这也正是目前广大超声检测人员致力研究探索的问题。下面举出一部分常见缺陷的回波特征:
(1)钢锻件中的粗晶与疏松--多以杂波、丛状波形式或底波高度损失增大、底波反射次数减少等形式出现。
(2)棒材的中心裂纹--在沿圆周面作360°径向纵波扫查时,由于裂纹的辐射方向性,其反射波幅有高低变化并有不同程度的游动,在沿轴向扫查时,反射波幅度和位置变化不大并显示有一定的延伸长度。
(3)锻件中的裂纹--由于裂纹型缺陷内含物多有气体存在,与基体材料声阻抗差异较大,超声反射率高,缺陷有一定延伸长度,起波速度快,回波前沿陡峭,波峰尖锐,回波后沿斜率很大,当探头越过裂纹延伸方向移动时,起波迅速,消失也迅速。
(4)钢锻件中的白点--波峰尖锐清晰,常为多头状,反射强烈,起波速度快,回波前沿陡峭,回波后沿斜率很大,在移动探头时回波位置变化迅速,此起彼伏,多处于被检件例如钢棒材的中心到1/2半径范围内,或者钢锻件厚度最大的截面的1/4~3/4中层位置,有成批出现的特点(与炉批号和热加工批有关)。当白点数量多、面积大或密集分布时,还会导致底波高度显著降低甚至消失。
(5)锻件中的非金属夹杂物--多为单个反射信号,起波较慢,回波前沿不太陡峭,波峰较圆钝,回波后沿斜率不太大并且回波占宽较大。
(6)钛合金锻件中的高密度夹杂物(例如钨、钼)--多为单个反射信号,回波占宽不太大,但较裂纹类要大些,回波前沿较陡峭,后沿斜率较大,当改变探测频率和声束直径时,其反射当量大小变化不大(如为大晶粒或其他组织反射在这种情况下回波高度将有显著变化)。
(7)铸件或焊缝中的气孔--起波快但波幅较低,有点状缺陷的特征。
(8)焊缝中的未焊透--多为根部未焊透(如V型坡口单面焊时钝边未熔合)或中间未焊透(如X型坡口双面焊时钝边未熔合),一般延伸状况较直,回波规则单一,反射强,从焊缝两侧探伤都容易发现。
(9)铸件或焊缝中的夹渣--反射波较紊乱,位置无规律,移动探头时回波有变化,但波形变化相对较迟缓,反射率较低,起波速度较慢且后沿斜率不太大,回波占宽较大。
一般在可能的情况下,为了进一步确认缺陷性质,还应采用其他无损检测手段,例如X射线照相(检查内部缺陷)、磁粉和渗透检验(检查表面缺陷)来辅助判断。
二.根据回波相位识别反射体
根据声压反射率公式:rp=(Z2cosα-Z1cosβ)/(Z2cosα+Z1cosβ)
式中:Z1-第一介质(被检材料)的声阻抗;Z2-第一介质(缺陷)的声阻抗;α-入射角;β-反射角
当超声波垂直入射时,cosα=cosβ=1,当入射波与反射波同为一种波型时,α=β,上述公式简化为:rp=(Z2-Z1)/(Z2+Z1)
即超声波在被检材料中投射到缺陷上时,在界面的声反射大小取决于两者声阻抗差值,并在Z2<Z1的情况下,回波相位与入射波反相,从而可以利用回波与入射波的相位关系识别例如裂纹或其他反射体。
如图1(上)所示,使用平底孔(含空气)调整起始灵敏度时,显示的射频回波相位与金属材料中的入射波相位相反,而对于裂纹、非金属夹杂物等缺陷,情况相似,即缺陷回波与平底孔回波相位相同(图1中)。如果是高密度夹杂物(例如钨、钼等)缺陷时,则缺陷回波与平底孔回波相位相反,即Z缺>Z基时,回波与入射波同相,与平底孔回波反相;Z缺<Z基时,回波与入射波反相,与平底孔回波同相。(Z缺为缺陷声阻抗,Z基为基体材料声阻抗)。
另一种利用回波射频显示正向与负向最大振幅关系识别焊缝中裂纹类危险缺陷的方法如图2所示。
应当说明的是,上述两种方法都需要能在示波屏上以较大程度(比例)展宽脉冲信号的超声探伤仪,并应能作射频显示,但目前常用的一般便携式超声探伤仪在这方面的应用还受到一定限制。
图1 根据回波相位识别反射体
图2 射频显示波形正负振幅关系法
A-缺陷回波负向最大振幅;B-缺陷回波正向最大振幅
A/B>1--裂纹类缺陷;A/B<1--其他反射体
三.根据视频显示波形的形状判别缺陷性质
这是在经验法的基础上,通过定量测定缺陷回波的前沿上升时间(t1),脉冲持续时间(t2)和脉冲下降时间(t3),从而对缺陷性质进行判别的方法,见图3所示。
首先应对示波屏水平基线刻度以0.1μs或1μs分划,可以使用厚度2.5英寸(63.6mm)的纯铝平面试块(CL=6.35mm/μs),使第一、二次底波前沿分别对准总长100mm的水平线刻度上的50和100mm,此时水平基线刻度每1mm代表声波传播时间为0.4μs(往返时间),使缺陷回波高度为100%满刻度,读取90%满刻度线和20%满刻度线与回波包络线交点所对应的t1、t2和t3三个时间(见图3)。
对于裂纹类缺陷(类似镜面反射),其t1小,t2较非平面缺陷的t2要小;
对于疏松、夹杂类缺陷,由于缺陷周围不规则界面的弥散特征,使t3较长,并且t1、t2也较裂纹类缺陷的大。
图3 脉冲波形形状测定法
这种方法与经验法判断含气体的裂纹类缺陷回波的前沿陡峭、回波占宽较小、回波后沿斜率较大的特点是相应的,但是用这种方法可以更定量地判断,不过其具体定量值尚需做大量的实验验证工作后确定。
四.缺陷回波的频谱分析
缺陷回波的频谱包络形状与缺陷几何形状及取向,以及缺陷尺寸与超声波长的比值密切相关,因此可以通过向缺陷发射宽频带(窄脉冲)超声波并对接收到的回波信号频谱进行分析从而判断缺陷种类和性质。在这方面已有不少资料报道,但主要还是以识别反射体的几何形状为基础,例如识别是平面缺陷还是体积缺陷,是倾斜取向还是垂直取向的缺陷,利用不同形状与取向缺陷的反射与频率的依从关系,能较好地确定缺陷的种类和性质。
我们知道,在探伤仪上显示的是缺陷的合成传输函数:F合=F1·F2·F32·F42·F5·F62 式中:F1-发生器传输函数;F2-放大器传输函数;F3-探头传输函数;F4-被检件传输函数;F5-缺陷传输函数;F6-耦合传输函数。其中F3、F4和F6对超声信号有两次(往返)影响,故取其平方值。
在一般情况下,缺陷传输函数F5又是下述缺陷各参数的函数ψ:F5=ψ{K·Nb·Sb·Qb·Rb} 式中:K-缺陷坐标(位置);Nb-缺陷性质;Sb-缺陷面积;Qb-缺陷取向;Rb-缺陷内含物(填充物)
在用普通单频超声法向工件发射超声脉冲和接收反射超声脉冲时,缺陷内含物的脉冲频率保持不变,因此电路和声路部分所有传输函数都不带有缺陷信息,成了窄频滤波器,并由于它们彼此的振幅频率特性有显著不同,而使包含在F5中的大部分缺陷信息消失在其他传输函数中。
利用频谱法可以比普通单频法大大增加有关缺陷性质和大小的信息量。对于K、Qb和Sb,容易用普通方法确定,困难的是确定Nb和Rb。可以把缺陷反射脉冲的频谱设为R(x),发射脉冲频谱为E(t),而缺陷传输函数设为h(t),则:
R(x)=E(t)·h(t)
当已知与给定方向有关的函数R(x)后,虽然还不能确定缺陷的全部特征,但已能对缺陷的一般形状,特别是对缺陷的取向提供有用的资料。因此,可以利用宽频带(窄脉冲)探头,并使发射频谱尽可能规则,则缺陷回波频谱将随缺陷的形状和取向而变化,从而有助于判断出缺陷的种类和性质。
超声检测技术对缺陷定性评定的其他方法
1.超声C扫描和B扫描
这是将直通回波以线型方式显示缺陷的平面投影形状(C扫描)或缺陷在深度截面上反射面的平直、弯曲,即反射界面的形状(B扫描),从而帮助判断缺陷的种类和性质。
2.超声全息
借助全息原理,将缺陷反射的大量信息数据处理成三维空间立体图像显示以辅助判断。
3.利用电子计算机处理缺陷回波信号
目前国内外均在研究并试制出电脑化超声波探伤仪。但是常用的是与频谱分析结合使用或作为超声探测程序控制来使用,不过相信很快将有突破性发展。
结束语
超声检测技术对缺陷定性方法的研究由于生产发展的急迫需要,特别是当前技术的发展已越来越强调断裂力学的重要性并提出了损伤容限设计概念,从而越来越引起人们的注意和重视,相信在广大超声检测技术人员的努力下将很快取得较大的进展。
参考文献(略)