高中数学精讲与练排列,组合练习题

时间:2019-05-12 11:54:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学精讲与练排列,组合练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学精讲与练排列,组合练习题》。

第一篇:高中数学精讲与练排列,组合练习题

排列,组合练习

1.书架上有4本不同的数学书,3本不同的语文书,2本不同的英语书,全部竖起排成一排,如果不使同类书分开,不同的排法有(C)

A.144种

B.48种

C.1728种

D.96种

2.将4名实习教师全部分给高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有(B)

A.24种

B.36种

C.48种

D.72种

3333333.C3C4C5C6C7C8(A)

A.126

B.70

C.84

D.96 4.从5名教师中选出3名,从5名学生中选出2名组成一个演讲队,其中教师甲与学生乙不能同时参加,则不同的组队方式共有(B)

A.24种

B.76种

C.52种

D.80种

5.100件产品中有5件次品,现从中取3件产品,至少有1件次品的不同取法种数是(D)

21213333

A.C95

B.C100

C.A100

D.C100 C5C5A95C956.从5名男乒乓球队员,4名女乒乓球队员中各取2人组成一组混合双打进行表演赛,则不同的安排方法种数有(C)

A.30

B.60

C.120

D.240 7.某班从7个候选人中选6人分别担任语,数,外,物,化,生课代表,且甲,乙二人不担任数学课代表,则不同的选法有(C)

A.1440种

B.2400种

C.3600种

D.4800种 8.由数字1,2,3,4,5,6,7,8,9组成的三位数中,各位数字按严格的递增或严格的递减顺序排列的数的个数是(B)

A.120

B.168

C.204

D.216 9.某旅行社的11名导游中,有5人只会英语,有4人只会法语,有2人既会英语又会法语,现从11名导游中选4名会英语,4名会法语的导游去带团参观,则不同的选法种数为(C)

A.65

B.155

C.185

D.150 10.甲,乙,丙三人轮流值日,从周一到周六每人值两天,甲不值周一,乙不值周六,则可以排出的值日表有(D)

A.50种

B.72种

C.48种

D.42种

11.有5个不同的红球和2个不同的黑球排成一排,在两端都是红球的排列中,其中红球甲和黑球乙相邻的排法有(B)

A.720

B.768

C.960

D.1440 12.5个应届高中毕业生报考三所重点院校,每人报且仅报一所院校,不同的报名方法有(A)

A.3

B.5

C.60

D.15 531,2,3,且A中至少有一个奇数,则这样的集合有(D)个 13.已知集合A

A.2

B.3

C.4

D.5 14.从5门不同的文科学科和4门不同的理科学科中任选4门,组成一组综合高考科目,若要求这组科目中文,理科都有,则不同的选法种数是(C)

A.60

B.80

C.120

D.140 15.如果把两条异面直线看成“一对”,那么,六棱锥的棱所在的12条直线中,异面直线有(B)对

A.12

B.24

C.36

D.48 16.f是集合Ma,b,c,d到集合N0,1,2的映射,且

f(a)f(b)f(c)f(d)4,则不同的映射的个数为(C)

A.6

B.18

C.19

D.21 17.在10名女生中选2人,40名男生中选3人,担任5种不同的职务,若规定女生甲不担任其中某种职务,则不同的安排方案有(D)种

235***4235

A.C9

D.C9C40A5C9C40A4A4 C40A4A4 B.C10C40A4A4

C.C10C40A518.有4本不同的书,全部分给3个人,每人至少1本,有不同的分法(B)种

A.72

B.36

C.54

D.18 19.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有(A)种

A.240

B.180

C.120

D.60 20.将1至9这9个数填写在九宫格内,要求每一行从左到右依次增大,每一列从上到下依次增大,4固定在中心位置,则所有的不同的填写方法有(B)种

A.6

B.12

C.18

D.24 21.某单位要邀请10位教师中的6位参加一个会议,其中甲,乙两位教师不能同时参加,则邀请的不同方法有(D)种

A.84

B.98

C.112

D.140 22.将3种作物种植在如图5块试验田中,每块种植一种作物,且同一种作物种在相邻的试验田中,不同的种植方法有(B)种

A.24

B.36

C.42

D.48 23.5名志愿者分到3所学校支教,要求每所学校至少有一名志愿者,则不同的分法共有(A)种

A.150

B.180

C.200

D.280 24.将数字1,2,3,4,5,6排成一排,记第i个数为ai(i=1,2,3,4,5,6),若a11,a33,a55

a1a3a5,则不同的排列方法有多少种?(30)

25.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门。学校规定,每位同学选4门,共有多少种不同的选法?(75)

26.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法有多少种?(20)

27.有9名同学排成两行,第一行4人,第二行5人,其中甲必须排在第一行,乙,丙必须排在第二行,有多少种不同排法?(57600)

28.如图,一个地区分为5个行政区,现在给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则有多少种不同的着色方法?(72)

第二篇:高中数学精讲与练组合练习题

组合练习题

x1.已知Cn Cny,则x,y的关系是(C)

A.xyB.xynC.xy或xynD.xy

0123172.C3 C4C5C6C20的值为(D)

434A.C3

21B.C20C.C20D.C21

3.直角坐标系xoy平面上,平行直线xn(n0,1,2,3,4,5)与直线yn(n0,1,2,3,4,5)组成的图形中,矩形共有(D)个

A.25B.36C.100D.225

4.从长度为1,2,3,4的四条线段中任取三条的不同取法共有n种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为m,则

A.0B.m(B)n113C.D.424

5.某施工小组有男工7人,女工3人,选出3人中有女工1人,男工2人的不同选法有(D)种

212133A.C10B.A10C.A7A3D.C7C3

6.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的是奥运宣传广告,且2个奥运宣传广告不能连续播放,则不同的播放方式有(C)种

A.120B.48C.36D.18

7.从4名男生,3名女生中选出4人参加座谈会,这4人中必须男生,女生都有,则不同的选法有(B)种

A.140B.120C.35D.34

8.某科技小组有6名学生,现选出3参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为(A)

A.2B.3C.4D.5

9.20个不同的小球平均放在10个盒子中,先从中拿出5个小球,要求没有两个小球取自同一盒中,则不同的取法共有(D)种

555155A.C10B.C20C.C10D.C10C22

10.现有4男3女组成一个有男有女的小组,要求男的数目为偶数,女的数目为奇数,则不同的组成方法有(A)种

A.28B.324C.18D.36

11.某城市街道如图所示,某人要用最短的路程从A地到B地,则不同的走法有(B)种

A.8B.10C.12D.32

12.以正方体的顶点为顶点的四面体有

第三篇:10.2 排列与组合练习题

§10.2 排列与组合一、选择题

1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为

().

A.42B.30C.20D.12

解析 可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有

1A2若两个节目不相邻,则有A2由分类计数原理共有2A6=12种排法;6=30种排法.

12+30=42种排法(或A27=42). 答案 A

2.a∈N*,且a<20,则(27-a)(28-a)„(34-a)等于()

27-a78

A.A827-aB.A34-aC.A34-aD.A34-a 解析A834-a=(27-a)(28-a)„(34-a). 答案 D

3.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有()

A.252个B.300个 C.324个D.228个

113

解析(1)若仅仅含有数字0,则选法是C2可以组成四位数C23C4,3C4A3=12×6=72个;

2123

(2)若仅仅含有数字5,则选法是C1 3C4,可以组成四位数C3C4A3=18×6=108个;

113

(3)若既含数字0,又含数字5,选法是C3C4,排法是若0在个位,有A3=6种,11

若5在个位,有2×A22=4种,故可以组成四位数C3C4(6+4)=120个. 根据加法原理,共有72+108+120=300个. 答案 B

4.2013年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有()A.1 440种C.1 282种

B.1 360种D.1 128种

解析 采取对丙和甲进行捆绑的方法:

如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A2=1 440种,124如果“乙在正月初一值班”,则安排方案有:C11·A4·A2·A4=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.

则不同的安排方案共有1 440-192-120=1 128(种). 答案 D

5.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有().

A.16种B.36种C.42种D.60种

解析 若3个不同的项目投资到4个城市中的3个,每个城市一项,共A34种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共

2322C23A4种方法,由分类计数原理知共A4+C3A4=60种方法.

答案 D

6.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有().

A.30种B.35种C.42种D.48种

解析 法一 可分两种互斥情况:A类选1门,B类选2门或A类选2门,B类

221选1门,共有C13C4+C3C4=18+12=30(种)选法.

3法二 总共有C37=35(种)选法,减去只选A类的C3=1(种),再减去只选B类的C34=4(种),共有30种选法. 答案 A

7.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是(). A.24B.48C.72D.96

222223解析 A55-2A2A3A2-A2A2A3=48.答案 B

二、填空题

8.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)

23解析①只有1名老队员的排法有C12·C3·A3=36种. 112②有2名老队员的排法有C22·C3·C2·A2=12种;

所以共48种. 答案 48

9.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案种数是________.

解析 将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学

3212

生有C2其中甲同学分配到A班共有C2因此满足条4A3种分配方案,3A2+C3A2种方案.32212件的不同方案共有C24A3-C3A2-C3A2=24(种).

答案 24

10.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种.

解析分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法.

221

直接法:C15C4+C5C4=70.33

间接法:C39-C5-C4=70.答案70

11.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答). 解析甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数

22C15C4C2313

是C3A3=18,而总的分配方法数是把五人分为三组再进行分配,方法数是23

A2

=90,故不同的住宿安排共有90-18=72种. 答案 72

12.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字). 解析 先从除甲、乙外的5辆车任选2辆有C25种选法,连同甲、乙共4辆车,排列在一起,选从4个位置中选两个位置安排甲、乙,甲在乙前共有C24种,最后,222安排其他两辆车共有A22种方法,∴不同的调度方法为C5·C4·A2=120种.

答案 120

三、解答题

13.有六名同学按下列方法和要求分组,各有不同的分组方法多少种?(1)分成三个组,各组人数分别为1、2、3;

(2)分成三个组去参加三项不同的试验,各组人数分别为1、2、3;(3)分成三个组,各组人数分别为2、2、2;

(4)分成三个组去参加三项不同的试验,各组人数分别为2、2、2;(5)分成四个组,各组人数分别为1,1,2,2;

(6)分成四个组去参加四项不同的活动,各组人数分别为1、1、2、2.23

解析(1)即C16C5C3=60.233

(2)即C16C5C3A3=60×6=360.22C26C4C2

(3)即315.A322

(4)即C26C4C2=90.12C1C26C54C2

(5)即2·2=45.A2A2122

(6)C16C5C4C2=180.14.要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?

(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男 生甲、女生乙至少有一个人入选.

解析(1)C512-C7=771; 1423(2)C57+C5C7+C5C7=546; 3(3)C22C10=120; 23(4)C512-C2C10=672; 5(5)C512-C10=540.15.在m(m≥2)个不同数的排列p1p2„pm中,若1≤i<j≤m时pi>pj(即前面某数大于后面某数),则称pi与pj构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n-1)„321的逆序数为an.如排列21的逆序数a1=1,排列321的逆序数a2=3,排列4 321的逆序数a3=6.(1)求a4、a5,并写出an的表达式;(2)令bn=

anan+1

+,证明2n<b1+b2+„+bn<2n+3,n=1,2,„.an+1an

nn+12

解析(1)由已知条件a4=C25=10,a5=C6=15,则an=Cn+1=

(2)证明 bn=

1anan+1nn+21

2+2nn+2an+1ann+2n

∴b1+b2+„+bn

111111111

-+- =2n+21-+-+-+„+

32435n-1n+1nn+2113

-,=2n+2-

2n+1n+2∴2n<b1+b2+„+bn<2n+3.16.已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.

(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?

(2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法? 解析(1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回的逐个抽取测试. 第2次测到第一件次品有4种抽法; 第8次测到最后一件次品有3种抽法;

第3至第7次抽取测到最后两件次品共有A2剩余4次抽到的是正品,共5种抽法;

24有A24A5A6=86 400种抽法.

(2)检测4次可测出4件次品,不同的测试方法有A44种,1检测5次可测出4件次品,不同的测试方法有4A34A6种;

26检测6次测出4件次品或6件正品,则不同的测试方法共有4A35A6+A6种.

由分类计数原理,满足条件的不同的测试方法的种数为

31326A44+4A4A6+4A5A6+A6=8 520.

第四篇:高中数学排列与组合部分知识点总结

高中数学排列与组合部分知识点总结 排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·„nM(分步)②加法原理:N=n1+n2+n3+„+nM(分类)

2. 排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)„(n-m+1)=n!/(n-m)!Ann =n!Cnm = n!/(n-m)!m!

Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+„+ Cnran-rbr+„+ Cn n-1abn-1+ Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+„+Cnrxr+„+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+„+Cnr+„+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+ Cn6+ Cn8+„=Cn1+Cn3+Cn5+ Cn7+ Cn9+„=2n-1 ③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

第五篇:排列与组合教案

课 题: 数学广角

——简单的排列和组合

鹤鸣山小学:佘莎

教学内容:九年义务教育课程标准实验教科书 数学二年级上册p99例1 教学目标:

1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数,初步培养有序地全面地思考问题的能力。

2.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣,使学生在数学活动中养成与人合作的良好习惯。

教学重点:经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学准备:课件、数字卡片等 教学过程:

一、创设情境,引发探究

1、初步感知排列

1)师:看喜羊羊来欢迎我们了。

喜羊羊:大家好,在你们面前的是一把密码锁,密码是由数字1和2这两个数字摆成的两位数。快来试试吧!

2)学生独立摆卡片,并记下数。

师:请先独自摆摆,边摆边记,看谁摆最完整? 3)反馈交流,说一说你是怎样摆的?

板书:12

21 4)试着输入密码?

二、动手操作、探究新知

1、合作探究排列 1)进入数字乐园。

喜洋洋说:“欢迎来到数字乐园,我们一起来玩一个数字游戏吧!你能用1、2、3三个数字摆出几个两位数呢?

生猜想,有两个,4个,6个等等。

师:让我们来动手摆一摆就知道了。老师给小朋友们准备了1、2、3三张数字卡片,还有一张记录卡。同桌合作,一人摆数字卡片,一人把摆好的数记录下来,先商量一下谁摆数字卡片,谁记数,比比哪桌合作得又好又快。2)反馈交流。

①请几组学生把自己记录下的数字写在黑板上。②交流你觉得谁摆得更好。为什么? 想一想:怎样摆才不会遗漏和重复?

师:为什么有的摆的数多,而有的却摆的少呢?有什么好办法能保证既不漏数、也不重复呢?请每个小组进行讨论,看看有什么好办法?小组交流,集体反馈。

③再按你们的方法,边摆,找一个人把他记下来!

学生小结方法:

1、固定十位。

2、固定个位。

3、交换位置。

师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律和一定的方法进行。这就是我们今天所要学习的排列与组合。巩固练习。

师:喜洋洋想请我们去他家里作客。可是它还想考考大家。

1、我家的门牌号码是由6、7、8这三个数字组成的两位数,请你猜一猜可能是多少?

2、是这6个数中最大的一个两位数。

学生先排列出6个两位数,再找出其中最大的两位数。2.感知组合

师:喜洋洋请小朋友们吃水果。苹果、香蕉、梨子,只吃其中的两种水果有几种吃法。生:回答。

说出三种这后,还有孩子说有别的吃法,当他列举出来之后,再让学生观察。学生发现最后一种和前面其中一种是同样的吃法。从而得出只有三种吃法。师质疑:三张卡面取两张摆两位数能摆6个,而三种水果吃其中两种确只有3种吃法?

请两个学生上黑板,一人摆卡片,一人取水果。然后交换位置。学生发现卡片交换位置得到两个数,而水果交换位置之后得到的还是原来的两种水果只能算一种吃法。

师小结:摆数与顺序有关,取水果与顺序无关。摆数可以交换位置,而取水果交换位置没用。

三、应用拓展,深化探究 来到游艺乐园,搭配衣服。

1、出示:四件衣服有几种不同的穿法呢?在书上连一连,画一画。(学生操作)

学生说课件演示。

2、出示:如果三个人握手,每两个人握一次,三人一共要握多少次呢? 2)小组合作演示,并记录结果。3)小组汇报结果。

四、总结延伸,畅谈感受

师:生活中哪里有排列与组合。

师总结:只要我们有心,你会发现生活中处处有数学。愿孩子们做一个生活的有心人,去发现身边的数学。

2012-11-10

下载高中数学精讲与练排列,组合练习题word格式文档
下载高中数学精讲与练排列,组合练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    排列与组合高考专题

    高中数学《排列组合的复习》教学设计 教学目标 1.知识目标 (1)能够熟练判断所研究问题是否是排列或组合问题; (2)进一步熟悉排列数、组合数公式的计算技能; (3)熟练应用排列组合问题......

    排列与组合教学设计(范文模版)

    搭配(一):排列与组合教学设计 执教者:秦彩云 教材分析: 小学数学二年级上册97页的“数学广角”的主要内容是简单的排列与组合。排列与组合的思想方法不仅应用广泛,而且是后面学习......

    排列与组合教学设计

    “排列与组合”教学设计 教学内容:人教版小学数学二年级上册第八单元的排列与组合。 教学目标: 1、让学生通过观察、猜测、实验等活动,找出最简单的排列数和组合数。 2、培养学......

    排列与组合教学设计

    课题:排列与组合 教案设计、执教:谭记辉 教学内容:排列与组合 人教版二年级下册第97页例1,“做一做”,练习二十四第1、2题。 教学目标: 知识与技能: 1、 了解简单的排列与组合的知......

    排列与组合教学设计

    课题:排列与组合 教案设计、执教:谭记辉 教学内容:排列与组合 人教版二年级下册第97页例1,“做一做”,练习二十四第1、2题。 教学目标: 知识与技能: 1、 了解简单的排列与组合的知......

    排列与组合教学设计

    排列与组合教学设计 教学内容:人教版义务教育课程标准实验教科书小学数学二年级上册第八单元的排列与组合。 教学目标: 1.使学生通过观察、猜测、操作等活动,找出最简单的事物的......

    简单的排列与组合教案

    《排列与组合》教学设计教学目标: 知识与技能: 通过观察、猜测、实验等活动,找出简单事物的排列数与组合数。 过程与方法: 1.通过学生间的自主学习、相互讨论交流,增强学生归纳知......

    排列与组合教学设计范文大全

    《简单的排列组合》教学设计 教学内容: 义务教育课程标准实验教科书(人教版)二年级上册p99-100第八单元的排列与组合 教学目标: 1、通过观察、猜测、操作等活动,找出最简单的事物......