第一篇:计数原理-10.2 排列与组合(教案)
响水二中高三数学(理)一轮复习
教案 第十编 计数原理 主备人 张灵芝 总第52期
§10.2 排列与组合
基础自测
1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有 个.答案 54 2.(2008·福建理)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案共有 种.答案 14 3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有 种.(用式子表示)答案 A88
4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是(用式子表示).3答案 C100-C394
5.(2007·天津理)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).答案 390
例题精讲
例1 六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.解(1)方法一 要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余
155人在另外5个位置上作全排列有A55种站法,根据分步计数原理,共有站法:A4·A5=480(种).2方法二 由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A5种站法,然后中24间人有A44种站法,根据分步计数原理,共有站法:A5·A4=480(种).5方法三 若对甲没有限制条件共有A66种站法,甲在两端共有2A5种站法,从总数中减去这两种 329
5情形的排列数,即共有站法:A66-2A5=480(种).(2)方法一 先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A55种站法,再把
52甲、乙进行全排列,有A22种站法,根据分步计数原理,共有A5·A2=240(种)站法.方法二 先把甲、乙以外的4个人作全排列,有A44种站法,再在5个空档中选出一个供甲、乙放
2412入,有A15种方法,最后让甲、乙全排列,有A2种方法,共有A4·A5·A2=240(种).(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A442种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A5种站法,故共有站法为2A44·A5=480(种).52也可用“间接法”,6个人全排列有A66种站法,由(2)知甲、乙相邻有A5·A2=240种站法,所52以不相邻的站法有A66-A5·A2=720-240=480(种).(4)方法一 先将甲、乙以外的4个人作全排列,有A4然后将甲、乙按条件插入站队,有3A24种,2种,故共有A4(3A24·2)=144(种)站法.方法二 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A2然后把甲、4种,乙及中间2人看作一个“大”元素与余下2人作全排列有A3最后对甲、乙进行排列,有A22种3种方法,32方法,故共有A24·A3·A2=144(种)站法.(5)方法一 首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,24有A44种,根据分步计数原理,共有A2·A4=48(种)站法.方法二 首先考虑两端两个特殊位置,甲、乙去站有A22种站法,然后考虑中间4个位置,由剩下
24的4人去站,有A44种站法,由分步计数原理共有A2·A4=48(种)站法.54(6)方法一 甲在左端的站法有A55种,乙在右端的站法有A5种,且甲在左端而乙在右端的站法有A4 330 54种,共有A66-2A5+A4=504(种)站法.方法二 以元素甲分类可分为两类:①甲站右端有A55种站法,②甲在中间4个位置之一,而乙不145114在右端有A14·A4·A4 种,故共有A5+A4·A4·A4=504(种)站法.例2 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.2解(1)第一步:选3名男运动员,有C36种选法.第二步:选2名女运动员,有C4种选法.2共有C36·C4=120种选法.(2)方法一 至少1名女运动员包括以下几种情况: 1女4男,2女3男,3女2男,4女1男.4233241由分类计数原理可得总选法数为C14C6+C4C6+C4C6+C4C6=246种.方法二 “至少1名女运动员”的反面为“全是男运动员”可用间接法求解.5从10人中任选5人有C10种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的5选法为C10-C56=246种.(3)方法一 可分类求解:
443“只有男队长”的选法为C8; “只有女队长”的选法为C8; “男、女队长都入选”的选法为C8; 43所以共有2C8+C8=196种选法.方法二 间接法:
55从10人中任选5人有C10种选法.其中不选队长的方法有C8种.所以“至少1名队长”的选法为55C10-C8=196种.44(4)当有女队长时,其他人任意选,共有C9种选法.不选女队长时,必选男队长,共有C8种选法.444其中不含女运动员的选法有C5种,所以不选女队长时的选法共有C8-C5种选法.所以既有队长又有女444运动员的选法共有C9+C8-C5=191种.331 例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?
解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选
1212个放2个球,其余2个球放在另 外2个盒子内,由分步计数原理,共有C14C4C3×A2=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个 子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C2、(2,2)两类,第一类有序不4种方法.4个球放进2个盒子可分成(3,1)均匀分组有CC24(C342C11A234C11A22种方法;第二类有序均匀分组有
2C24C2A22·A
22种方法.故共有+2C24C2A22·A22)=84种.巩固练习
1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3 125的数.12解(1)先排个位,再排首位,共有A13·A4·A4=144(个).1123(2)以0结尾的四位偶数有A35个,以2或4结尾的四位偶数有A2·A4·A4个,则共有A5+ 12A12·A4·A4=156(个).2(3)要比3 125大,4、5作千位时有2A35个,3作千位,2、4、5作百位时有3A4个,3作千位,1作 321百位时有2A13个,所以共有2A5+3A4+2A3=162(个).2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?
(4)队中至少有一名内科医生和一名外科医生,有几种选法?
3解(1)只需从其他18人中选3人即可,共有C18=816(种).5(2)只需从其他18人中选5人即可,共有C18=8 568(种).43(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C12C18+C18=6 936(种).332(4)方法一(直接法)至少一名内科医生一名外科医生的选法可分四类:一内四外;二内三外;三
4233241内二外;四内一外,所以共有C112C8+C12C8+C12C8+C12C8=14 656(种).方法二(间接法)由总数中减去五名都是内科医生和五名都是外科医生的选法种数,55得C520-(C8+C12)=14 656(种).3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;
(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.2解(1)分三步:先选一本有C16种选法;再从余下的5本中选2本有C5种选法;对于余下的三本 123全选有C33种选法,由分步计数原理知有C6C5C3=60种选法.233(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有C16C5C3A3=360种选法.222(3)先分三步,则应是C6C4C2种选法,但是这里面出现了重复,不妨记六本书为A、B、C、D、222E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则C6C4C2种分法中还有(AB、EF、CD),(CD、AB、EF)、(CD、EF、AB)、(EF、CD、AB)、(EF、AB、CD)3共有A33种情况,而且这A3种情况仅是AB、CD、EF的顺序不同,因此,只算作一种情况,故分法有222C6C4C2A33=15种.222C6C4C2(4)在问题(3)的工作基础上再分配,故分配方式有
A33222·A33= C6C4C2=90种.回顾总结
知识 方法 思想
课后作业
一、填空题
1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有 个.答案 36 2.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有 种.333 答案 10 3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 种.答案 960 4.(2008·天津理)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 种.答案 1 248 5.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有 种不同的读法.答案 252 6.(2008·安徽理)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是(用式子表示).22答案 C8A6
7.平面内有四个点,平面内有五个点,从这九个点中任取三个,最多可确定 个平面,任取四点,最多可确定 个四面体.(用数字作答)答案 72 120 8.(2008·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是.(用数字作答)答案 40
二、解答题
9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?
解 可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2
22个项目,然后再分配给4个城市中的2个,共有C3A4种方案;另一类1个城市1个项目,即把3个223元素排在4个不同位置中的3个,共有A34种方案.由分类计数原理可知共有C3A4+A4=60种方案.10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;
334(3)至少有一名队长当选;(4)至多有两名女生当选.4解(1)一名女生,四名男生,故共有C15·C8=350(种).3(2)将两队长作为一类,其他11人作为一类,故共有C22·C11=165(种).423(3)至少有一名队长含有两类:有一名队长和两名队长.故共有:C12·C11+C2·C11=825(种).55或采用间接法:C13-C11=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.2345故选法为C5·C8+C15·C8+C8=966(种).11.已知平面∥,在内有4个点,在内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?
2解(1)所作出的平面有三类:①内1点,内2点确定的平面,有C14·C6个;②内2点,2内1点确定的平面,有C2C1③,本身.∴所作的平面最多有C1C6+C2C1(个).4·4·4·6个;6+2=983(2)所作的三棱锥有三类:①内1点,内3点确定的三棱锥,有C14·C6个;②内2点,内2312点确定的三棱锥,有C24·C6个;内3点,内1点确定的三棱锥,有C4·C6个.32231∴最多可作出的三棱锥有:C14·C6+C4·C6+C4·C6=194(个).(3)∵当等底面积、等高的情况下三棱锥的体积相等,且平面∥,∴体积不相同的三棱锥最多有
322C36+C4+C6·C4=114(个).12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?
解 ∵前排中间3个座位不能坐,∴实际可坐的位置前排8个,后排12个.12(1)两人一个前排,一个后排,方法数为C18·C12·A2种; 212(2)两人均在后排左右不相邻,共A12-A22·A11=A11种;
1(3)两人均在前排,又分两类:①两人一左一右,共C1C1A2②两人同左同右,有2(A2A24·4·2种;4-A3·2)122112212种.综上可知,不同排法种数为C18·C12·A2+A11+C4·C4·A2+2(A4-A3·A2)=346种.335
第二篇:10.2 排列与组合练习题
§10.2 排列与组合一、选择题
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为
().
A.42B.30C.20D.12
解析 可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有
1A2若两个节目不相邻,则有A2由分类计数原理共有2A6=12种排法;6=30种排法.
12+30=42种排法(或A27=42). 答案 A
2.a∈N*,且a<20,则(27-a)(28-a)„(34-a)等于()
27-a78
A.A827-aB.A34-aC.A34-aD.A34-a 解析A834-a=(27-a)(28-a)„(34-a). 答案 D
3.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有()
A.252个B.300个 C.324个D.228个
113
解析(1)若仅仅含有数字0,则选法是C2可以组成四位数C23C4,3C4A3=12×6=72个;
2123
(2)若仅仅含有数字5,则选法是C1 3C4,可以组成四位数C3C4A3=18×6=108个;
113
(3)若既含数字0,又含数字5,选法是C3C4,排法是若0在个位,有A3=6种,11
若5在个位,有2×A22=4种,故可以组成四位数C3C4(6+4)=120个. 根据加法原理,共有72+108+120=300个. 答案 B
4.2013年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有()A.1 440种C.1 282种
B.1 360种D.1 128种
解析 采取对丙和甲进行捆绑的方法:
如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A2=1 440种,124如果“乙在正月初一值班”,则安排方案有:C11·A4·A2·A4=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.
则不同的安排方案共有1 440-192-120=1 128(种). 答案 D
5.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有().
A.16种B.36种C.42种D.60种
解析 若3个不同的项目投资到4个城市中的3个,每个城市一项,共A34种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共
2322C23A4种方法,由分类计数原理知共A4+C3A4=60种方法.
答案 D
6.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有().
A.30种B.35种C.42种D.48种
解析 法一 可分两种互斥情况:A类选1门,B类选2门或A类选2门,B类
221选1门,共有C13C4+C3C4=18+12=30(种)选法.
3法二 总共有C37=35(种)选法,减去只选A类的C3=1(种),再减去只选B类的C34=4(种),共有30种选法. 答案 A
7.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是(). A.24B.48C.72D.96
222223解析 A55-2A2A3A2-A2A2A3=48.答案 B
二、填空题
8.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)
23解析①只有1名老队员的排法有C12·C3·A3=36种. 112②有2名老队员的排法有C22·C3·C2·A2=12种;
所以共48种. 答案 48
9.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案种数是________.
解析 将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学
3212
生有C2其中甲同学分配到A班共有C2因此满足条4A3种分配方案,3A2+C3A2种方案.32212件的不同方案共有C24A3-C3A2-C3A2=24(种).
答案 24
10.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种.
解析分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法.
221
直接法:C15C4+C5C4=70.33
间接法:C39-C5-C4=70.答案70
11.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答). 解析甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数
22C15C4C2313
是C3A3=18,而总的分配方法数是把五人分为三组再进行分配,方法数是23
A2
=90,故不同的住宿安排共有90-18=72种. 答案 72
12.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字). 解析 先从除甲、乙外的5辆车任选2辆有C25种选法,连同甲、乙共4辆车,排列在一起,选从4个位置中选两个位置安排甲、乙,甲在乙前共有C24种,最后,222安排其他两辆车共有A22种方法,∴不同的调度方法为C5·C4·A2=120种.
答案 120
三、解答题
13.有六名同学按下列方法和要求分组,各有不同的分组方法多少种?(1)分成三个组,各组人数分别为1、2、3;
(2)分成三个组去参加三项不同的试验,各组人数分别为1、2、3;(3)分成三个组,各组人数分别为2、2、2;
(4)分成三个组去参加三项不同的试验,各组人数分别为2、2、2;(5)分成四个组,各组人数分别为1,1,2,2;
(6)分成四个组去参加四项不同的活动,各组人数分别为1、1、2、2.23
解析(1)即C16C5C3=60.233
(2)即C16C5C3A3=60×6=360.22C26C4C2
(3)即315.A322
(4)即C26C4C2=90.12C1C26C54C2
(5)即2·2=45.A2A2122
(6)C16C5C4C2=180.14.要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?
(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男 生甲、女生乙至少有一个人入选.
解析(1)C512-C7=771; 1423(2)C57+C5C7+C5C7=546; 3(3)C22C10=120; 23(4)C512-C2C10=672; 5(5)C512-C10=540.15.在m(m≥2)个不同数的排列p1p2„pm中,若1≤i<j≤m时pi>pj(即前面某数大于后面某数),则称pi与pj构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n-1)„321的逆序数为an.如排列21的逆序数a1=1,排列321的逆序数a2=3,排列4 321的逆序数a3=6.(1)求a4、a5,并写出an的表达式;(2)令bn=
anan+1
+,证明2n<b1+b2+„+bn<2n+3,n=1,2,„.an+1an
nn+12
解析(1)由已知条件a4=C25=10,a5=C6=15,则an=Cn+1=
(2)证明 bn=
1anan+1nn+21
2+2nn+2an+1ann+2n
∴b1+b2+„+bn
111111111
-+- =2n+21-+-+-+„+
32435n-1n+1nn+2113
-,=2n+2-
2n+1n+2∴2n<b1+b2+„+bn<2n+3.16.已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.
(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?
(2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法? 解析(1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回的逐个抽取测试. 第2次测到第一件次品有4种抽法; 第8次测到最后一件次品有3种抽法;
第3至第7次抽取测到最后两件次品共有A2剩余4次抽到的是正品,共5种抽法;
24有A24A5A6=86 400种抽法.
(2)检测4次可测出4件次品,不同的测试方法有A44种,1检测5次可测出4件次品,不同的测试方法有4A34A6种;
26检测6次测出4件次品或6件正品,则不同的测试方法共有4A35A6+A6种.
由分类计数原理,满足条件的不同的测试方法的种数为
31326A44+4A4A6+4A5A6+A6=8 520.
第三篇:排列与组合教案
课 题: 数学广角
——简单的排列和组合
鹤鸣山小学:佘莎
教学内容:九年义务教育课程标准实验教科书 数学二年级上册p99例1 教学目标:
1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数,初步培养有序地全面地思考问题的能力。
2.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣,使学生在数学活动中养成与人合作的良好习惯。
教学重点:经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学准备:课件、数字卡片等 教学过程:
一、创设情境,引发探究
1、初步感知排列
1)师:看喜羊羊来欢迎我们了。
喜羊羊:大家好,在你们面前的是一把密码锁,密码是由数字1和2这两个数字摆成的两位数。快来试试吧!
2)学生独立摆卡片,并记下数。
师:请先独自摆摆,边摆边记,看谁摆最完整? 3)反馈交流,说一说你是怎样摆的?
板书:12
21 4)试着输入密码?
二、动手操作、探究新知
1、合作探究排列 1)进入数字乐园。
喜洋洋说:“欢迎来到数字乐园,我们一起来玩一个数字游戏吧!你能用1、2、3三个数字摆出几个两位数呢?
生猜想,有两个,4个,6个等等。
师:让我们来动手摆一摆就知道了。老师给小朋友们准备了1、2、3三张数字卡片,还有一张记录卡。同桌合作,一人摆数字卡片,一人把摆好的数记录下来,先商量一下谁摆数字卡片,谁记数,比比哪桌合作得又好又快。2)反馈交流。
①请几组学生把自己记录下的数字写在黑板上。②交流你觉得谁摆得更好。为什么? 想一想:怎样摆才不会遗漏和重复?
师:为什么有的摆的数多,而有的却摆的少呢?有什么好办法能保证既不漏数、也不重复呢?请每个小组进行讨论,看看有什么好办法?小组交流,集体反馈。
③再按你们的方法,边摆,找一个人把他记下来!
学生小结方法:
1、固定十位。
2、固定个位。
3、交换位置。
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律和一定的方法进行。这就是我们今天所要学习的排列与组合。巩固练习。
师:喜洋洋想请我们去他家里作客。可是它还想考考大家。
1、我家的门牌号码是由6、7、8这三个数字组成的两位数,请你猜一猜可能是多少?
2、是这6个数中最大的一个两位数。
学生先排列出6个两位数,再找出其中最大的两位数。2.感知组合
师:喜洋洋请小朋友们吃水果。苹果、香蕉、梨子,只吃其中的两种水果有几种吃法。生:回答。
说出三种这后,还有孩子说有别的吃法,当他列举出来之后,再让学生观察。学生发现最后一种和前面其中一种是同样的吃法。从而得出只有三种吃法。师质疑:三张卡面取两张摆两位数能摆6个,而三种水果吃其中两种确只有3种吃法?
请两个学生上黑板,一人摆卡片,一人取水果。然后交换位置。学生发现卡片交换位置得到两个数,而水果交换位置之后得到的还是原来的两种水果只能算一种吃法。
师小结:摆数与顺序有关,取水果与顺序无关。摆数可以交换位置,而取水果交换位置没用。
三、应用拓展,深化探究 来到游艺乐园,搭配衣服。
1、出示:四件衣服有几种不同的穿法呢?在书上连一连,画一画。(学生操作)
学生说课件演示。
2、出示:如果三个人握手,每两个人握一次,三人一共要握多少次呢? 2)小组合作演示,并记录结果。3)小组汇报结果。
四、总结延伸,畅谈感受
师:生活中哪里有排列与组合。
师总结:只要我们有心,你会发现生活中处处有数学。愿孩子们做一个生活的有心人,去发现身边的数学。
2012-11-10
第四篇:简单的排列与组合教案
《排列与组合》教学设计
教学目标: 知识与技能:
通过观察、猜测、实验等活动,找出简单事物的排列数与组合数。过程与方法:
1.通过学生间的自主学习、相互讨论交流,增强学生归纳知识,获取知识的能力,培养学生初步的观察、分析、推理能力以及有顺序地全面思考问题的意识。
2.通过多媒体等辅助手段,演示排列与组合的过程,化抽象为直观,增强学习的效果。
情感态度与价值观:
引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。培养学生的合作意识和人际交往能力。
教学重点:经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。准备:课件,数字卡片 教学过程:
一、创设数学情境,提出数学问题
师:上课之前,咱们来玩个猜年龄的游戏。好吗?让我先来猜猜你们的年龄吧。你们能猜出老师的年龄吗?(学生任意猜)
师:这样吧。老师给你们一点提示:我的年龄是由3、6两张数字卡片摆成的两位数。
生:
36、63。
师:还有其他的可能吗?用这两个数字能摆出几个不同的两位数?(板书:2个)师:老师的年龄到底是多少岁呢?为什么? 生:是36岁,因为„„„„„!
二、组织有效教学,探究数学本质
(一)感知排列。
1、师:刚才我们用数字卡片3、6摆出了两个不同的两位数,那如果用1、2、3这三张数字卡片能摆出几个不同的两位数呢?(课件出示)
师:谁愿意来猜一猜? 生猜:3个 4个 6个
师:用数字1、2、3究竟可以摆出几个两位数呢?让我们一起来验证。课件提出要求:
请拿出数字1、2、3的卡片,同桌合作,一人摆数字卡片,一人把摆出的数写在练习本上。
学生操作摆卡片。
师:谁愿意来说一说你们组是怎样摆的? 学生汇报:《找写的少的,重复的,有代表性的》 预设:生:13 32 31 生:32 31 23 13 21 生:13 31 23 32 12 21 23(写在黑板的一边)
2、合作探究摆的方法:
师:我们来看看这几位同学的记录,你发现什么问题了?
生:前两个同学都有数字遗漏了,后面一个同学两个数字重复了。课件提出要求:
师:有什么好办法能保证既不漏数、也不重复呢?请大家在小组内进行讨论,看看有什么好办法?再按你们的方法来摆,找一个人把他记下来!
(学生带着问题进行第二次操作)
师:谁来说说你们组是怎样想的? 预设:
生:每次拿其中的两个数字,然后用调换的方法得出6个新数:12和21、13和31、23和32; 方法一:交换位置 12、21、13、31、23、32 生:把1固定在十位上,这样就可以摆出2个不同的两位数,在把2„„一共摆出了6个不同的两位数。(边说边板书)
方法二:固定十位 12、13、21、23、31、32 师:我们还可以现将个位数字固定。
方法三:固定个位 21、31、12、32、13、23
(课件出示效果好还是板书会好些)师:你认为哪种办法好?好在哪里? 师:选择自己喜欢的一种方法,再摆一摆。
师:我们用1、2、3三个数字编成了6个不同的两位数,刚才都有谁猜对了? 小结:我们不管是用调换位置的方法还是固定十位或个位的方法,只要我们按顺序摆,就能做到不重复,不遗漏。有了这种有顺序的思考方法,就可以帮助我们解决很多生活中的实际问题。
(二)感知组合:
1.师:同学们,你们刚才的合作愉快吗?那互相握手祝贺一下好吗?
师:握手代表着友好,是一种有礼貌的行为,在生活中,我们经常用握手来表示互相祝贺。
师:我要出一道关于握手的数学问题,你们能解决吗? 课件出示:
每两人握一次手,三人一共握几次手? 师:想一想!猜猜看。预设: 生1:6次!生2:4次!
生:3次。
师:为什么猜6次?
生:因为三张数字卡片可以摆成6个两位数,三个人也是握6次手。实践活动: 师: 究竟几次呢?(提出要求:)
四人一组去合作,一个人当小组长。安排其它的三个人握手)。师:请一个组的同学上台演示,其他同学一起数数。
师:为了说着方便,我给这三名小朋友每人编个序号分别是1号,2号,3号
板书:
1号和2号 1号和3号 2号和3号
师:每个人都握到了吗?2号和3号呢? 生:他们已经握过了,换过来就重复了。师:也就是说三个人一共要握3次手。
三、致力核心问题,建立数学模型,课件出示:
师:为什么3个数字能写出6个两位数,而3个小朋友每两人握一次手,只握3次呢?
生:汇报
(引导:看来,两个人相互握手,只能算一次,和顺序无关。刚才排数,交换数的位置,就变成另一个数了,这和顺序有关。)
师:像摆数这样的问题我们可以称为排列问题,像握手这样的问题我们称为组合问题。就是我们这节课学习的“简单的排列与组合”(板书课题。)师:我们在处理这两种问题时,一定要做到有序的思考。
四、设计有效检测,解决实际问题
1、搭配衣服
师:其实我们的生活当中有很多地方用到了排列和组合,这不,小红要去看乒乓球赛,现在有两件上衣,一条裙子和一条裤子。但她不知道如何搭配,你能帮助她搭配出几套不同的穿法吗?你能用今天学习的知识设计一下吗?(指名答)
师:谁愿意起来告诉我们大家究竟有几种不同的穿法呢?(学生汇报)师:同学们用不同的方法都设计了四种不同的配色方案,是今天我们学习的哪种情况?(组合)
2、乒乓球比赛:
现在小红选中了你们为他搭配的一套服装,去看乒乓球比赛了。快看,他来到了乒乓球场地:场地中有三人参加乒乓球比赛,小红想:如果两个人打一场比赛,那三个人要打几场比赛呢? 你们能帮助小红吗?
五、深化经验成果,升华数学内涵
师:同学们,你有什么收获吗?
(学生谈收获)
师:原来生活有这么多数学问题,只要同学们细心观察,就能发现更多有趣的数学问题,掌握了这些知识,我们就可以把生活装点的更加美丽!
第五篇:计数原理教案
淮北市第十二中学2007~2008学
考
评
课
教
案
授课人:邹强
2008年5月 §10.1 分类计数原理与分步计数原理
授课人:邹强
教学目标:
知识目标:①理解分类加法计数原理与分步乘法计数原理;
②会利用两个原理分析和解决一些简单的应用问题;
能力目标:培养学生的归纳概括能力;
情感目标:①了解学习本章的意义,激发学生的兴趣
②引导学生形成 “自主学习”与“合作学习”等良好的学习方式..教学重点:
分类计数原理与分步计数原理的应用理解 教学难点:
分类计数原理与分步计数原理的理解 教学方法:
问题式、螺旋上升的教学方法 教学过程:
一.课题引入
中央电视台体育频道每周四次对“NBA”进行现场直播,并对参与节目交流的观众进行抽取幸运观众活动,奖品是“NBA”明星真品球衣或明星战靴,此节目深受广大篮球迷的喜欢。已知在某次直播时,共收到手机号码2万个。其中联通号码有0.8万个,移动号码有1万个,小灵通号码有0.2万个。现抽取:
(1)一名幸运观众有多少种不同类型的抽法?
(2)从联通号码、移动号码和小灵通号码中各抽取一名幸运观众共有多少种不同的抽法? 象这种计算所有情况的问题可称为计数问题,用来解决这种问题的一般方法或计算规律叫做计数原理,今天我们就来探求它们。
二.新课讲授
问题1.1:“两会”决定,下一次会议一定要有农民工代表参加.假如现在南方有农民工代表30人,北方有农民工代表20人,现在选举一名农民工代表共有多少种选法? 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有 n 种不同的方法.那么完成这件事共有 N = m + n 种不同的方法.问题1.2:在填写高考志愿表时,一名高中毕业生了解到,清华大学,复旦大学,南京大学三所大学各有一些自己感兴趣的强项专业,具体情况如下:
清华大学
复旦大学
南京大学
数学
生物学
新闻学
化学
会计学
金融学
医学
信息技术学
人力资源学
物理学
法学
工程学
那么,这名同学从这些强项专业中任选一项共有多少种? 探究一:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有 m3种不同的方法,那么完成这件事共有多少种不同的方法?
探究二:如果完成一件事情有 n 类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,在第n类方案中有 mn 种不同的方法,那么完成这件事共有多少种不同的方法?
分类计数原理: 一般归纳:
完成一件事情,有n类办法,在第1类办法中有m1 种不同的方法,在第2类办法中有 m2 种不同的方法……在第n类办法中有mn 种不同的方法.那么完成这件事共有Nm1m2mn 种不同的方法.问题2.1:国务院总理温家宝在十届全国人大三次会议上作政府工作报告时表示,补助贫困学生生活费。假设补助后西部某省的贫困生午饭可买两盘菜(蔬菜类 + 肉类),学校食堂的菜单如下,蔬菜类
肉类
萝卜
猪肉
白菜
牛肉
花菜 请问有多少种不同的选法? 完成一件事需要两个不同步骤,在第1步中有 不同的方法.那么完成这件事共有Nm 种不同的方法,在第2步中有 n 种
mn种不同的方法.问题2.2:在填写高考志愿表时,一名高中毕业生了解到,清华大学,复旦大学,南京大学三所大学各有一些自己感兴趣的强项专业,具体情况如下:
清华大学
复旦大学
南京大学
数学
生物学
新闻学
化学
会计学
金融学
医学
信息技术学
人力资源学
物理学
法学
工程学
那么,这名同学从清华大学,复旦大学,南京大学这些强项专业中各选一项共有多少种?
探究一:如果完成一件事需要三个步骤,做第1步有 m
1种不同的方法,做第2步有 m种不同的方法,做第3步有
m种不同的方法,那么完成这件事共有多少种不同的方 法?
探究二:如果完成一件事需要n 个步骤,做第1步有m1种不同的方法,做第2步有m2 种不同的方法,做第3步有m3种不同的方法,……做第n 步有mn种不同的方法,那么完成这件事共有多少种不同的方法?
分步计数原理: 一般归纳:
完成一件事情,需要分成n个步骤,做第1步有 m1 种不同的方法,做第2步有 m2种不同的方法……做第n步有mn 种不同的方法.那么完成这件事共有Nm1m2mn种不同的方法.理解分类计数原理与分步计数原理异同点
①相同点:都是完成一件事的不同方法种数的问题
②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.分步时,每一步都可以看成分类;分类时,每一类也可能要有好几步才能完成。例题选讲
问题3.1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?
②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法? 学生练习: 填空:
(1)一件工作可以用2种方法完成,有5人会用第1种方法完成,另有4人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是
.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同的路线有
条..(3)从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有
种.(4).甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有
种不同的推选方法.总结归纳: 1.分类加法计数原理和分步乘法计数原理是排列组合问题的最基本的原理,是推导排列数、组合数公式的理论依据,也是求解排列、组合问题的基本思想.2.理解分类加法计数原理与分步乘法计数原理,并加区别
分类加法计数原理针对的是“分类”问题,其中各种方法相对独立,用其中任何一种方法都可 4 以完成这件事;而分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成后才算做完这件事.3.运用分类加法计数原理与分步乘法计数原理的注意点:
分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属于某一类,并且分别属于不同的两类的方法都是不同的方法,即“不重不漏”.分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成 作业布置:
.1.课本第97页的习题10.1A第1,2,3题.
2.编一道运用分类加法计数原理和分步乘法计数原理解答的应用题,并加以解答. 课外思考:
1.某学生去书店,发现3本好书,决定至少买其中1本,则该生的购书方案有_____种。课后反思: