古典概型几何概型选择题 期中期末复习

时间:2019-05-12 12:31:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《古典概型几何概型选择题 期中期末复习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《古典概型几何概型选择题 期中期末复习》。

第一篇:古典概型几何概型选择题 期中期末复习

2017年03月24日***的高中数学组卷

一.选择题(共30小题)

1.从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A. B. C. D.

2.现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为()

A. B. C. D.

3.住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图.为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为()A. B. C.

D.

4.已知a∈{0,1,2},b∈{﹣1,1,3,5},则函数f(x)=ax2﹣2bx在区间(1,+∞)上为增函数的概率是()A. B. C. D.

5.从甲、乙、丙、丁四名同学中选2人参加普法知识竞赛,则甲被选中的概率为()

A. B. C. D.

6.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是()A. B. C. D.

7.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,若从这6名教师中任选2名,选出的2名教师来自同一学校的概率为()A. B. C. D.

8.在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介

第1页(共21页)

绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为()A.1 B. C. D.

9.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是()A. B. C. D.

10.从4,5,6,7,8这5个数中任取两个数,则所取两个数之积能被3整除概率是()A. B. C. D.

11.从1,2,3,4,5这五个数中,任取两个不同的数,则这两个数之和为3或6的概率为()A. B. C.

D.

12.若a,b∈{﹣1,1,2,3},则直线ax+by=0与圆x2+(y+2)2=2有交点的概率为()A. B. C. D.

13.袋中有大小,形状相同的红球,黑球各一个,现有放回地随机摸取3次,每次摸出一个球.若摸到红球得2分,摸到黑球得1分,则3次摸球所得总分为5分的概率是()

A. B. C. D.

14.甲、乙等4人在微信群中每人抢到一个红包,金额为三个1元,一个5元,则甲、乙的红包金额不相等的概率为()A. B. C. D.

15.从正五边形的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是()A. B. C. D.

16.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为中女生人数是()

第2页(共21页),则其

A.2人 B.3人 C.2人或3人 D.4人

17.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()

A. B. C. D.

18.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()

A. B. C. D.

19.从2名男生和2名女生中,任意选择两人在星期

六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A. B. C. D.

20.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A. B. C.

D.

21.从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则关于x的方程x2+2ax+b2=0有两个不相等的实根的概率是()A. B. C. D.

22.从集合{2,3,4,}中取两个不同的数a,b,则logab>0的概率为()A. B. C. D.

23.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A. B. C. D.

24.在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A. B. C.

D.

第3页(共21页)

25.在区间[﹣1,3]内任取一个实数x满足log2(x﹣1)>0的概率是()A. B. C. D.

26.ABCD﹣A1B1C1D1是棱长为2的正方体,AC1、BD1相交于O,在正方体内(含正方体表面)随机取一点M,OM≤1的概率p=()A. B. C.

D.

27.向面积为S的平行四边形ABCD中任投一点M,则△MCD的面积小于的概率为()

A. B. C. D.

28.若在区间[0,e]内随机取一个数x,则代表数x的点到区间两端点距离均大于的概率为()A. B. C. D.

29.在区间[﹣2,3]上随机取一个数x,则x∈[﹣1,1]的概率是()A. B. C. D.

30.在长为3m的线段AB上任取一点P,则点P与线段AB两端点的距离都大于1m的概率等于()A. B. C. D.

第4页(共21页)

2017年03月24日***的高中数学组卷

参考答案与试题解析

一.选择题(共30小题)

1.(2017•淮南一模)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A. B. C. D.

【分析】由题意知本题是一个古典概型,本实验的总事件是从五个数中随机抽取2个不同的数有C52种不同的结果,满足条件的事件是这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,代入公式得到结果. 【解答】解:由题意知本题是一个古典概型,∵从五个数中随机抽取2个不同的数有C52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P=故选B.

【点评】数字问题是概率中的一大类问题,条件变换多样,把概率问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.

2.(2017•山西一模)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为()A. B. C. D.

【分析】列举基本事件,利用古典概型概率公式求解即可.

【解答】解:设两道题分别为A,B题,所以抽取情况共有:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,其中第1个,第2个分别是两个女教师抽取的题目,第5页(共21页)

==,第3个表示男教师抽取的题目,一共有8种;其中满足恰有一男一女抽到同一题目的事件有:ABA,ABB,BAA,BAB,共4种; 故所求事件的概率为. 故选:C.

【点评】列举法是确定基本事件的常用方法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.

3.(2017•武侯区校级模拟)住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图.为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为()A. B. C.

D.

【分析】熊大,熊二至少一个被选为组长的对立事件是熊大,熊二都有没有被选为组长,由此利用对立事件概率计算公式能求出熊大,熊二至少一个被选为组长的概率.

【解答】解:从住在狗熊岭的7只动物中选出2只动物作为组长,基本事件总数n==21,熊大,熊二至少一个被选为组长的对立事件是熊大,熊二都有没有被选为组长,∴熊大,熊二至少一个被选为组长的情况为∴熊大,熊二至少一个被选为组长的概率p=故选:C.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

4.(2017•自贡模拟)已知a∈{0,1,2},b∈{﹣1,1,3,5},则函数f(x)=ax2﹣2bx在区间(1,+∞)上为增函数的概率是()A. B. C. D.

=10,=

第6页(共21页)

【分析】先求出基本事件总数n=3×4=12,再求出函数f(x)=ax2﹣2bx在区间(1,+∞)上为增函数满足条件的基本事件个数,由此能求出函数f(x)=ax2﹣2bx在区间(1,+∞)上为增函数的概率.

【解答】解:∵a∈{0,1,2},b∈{﹣1,1,3,5},∴基本事件总数n=3×4=12,函数f(x)=ax2﹣2bx在区间(1,+∞)上为增函数,①当a=0时,f(x)=﹣2bx,符合条件的只有:(0,﹣1),即a=0,b=﹣1; ②当a≠0时,需要满足(2,1),共4种,∴函数f(x)=ax2﹣2bx在区间(1,+∞)上为增函数的概率是p=故选:A.

【点评】本题考查概率的求不地,是基础题,解题时要认真审题,注意列举法的合理运用.

5.(2017•红桥区模拟)从甲、乙、丙、丁四名同学中选2人参加普法知识竞赛,则甲被选中的概率为()A. B. C. D. 【分析】先求出基本事件总数n=

=6,再求出甲被选中包含听基本事件个数m=

.,符合条件的有:(1,﹣1),(1,1),(2,﹣1),=3,由此能求出甲被选中的概率.

【解答】解:从甲、乙、丙、丁四名同学中选2人参加普法知识竞赛,基本事件总数n==6,=3,甲被选中包含听基本事件个数m=∴甲被选中的概率为p=故选:D.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

第7页(共21页)

6.(2017•沈阳一模)将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是()A. B. C. D. 【分析】先求出基本事件总数n=,再利用列举法求出“A与B相邻且A与C之间恰好有1名同学”包含的基本事件个数,由此能求出“A与B相邻且A与C之间恰好有1名同学”的概率.

【解答】解:∵将A,B,C,D这4名同学从左至右随机地排成一排,基本事件总数n==4×3×2×1=24,“A与B相邻且A与C之间恰好有1名同学”包含的基本事件有: ABCD,CBAD,CDAB,DABC,DCBA,BADC,共6个,∴“A与B相邻且A与C之间恰好有1名同学”的概率p=故选:B.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

7.(2017•梅州一模)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,若从这6名教师中任选2名,选出的2名教师来自同一学校的概率为()

A. B. C. D. 【分析】先求出基本事件总数n=含的基本事件个数m=率.

【解答】解:甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,从这6名教师中任选2名,基本事件总数n=,=6,再求出选出的2名教师来自同一学校包

=6,由此能求出选出的2名教师来自同一学校的概选出的2名教师来自同一学校包含的基本事件个数m=

第8页(共21页)

选出的2名教师来自同一学校的概率为p==故选:D.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

8.(2017•北京模拟)在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为()A.1 B. C. D.

=3,再求出甲同学被选中包含听基本事件个【分析】先求出基本事件总数n=数m==2,由此能求出甲同学被选中的概率.

【解答】解:在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,基本事件总数n==3,=2,甲同学被选中包含听基本事件个数m=∴甲同学被选中的概率p==. 故选:D.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

9.(2017•南平一模)甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是()A. B. C. D.

【分析】甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,先列举出所有不同的送法,再从中找到甲、乙将贺年卡送给同一人的送法.由此能求出甲、乙将贺年卡送给同一人的概率.

【解答】解:甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,第9页(共21页)

不同的送法有四种:甲送丙,乙送丙;甲送丙,乙送丁;甲送丁,乙送丙;甲送丁,乙送丁.

甲、乙将贺年卡送给同一人的送法有两种:甲送丙,乙送丙;甲送丁,乙 送丁. ∴甲、乙将贺年卡送给同一人的概率p=故选A.

【点评】本题考查列举法计算基本事件发生的概率,解题时要熟练掌握列举方法,列举时要注意既不能重复,又不能遗漏.

10.(2017•清新区校级一模)从4,5,6,7,8这5个数中任取两个数,则所取两个数之积能被3整除概率是()A. B. C. D.,再求出所取两个数之积能被3整除包含

【分析】先求出基本事件总数n=的基本事件个数m=

=4,由此能求出所取两个数之积能被3整除概率.

【解答】解:从4,5,6,7,8这5个数中任取两个数,基本事件总数n=,=4,所取两个数之积能被3整除包含听基本事件个数m=∴所取两个数之积能被3整除概率p=故选:A.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

11.(2017•河西区模拟)从1,2,3,4,5这五个数中,任取两个不同的数,则这两个数之和为3或6的概率为()A. B. C.

D.

【分析】列举可得总的基本事件共10个,符合题意得有3个,由概率公式可得. 【解答】解:从1,2,3,4,5这五个数中,任取两个不同的数由如下10中情形:

第10页(共21页)

(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中这两个数之和为3或6的共有(1,2),(1,5),(2,4),3中情形,故所求概率:P=故选:A

【点评】本题考查列举法计算基本事件属和事件发生的概率,属基础题.

12.(2017•九江二模)若a,b∈{﹣1,1,2,3},则直线ax+by=0与圆x2+(y+2)2

=2有交点的概率为()

C. D.

A. B.【分析】先求了基本事件总数n=4×4=16,直线ax+by=0与圆x2+(y+2)2=2有交点,即圆心(0,﹣2)到直线ax+by=0的距离d=

≤,即a2≥b2,由此列举出直线ax+by=0与圆x2+(y+2)2=2有交点包含的基本事件个数,由此能求出直线ax+by=0与圆x2+(y+2)2=2有交点的概率. 【解答】解:∵a,b∈{﹣1,1,2,3},∴基本事件总数n=4×4=16,∵直线ax+by=0与圆x2+(y+2)2=2有交点,∴圆心(0,﹣2)到直线ax+by=0的距离d=

≤,即a2≥b2,∴线ax+by=0与圆x2+(y+2)2=2有交点包含的基本事件(a,b)有:

(﹣1,﹣1),(﹣1,1),(1,1),(1,﹣1),(2,﹣1),(2,1),(2,2),(3,﹣1),(3,1),(3,2),(3,3),共有11个,∴直线ax+by=0与圆x2+(y+2)2=2有交点的概率为p=故选:B.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

第11页(共21页)

13.(2017•西陵区校级模拟)袋中有大小,形状相同的红球,黑球各一个,现有放回地随机摸取3次,每次摸出一个球.若摸到红球得2分,摸到黑球得1分,则3次摸球所得总分为5分的概率是()A. B. C. D.

【分析】基本事件总数n=23=8,3次摸球所得总分为5分包含的基本事件个数m==3,由此能求出3次摸球所得总分为5分的概率.

【解答】解:袋中有大小,形状相同的红球,黑球各一个,现有放回地随机摸取3次,每次摸出一个球. 基本事件总数n=23=8,摸到红球得2分,摸到黑球得1分,3次摸球所得总分为5分包含的基本事件个数m=∴3次摸球所得总分为5分的概率p=. 故选:B.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

14.(2017•唐山一模)甲、乙等4人在微信群中每人抢到一个红包,金额为三个1元,一个5元,则甲、乙的红包金额不相等的概率为()A. B. C. D. 【分析】基本事件总数n=

=6,利用列举法求出甲、乙的红包金额不相等包含

=3,的基本事件个数,由此能求出甲、乙的红包金额不相等的概率. 【解答】解:甲、乙等4人在微信群中每人抢到一个红包,金额为三个1元,一个5元,基本事件总数n==6,甲、乙的红包金额不相等包含的基本事件有: 甲、乙的红包金额分别为(1,5),(5,1),∴甲、乙的红包金额不相等的概率为p==.

第12页(共21页)

故选:C.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

15.(2017•马鞍山一模)从正五边形的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是()A. B. C. D.

【分析】从正六边形的6个顶点中随机选择3个顶点,选择方法有

种,且每种情况出现的可能性相同,故为古典概型,由列举法计算出它们作为顶点的三角形是直角三角形的方法种数,求比值即可

【解答】解:从正五边形的5个顶点中随机选择3个顶点,基本事件总数为n=

=10,它们作为顶点的三角形是锐角三角形的方法种数为5,∴以它们作为顶点的三角形是锐角三角形的概率是p=故选:C.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

16.(2017•大庆二模)男女生共8人,从中任选3人,出现2个男生,1个女生的概率为,则其中女生人数是()

A.2人 B.3人 C.2人或3人 D.4人

【分析】设女生人数是x人,则男生(8﹣x)人,利用从中任选3人,出现2个男生,1个女生的概率为,可得

=,即可得出结论.

【解答】解:设女生人数是x人,则男生(8﹣x)人,∵从中任选3人,出现2个男生,1个女生的概率为,第13页(共21页)

∴=,∴x=2或3,故选C.

【点评】本题考查古典概型,考查概率的计算,考查学生的计算能力,属于中档题.

17.(2016•新课标Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A. B. C. D.

【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论. 【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有

=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=. 故选:C.

【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.

18.(2016•天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A. B. C. D.

【分析】利用互斥事件的概率加法公式即可得出.

【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件. ∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=. 故选:A.

第14页(共21页)

【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.

19.(2016•宿州一模)从2名男生和2名女生中,任意选择两人在星期

六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A. B. C. D.

【分析】试验包含的所有事件是从4个人安排两人,共12种,其中事件“星期六安排一名男生、星期日安排一名女生”包含4种,再由概率公式得到结果. 【解答】解:由题意知本题是一个古典概型,试验包含的所有事件是从4个人安排两人,总共有C42A22=12种. 其中期六安排一名男生、星期日安排一名女生,总共有C21C21=4种,∴其中至少有1名女生的概率P=. 故选:A

【点评】古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体.

20.(2016•马鞍山一模)某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A. B. C.

D.

【分析】试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,利用列举法求出满足条件的事件包含的基本事件个数,根据古典概型的概率公式得到以(x,y)为坐标的点落在直线2x﹣y=1上的概率. 【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,满足条件的事件是(x,y)为坐标的点落在直线2x﹣y=1上,当x=1,y=1,x=2,y=3;x=3,y=5,共有3种结果,第15页(共21页)

∴根据古典概型的概率公式得到以(x,y)为坐标的点落在直线2x﹣y=1上的概率: P=.

故选:A.

【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意古典概率计算公式的合理运用.

21.(2016•宿州一模)从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则关于x的方程x2+2ax+b2=0有两个不相等的实根的概率是()

A. B. C. D.

【分析】根据题意,由分步计数原理可得a、b的情况数目,进而分析可得若方程x2+2ax+b2=0有实根,则△=(2a)2﹣4b2≥0,即a2≥b2,列举可得a2≥b2的情况数目,由等可能事件的概率公式,计算可得答案.

【解答】解:根据题意,a是从集合{1,2,3,4,5}中随机抽取的一个数,a有5种情况,b是从集合{1,2,3}中随机抽取的一个数,b有3种情况,则方程x2+2ax+b2=0有3×5=15种情况,若方程x2+2ax+b2=0有实根,则△=(2a)2﹣4b2>0,即a>b,此时有,,,,共9种情况;

则方程x2+2ax+b2=0有实根的概率P=故选C

【点评】本题考查等可能事件的概率计算,解题的关键是根据一元二次方程有根的充要条件分析出方程x2+2ax+b2=0有实根的情况数目

22.(2016•天津校级模拟)从集合{2,3,4,}中取两个不同的数a,b,则logab>0的概率为()

第16页(共21页)

=

A. B. C. D.

【分析】列举出从集合{2,3,4,}中取两个不同的数a,b的所有基本事件总数,及logab>0的事件个数,代入古典概型概率计算公式可得答案. 【解答】解:从集合{2,3,4,}中取两个不同的数a,b,共有=10种不同情况,+

=1+3=4种情况,其中满足logab>0有故logab>0的概率P=故选:C

=,【点评】本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.

23.(2016•黄山一模)从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A. B. C. D.

【分析】首先列举出所有可能的基本事件,再找到满足取出的3个数可作为三角形的三边边长的基本事件,最后利用概率公式计算即可.

【解答】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A.

【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.

24.(2017•泰安一模)在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与

第17页(共21页)

圆x2+y2=1相交的概率为()A. B. C.

D.

【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求. 【解答】解:圆x2+y2=1的圆心为(0,0)圆心到直线y=k(x+3)的距离为

要使直线y=k(x+3)与圆x2+y2=1相交,则

<1,解得﹣<k<.

∴在区间[﹣1,1]上随机取一个数k,使y=k(x+3)与圆x2+y2=1相交的概率为=.

故选:C.

【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.

25.(2017•自贡模拟)在区间[﹣1,3]内任取一个实数x满足log2(x﹣1)>0的概率是()

A. B. C. D.

【分析】求出不等式的解集,根据(2,3]和[﹣1,3]的长度之比求出满足条件的概率即可.

【解答】解:由log2(x﹣1)>0,解得:x>2,故满足条件的概率是p=,故选:C.

【点评】本题考查了几何概型问题,考查对数函数的性质,是一道基础题.

26.(2017•江门一模)ABCD﹣A1B1C1D1是棱长为2的正方体,AC1、BD1相交于O,在正方体内(含正方体表面)随机取一点M,OM≤1的概率p=()

第18页(共21页)

A. B. C. D.

【分析】由题意可得概率为体积之比,分别求正方体的体积和球的体积可得. 【解答】解:由题意可知总的基本事件为正方体内的点,可用其体积23=8,满足OM≤1的基本事件为O为球心1为半径的球内部在正方体中的部分,其体积为V=π×13=π,故概率P=故选:A. =.

【点评】本题考查几何概型,涉及正方体和球的体积公式,属基础题.

27.(2017•江西一模)向面积为S的平行四边形ABCD中任投一点M,则△MCD的面积小于的概率为()A. B. C. D.

【分析】先求出△MCD的面积等于时,对应的位置,然后根据几何概型的概率公式求相应的面积,即可得到结论

【解答】解:设△MCD的高为ME,ME的反向延长线交AB于F,当“△MCD的面积等于”时,即ME,过M作GH∥AB,则满足△MCD的面积小于的点在▱CDGH中,由几何概型的个数得到△MCD的面积小于的概率为故选C. ;

【点评】本题主要考查几何概型的概率公式的计算,根据面积之间的关系是解决本题的关键.

28.(2017•宁德一模)若在区间[0,e]内随机取一个数x,则代表数x的点到区间两端点距离均大于的概率为()

第19页(共21页)

A. B. C. D.

【分析】根据几何概型计算公式,用区间[e,e]的长度除以区间[0,e]的长度,即可得到本题的概率.

【解答】解:解:∵区间[0,e]的长度为e﹣0=e,x的点到区间两端点距离均大于,长度为,∴在区间[0,e]内随机取一个数x,则代表数x的点到区间两端点距离均大于的概率为P= 故选:C

【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

29.(2017•和平区模拟)在区间[﹣2,3]上随机取一个数x,则x∈[﹣1,1]的概率是()

A. B. C. D.

【分析】本题利用几何概型求概率,再利用解得的区间长度与区间[﹣2,3]的长度求比值即得.

【解答】解:利用几何概型,其测度为线段的长度,∴﹣1≤x≤1的概率为: P(﹣1≤x≤1)=故选:B.

【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

30.(2017•清城区校级一模)在长为3m的线段AB上任取一点P,则点P与线段AB两端点的距离都大于1m的概率等于()

第20页(共21页)

=,A. B. C. D.

【分析】求得满足条件的线段的长度,利用线段的长度比求概率. 【解答】解:在线段AB上取两点C,D,使得AC=BD=1,则当P在线段CD上时,点P与线段两端点A、B的距离都大于1m,CD=3﹣2=1,∴所求概率P=故选:D.

【点评】本题考查了几何概型的概率计算,利用线段的长度比求概率是几何概型概率计算的常用方法. =.

第21页(共21页)

第二篇:《古典概型》教案设计

《古典概型》教学设计

一、内容和内容解析

本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,他的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位。主要内容有: 1.基本事件的概念及特点:(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。2.古典概型的特征:

(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。

3.古典概型的概率计算公式,p(A)=A包含的基本事件的个数/基本事件的总数,用列举法计算一些随机事件所含的基本事件的个数及事件发生的概率。随机事件概率的基本算法是通过大量重复试验用频率来估计,而其特殊的类型――古典概型的概率计算,可通过分析结果来计算。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的古典概型的实例与数学模型使学生概括、理解、深化古典概型的两个特征及概率计算公式。同时使学生初步能够把一些实际问题转化为古典概型,并能够合理利用统计、化归等数学思想方法有效解决有关的概率问题。

本节课的重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

二、目标和目标解析 <一>知识与技能

1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值 2.在具体情境中了解概率的意义 <二>教学思考: 让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.<三>解决问题: 借助问题背景及动手操作,让学生不断体验古典概型的特征,充分认识到它在运用古典概型概率计算公式中的重要性。在合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.<四>情感态度与价值观: 在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.三、教学重点

理解古典概型的概念及利用古典概型公式求解随机事件的概率。

四、教学难点

怎么分析一个事件是否为古典概型以及在概率公式中古典概型的基本事件个数和基本事件总数

五、教具准备

多媒体课件、大转盘

六、教学问题诊断分析

学生在初中阶段学习了概率初步,在高中阶段学了随机事件的概率,并亲自动手 操作了掷硬币、骰子(包括同时掷两个)的试验,由此归纳出古典概型的两个特征不是难点,关键的问题是学生在解决古典概型中有关概率计算时,往往会忽视古典概型的两个特征,错用古典概型概率计算公式,因此在教学中结合例子进行深入讨论,加深对基本事件(相对性)的理解,让学生真正体会到判断古典概型的重要性,其中可以利用试验、统计、列举等手段来帮助学生解决问题。七.教学条件支持

为了有效实现教学目标,可借助计算机进行辅助教学。通过模拟和分析每种方式中每个基本事件的等可能性,引导学生发现在某些情况下每个基本事件不是等可能的。

八、教学过程

(一)新课导入:

教师提问:在之前的学习中,我们已经简单的了解了概率论的基本性质。可是,概率论是怎么起源的?数学家研究概率论问题是来自赌博者的请求。四百多年前,为了破解一个赌桌上如何分配金币的疑团,数学家开始了对概率论相关问题的思索。问题1:这究竟是一场怎样的赌局? 问题2:赌局中遇到了哪些问题?

问题3:在这里又包含了哪些数学原理呢?

带着这些问题,共同走进第三章第二节—--古典概型。

教师引入:早在概率论产生之初,有着这样的一个故事,十七世纪的一天,梅尔和保罗相约赌博,他们每人拿出了6枚金币作为赌注,并约定谁先胜三局就可以得到所有的金币,可是比赛进行到梅尔胜两局保罗胜一局时,赌博被中断了。这个时候金币的分配成了难题,该怎么分配呢?每个人都有自己的想法,保罗认为,按照获胜的局数,梅尔胜了两局应该得到金币的三分之二,也就是8枚金币,而保罗则应该得到金币的三分之一,即4枚.可是梅尔自认为,我们约好了谁先胜三局谁就得到所有的金币,我已经胜了三局,有极大的的可能率先胜三局,因此金币应该全为梅尔所有。面对这么大的分歧,这 金币究竟怎么分配呢?此时他们请教当时法国著名的科学家帕斯卡和费尔马,两人为了这个数学问题开展了细致、深刻的研究。三年后,依据不同的方法给出了相同的答案,那就是梅尔得到9枚金币,保罗得到3枚金币。为什么会得到这样的结果呢?本节课我们就以费尔马的思想为例,看他是如何解决这个问题的。费尔马是这样考虑的,比赛在梅尔胜两局保罗胜一局的时候中断,如果我们让他们再赛一局的话,梅尔获胜,比赛终止,要是保罗获胜的话,比赛还得继续!也就是说,再进行一局不一定得到最终的结果。问题4:如果进行两局结果会怎么样呢? 教师总结:梅尔获胜或保罗获胜。在第一局是梅尔获胜的前提下,第二局有怎么样?梅尔获胜或保罗获胜两种情况。同样在第一局是保罗获胜的前提下,第二局呢?梅尔获胜或保罗获胜。

(二)评价概括,揭示新知问题

1.得出概念:数学家就是通过这样的数学模型归纳总结出了与它具有相同特点的数学模型,被成为古典概率模型,简称古典概型。

2.分析概念:那我们一起来总结一下,它究竟有哪些特点。

(1)在一次试验当中所有可能出现的基本事件只有有限个。(2)每个基本事件出现的可能性相等。3.回顾课堂:回到这场17世纪的比赛当中。教师提问:

问题5:应用我们学过的概率公式,所有可能出现的基本事件的概率之和等于必然事件发生的概率,因此,等于多少?

问题6:每个事件出现的概率相等,也就是说每个事件发生的概率都等于四分之一,我们来看这些基本事件,有哪些基本事件能让梅尔获胜呢?

问题7:再一次运用我们学过的概率公式,梅尔获胜的概率等于多少?

归纳总结:根据以前学习过的方法,梅尔获胜的概率等于梅尔获胜所包含的基本事件的个数3与基本事件总数4的比值,因此等于四分之三!数学家就是在这一计算方法的基础上,又总结出了在这一试验当中计算任一古典概型的通用公式。

4.得出公式:在一个古典概型当中,对于任一事件A而言,它所发生的概率,将等于A 所包含的基本事件的个数与基本事件总数的比值。

公式的运用:应用通用公式计算一下保罗获胜的概率是多少。

保罗获胜的概率等于保罗获胜所包含的基本事件的个数1与基本事件总数4的比值,因此等于四分之一,数学家们合理地分配了这12枚金币。梅尔得到金币的四分之三,9枚金币,保罗得到金币的四分之一,三枚金币。

随后,这一事件又被来到法国荷兰的科学家惠更斯获悉,他在这一游戏的基础上,写成了概率论最早的著作,而在这其后又被拉普拉斯定义了概率的古典定义。(三)动手实践,合作探究:

例子:学习了什么是古典概率极其概率公式之后,我们来将其应用到实际当中,看一个 现实生活中的小例子。

学生都见过有奖转盘的游戏,教师将转盘稍作改动,把1、2两个数字均匀地分布在圆盘上,游戏规则是这样的:将圆盘旋转两次,并将数字加和,为我们所要的结果。问题8:旋转两次,并将数字加和,能得到哪些结果呢?如果求的是数字之和为3的概率为多少?教师找一个同学来实践一下这个游戏,看看会得到哪些结果。(老师指向一名同学)来,这位同学,旋转„„(同学旋转一次)。

第一次的结果是„„1。第二次的结果依然是1,请回。注意指出:

(1)观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2)要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.问题

9、该同学旋转的结果是1和1,请大家根据刚刚这位同学旋转的结果的基础上,再想想还没有没可能出现哪些基本事件?

问题

10、应用这个通用公式,如果用字母B来表示数字之和为3这一事件,它的概率等于多少?

九、练习巩固,发展提高.学生练习

问题11:在石头剪刀布这个游戏当中,若两人猜拳,手势相同的概率有多大?两人猜拳,第一个人可能出什么?在第一个人出拳头的前提下,第二个人可能出的是什么?同样,第一个人出剪子和布的时候,第二个人也会出这三种手势与之相对应。因此,我们得到了几个基本事件?手势相同的概率等于手势相同包含的基本事件个数3与基本事件总数9之商,因此等于三分之一。

问题12: 同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

设计意图:这节课是在没有学习排列组合的基础上学习如何求概率,所以在教学中引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

十、教师总结

以上是本节课的主要说课内容,要求大家掌握什么是古典概型极其概率计算公式。概率论起源于十七世纪中叶,当时,在误差、人口统计、人寿保险等范畴中的应用,应运 而生了这样一门数学分支。最初,数学家研究概率论问题正式本节课我们所学习的这样 一场十七世纪的赌局问题。本节课我们用了费尔马的思想方法来解决这一问题,其实啊,帕斯卡也有他的功业,同学们不妨课后百度一下,看看他是如何解决这一问题的。下课!

设计意图:使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

第三篇:古典概型教案

3.2.1古典概型(第一课时)

周口市第一高级中学:李惠

教学目标:(1)理解古典概型及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.教学过程: 导入:故事引入 探究一 试验:

(1)掷一枚质地均匀的硬币的试验(2)掷一枚质地均匀的骰子的试验

上述两个试验的所有结果是什么? 一.基本事件

1.基本事件的定义:

随机试验中可能出现的每一个结果称为一个基本事件 2.基本事件的特点:

(1)任何两个基本事件是互斥的

(2)任何事件(除不可能事件)都可以表示成基本事件的和。例

1、从字母a,b,c,d中任意取出两个不同的字母的试验中,有几个基本事件?分别是什么?

探究二:你能从上面的两个试验和例题1发现它们的共同特点吗? 二.古典概型

(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。思考:判断下列试验是否为古典概型?为什么?(1).从所有整数中任取一个数

(2).向一个圆面内随机地投一个点,如果该点落在圆面内任意一点都是等可能的。(3).射击运动员向一靶心进行射击,这一试验的结果只有有限个,命中10环,命中9环,….命中1环和命中0环(即不命中)。

(4).有红心1,2,3和黑桃4,5共5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张.探究三

随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?出现偶数点的概率是多少? 三.古典概型概率公式 对于古典概型,事件A的概率为:P(A)=

A包含的基本事件个数m=

n基本事件的总数古典概型的解题步骤

1、判断是否为古典概型,如果是,准确求出基本事件总个数n;

2、求出事件A包含的基本事件个数m.3、P(A)=m/n 四.公式的应用(课本例2)例2:

变式:不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道答案,不定项选择题很难猜对,这是为什么?你知道答对问题的概率有多大呢?(115)

(课本例3)例3

思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

小结:1.基本事件

2.古典概型

3.古典概率公式:

思考:1.抛一枚质地均匀的硬币,出现正面的概率是1/2 2.抛掷两枚质地均匀的硬币,出现两正的概率是1/4 3.连续抛掷三枚质地均匀的硬币,出现三面朝正的概率是1/8 4.抛4枚硬币,都正面朝上的概率是1/16

15.抛100枚硬币,都正面朝上的概率是 1002

作业:课本130页练习第1,2题

第四篇:古典概型教案

一、教学目标:

1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;21世纪教育网版权所有

(2)掌握古典概型的概率计算公式:P(A)=

(3)掌握列举法、列表法、树状图方法解题

2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.www.xiexiebang.com3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:

1、正确理解掌握古典概型及其概率公式;

2、正确理解随机数的概念,并能应用计算机产生随机数.

教学设想:

1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.21教育名师原创作品

(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10.师生共同探讨:根据上述情况,你能发现它们有什么共同特点?

2、基本概念:

(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;

(2)古典概型的概率计算公式:P(A)=

议一议】下列试验是古典概型的是 ?

①.在适宜条件下,种下一粒种子,观察它是否发芽.②.某人射击5次,分别命中8环,8环,5环,10环,0环.③.从甲地到乙地共n条路线,选中最短路线的概率.④.将一粒豆子随机撒在一张桌子的桌面上,观察豆子落下的位置.古典概型的判断

1).审题,确定试验的基本事件.

(2).确认基本事件是否有限个且等可能

什么是基本事件

在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。(其他事件都可由基本事件的和来描述)

下面我们就常见的:

抛掷问题,抽样问题,射击问题.探讨计数的一些方法与技巧.抛掷两颗骰子的试验:

用(x,y)表示结果,其中x表示第一颗骰子出现的点数?

y表示第二颗骰子出现的点数.(1)写出试验一共有几个基本事件;

(2)“出现点数之和大于8”包含几个基本事件?

规律总结]:要写出所有的基本事件,常采用的方法有:列举法、列表法、树形图法 等,但不论采用哪种方法,都要按一定的顺序进行、正确分类,做到不重、不漏.

方法一:列举法(枚举法)

[解析】用(x,y)表示结果,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,则试验的所有结果为:

【结论】:(1)试验一共有36个基本事件;

(2)“出现点数之和大于8”包含10个基本事件.方法二 列表法

坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.

方法三 :树形图法

三种方法(模型)总结

1.列举法

列举法也称枚举法.对于一些情境比较简单,基本事件个数不是很多的概率问题,计算时只需一一列举即可得出随机事件所含的基本事件数.但列举时必须按一定顺序,做到不重不漏.

2.列表法

对于试验结果不是太多的情况,可以采用列表法.通常把对问题的思考分析归结为“有序实数对”,以便更直接地找出基本事件个数.列表法的优点是准确、全面、不易遗漏

3.树形图法

树形图法是进行列举的一种常用方法,适合较复杂问题中基本事件数的探究.

抽样问题

【例】? 一只口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.

(1)共有多少个基本事件?

(2)两个都是白球包含几个基本事件?

[解析]:(1)采用列举法:分别记白球为1,2,3号,黑球为4,5号,有以下10个基本事件.(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)

(2)“两个都是白球”包括(1,2),(1,3),(2,3)三种.

【例】 某人打靶,射击5枪,命中3枪.排列这5枪是否命中顺序,问:

(1)共有多少个基本事件?.(2)3枪连中包含几个基本事件?.?(3)恰好2枪连中包含几个基本事件?

[例3】 一个口袋内装有大小相等,编有不同号码的4个白球和2个红球,从中摸出3个球.问:(1)其中有1个红色球的概率是.?(2)其中至少有1个红球的概率是.课堂总结:

1.关于基本事件个数的确定:可借助列举法、列表法、树状图法(模型),注意有规律性地分类列举.

2.求事件概率的基本步骤.

(1)审题,确定试验的基本事件

(2)确认基本事件是否等可能,且是否有限个;若是,则为

古典概型,并求出基本事件的总个数.

(3)求P(A)

【注意】当所求事件较复杂时,可看成易求的几个互斥事件的和,先求各拆分的互斥事件的概率,再用概率加法公式求解

练习

1、学习指导例1(1)、活学活用;(第76页)

2、随堂即时演练第5题(第78页)

第五篇:古典概型教学反思

《古典概型》的教学反思 张彩霞

《古典概型》是高中数学必修3第三章概率的第二节内容,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。一. 设计意图

本节课的设计意图很明确,就是基本事件的确定,古典概型的判断以及规范学生的解题步骤。二.优点:

1.在导学案的设计上有意识的加强学生对试验是古典概型的判断,学生容易直接用古典概型的概率公式,往往忽略要先进行判断。

2.每道例题后紧跟问题,加强学生对古典概型的认识。

3.通过对古典概型概率公式的分析,解决具体概率问题应先考虑基本事件,进而判断是否是古典概型,再利用古典概型概率公式。

4.具体到一般这一数学思想的完美体现,不仅能加深学生对公式的理解、记忆,同时也能培养的解决问题的一种方法。

三.缺点:

1.学案设计内容有些多。

2.讲的比较细,以致内容没有完成。3.学生活动较少

在今后的教学中,要在学案设计,学生合作等方面加强学习,注意平时的培养与提高。

下载古典概型几何概型选择题 期中期末复习word格式文档
下载古典概型几何概型选择题 期中期末复习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《古典概型》教学设计

    《古典概型》教学设计 河南省开封市第二十五中学 高 静 (一)教学内容 本节课选自《普通高中课程标准实验教科书》人教A版必修3第三章第二节《古典概型》,教学安排是2课时,本......

    古典概型教学设计

    一、 教学背景分析 (一)本课时教学内容的功能和地位 本节课内容是普通高中课程标准实验教科书人教A版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概......

    古典概型教学反思

    古典概型的教学反思 通过在高一(3)班进行《古典概型》的公开教学后,对本堂课教学设计中的某些环节有了更深入的认识,下面结合自己在教学实践中的体验,对概念的形成与精致过程进行......

    古典概型课后反思-课后反思

    高中数学必修三 古典概型课后反思 一、 设计意图:根据古典概型在高考中的地位及考试要求,本节课的设计意图很明确,就是在降低难度的同时,规范学生的解题步骤。 二、 优点:,在导学......

    古典概型教学设计

    一、 教材分析本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的3.2.1节古典概型。它安排在随机事件之后,几何概型之前,学生还未学习排列组合的情况下教......

    《几何概型》上课教案

    课题:几何概型 授课教师:卓剑 教材:苏教版数学(必修3)第3章3.3节 [教学目标] 知识与技能 (1) 了解几何概型的基本概念、特点和含义,测度的含义; (2) 能运用概率计算公式解决一些简......

    3.3.1几何概型教案(范文)

    §3.3.1几何概型 (第一课时) (人教A版〃必修3) 教学目标 1、 知识与技能: (1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P(A)=构成事件A的区域长度(面积或体试验的全部结果所构......

    高中新课标数学教案(古典概型)

    高中新课标数学教案: 古典概型(第一课时) 学习目标:1.理解古典概型特点; 2.掌握古典概型的概率计算公式,会求简单的古典概型; 3.培养学生严谨的逻辑思维能力和概括能力. 学习重点:理解古......