第一篇:地铁降压变电系统构成和施工调试
地铁降压变电系统构成和施工调试
提要:本文对地铁降压变电系统的构成、各电压等级供电系统的特点和施工调试等进行了阐述,使大家对该系统的设计和现场调试有一个全面的了解和认识,便于工程施工、调试和安全运行。关位词:地铁;降压系统;结构;调试 1引言
地铁降压变电系统是地铁通信、信号、售票、电梯、人防、车站照明、和广告等低压用电设施的唯一供电系统,系统的设计、施工和调试关系到供电质量的好坏和地铁运行的安全可靠。
目前国内地铁降压系统采用从电压等级分为35 kV直接变400 V的越级供电方式和35 kV先变10 kV再变400 V分级供电方式,从供电网络构成分为大环网和小环网。本文将以上海地铁共和新路高架工程降压系统为例简单介绍一下35/10/0.4 kV分级供电方式环网降压系统的构成、保护配置特点、现场调试和问题的处理。
该降压系统主要由100 kV/35 kV主所、35 kV/10 kV中心降压变电站、10 kV/0.4 kV降压所构成。系统构成见图1.2分级供电环网供电方式构成的降压供电系统特点 2.1分级供电环网双回路供电,确保各供电系统的可靠性
由于牵引供电系统与降压供电系统分别组成相对独立的环网供电系统,一个系统故障不影响另一个系统的运行。每一降压所均为两路进线,10 kV进线电源来自于中心降压站或上一个降压所,10 kV出线通过环网电缆连接于下一个降压所进线,一二段母线间加设联络断路器,当某一进线失压时,自动投人,保证两段母线供电。2.2采用GIS或AIS组合电器、干式变压器等减少空间占用
该工程中35 kV系统采用GIS组合电器,10 kV系统采用AIS组合电器,400 V采用抽屉式单元低压柜,变压器均采用干式变,节省了空间,在上海寸土寸金的大都市,有效提高了土地的利用率。2.3采用先进的智能监控系统,便于运行、操作、实时监控和维护
各级保护采用先进的微机保护装置与监控系统经过网络连接构成变电所综合自动化系统。F650微机综合自动保护装置是GE公司继F350之后新开发的基于可编程控制器技术的配合变电站综合自动化,功能强大的微机保护装置。它可同时输入三相电流,三相电压,16路开关量信号输人,2对大容量控制输出接点直接用于断路器跳闸,8对普通控制输接点用于供电间隔设备间的闭锁。2.4 400 V低压系统特点
(1)自动化程度高:400 V进线及母联断路器采用德国施耐德公司快速断路器,内置电流电压保护模块,设有大电流脱扣,定时限过电流,反时限过流,失压等保护,可迅速切断故障电流,可实现开关量和模拟量的采集以及远传,母线失压时,母联断路器的自投,切除三类负荷。
(2)400 V低压柜内设备采用抽屉式单元,检修维护方便。(3)负荷分类多:400 V用电负荷主要为信号电源、通信电源、自动售票(AFC)一类负荷,车站照明、电梯、通风电源二类负荷以及冷水机组,采暖等三类负荷低压负荷构成(400 V降压系统见图3).施工调试
3.1 电气试验的标准和内容 3.1.1 标准和依据
(1)试验标准:采用GB50150《电气设备交接试验标准》以及工程设计图纸为依据。
(2)根据招标书,针对上海地铁共和新路高架牵引供电工程我们认真编写了调试大纲,注明试验的内容、对象和标准以及仪器仪表和试验人员的配备。
3.1.2 试验内容:主要有设备单体试验、保护装置单元件试验和整组试验和监控系统联调。
整组试验主要为交流回路通电试验、控制信号检查、定值复合和保护动作检查、自动装置试验功能试验以及监控系统联调试验。具体试验方法鉴于篇幅有限不再叙述。3.2 调试中遇到的问题和解决方法和趁议(1)快速闭锁试验方法和选择: 为便于分析,这里简单介绍一下快速闭锁工作原理。为防止在进线或联络保护与出线保护具有相同的动作延时时间下,特别是在电流速断情况下,馈线或出线故障时,地线或联络断路器跳闸,造成停电范围扩大,影响运行。设计时增设了出现故障快速闭锁进线或联络断路器跳闸功能。当出线发生故障时,保护装置发出跳闸信号出线断路器跳闸,同时向进线断路器或联络断路器发出跳闸快速闭锁信号,闭锁进线断路器和联络断路器跳闸,即快速闭锁功能。
试验方式的确定:检查快速闭锁功能时,GE公司推荐的试验方法需要两路同源的电流源,分别注入进出线保护装置(见图4),试验时由于仅有一套继电保护测试仪,产生两路同源等值电流接线复杂,试验电流不易保持等值。经过分析我们认为可以采用一套继电保护测试仪的一路电流源进行测试,现场测试时把出线保护装置R1与进线保护装置R2串联连接(见图5)注人一路电流进行试验。这种方法产生了同源同流的试验电流,接线简单,试验方便,满足了测试的要求,顺利完成了快速闭锁功能的检查。(2)PLC编程问题
在降压所调试时,发现美国GE公司F650微机保护装置保护动作时好时坏,装置工作很不稳定。经过查找原因和分析,排除电磁静电干拢和二次配线接触不良的可能,对F650可编程控制器中逻辑程序进行逐条查看,发现中间变量太多,变量在不同的逻辑块中多次调用,在多任务处理时,造成程序紊乱。CPU死机,装置不工作。经过重新编程,尽量减少中间变量和程序优化,装置工作正常。(3)整定组的切换问题
F650具有三组不同的整定值用于不同运行方式下保护的整定。地铁降压系统中采用双边供电,正常情况下使用第一组整定值(SETTING GROUPI),当某35 kV主所解列时,采用单边供电,分为非正常供电方式A和非正常供电方式B,分别对应整定组2(SET-TING GROUP2)和整定组3(SETTING GROUP3),试验时发现在进行第一组整定值测试时,保护装置动作、跳闸均正常,但是其对应的断路器闭锁关系不对,经过对程序逻辑反复检查核对,发现属于编程时没有把相应的闭锁关系逻辑编入二三组整定中,经过程序的修改;三组整定值的切换功能、闭锁关系和保护动作均正常。(4)电力电缆的试验
在汉水路和中山北路降压所进行10 kV电缆试验时发现单芯交联聚抓乙烯电缆在35 kV试验电压下的泄漏电流严重不平衡,试验数(坟水路k14-1#动力变)见下表1。
这条电缆长度26 m左右,环境温度28 9C,相对湿度90 %。分析认为虽然相对湿度较大,但是A相泄漏电流正常,表明B,C相尽管泄漏电流偏大,电流随着电压的升高呈现平稳升高,无明显的陡升,也没有击穿,可以判断电缆并非受损。经过检查也没有发现电缆有明显的外伤以及弯曲超过要求。初步判断可能是电缆作头时工艺控制不好引起。打开C相电缆头发现热缩管内外表面均有黑色污物,电缆单独开头试验,泄漏电流非常小,说明电缆没有问题。重新做头试验泄漏电流明显下降到55 uA,但与A相电缆比较,仍然很大。我们从其做头过程发现,电缆工在使用汽油喷灯进行内衬层胶带和热缩管热缩后没有用酒精擦拭清洁表面,分析认为喷灯点燃进行热缩时,大量不完全燃烧的游离碳和杂质,吸附在热缩管的表面,造成泄漏电流偏大。在以后的电缆做头控制好工艺后,其他电缆经试验均正常。4 结束语
该工程经过精心施工和调试,已经于2003年9月投人运行,确保了地铁各单位工程的供电和调试,该系统运行稳定,安全可靠。
第二篇:地铁降压变电系统的构成与施工调试
地铁降压变电系统的构成与施工调试
【摘 要】地铁降压变电系统是地铁广告、人防、通风电源、采暖系统等用电设施设备的供电系统。而地铁降压变电系统在设计、施工、调试过程中出现问题,势必会直接影响降压变电系统的稳定性、可靠性,甚至会阻碍地铁站无法有序运行。据此,本文主要对地铁降压变电系统的构成与施工调试进行了详细分析。
【关键词】地铁;降压变电系统;构成;施工调试
一、地铁降压变电系统的构成(一)降压变电站
规模比较大的地铁站,一般会选择采用两个降压变电站。
1.一所一跟随,其中一所主要是指主降压变电所,一跟随则是指降压变电所,两所高压进线端的馈线回路大不相同。其中,一所一跟随都采用独立高压,能够有效强化供电的安全性和可靠性,不仅如此,供电的损耗比较小,经济性良好。
2.一所一室,低压变配电室和降压变电所属于一二级的关系。其中,施工难度比较低,电能损耗较低,成本小,但是故障的发生几率也很小。
3.两所,也就是分别在设备区域的两端设置降压变电所。其中,两个降压变电站是独立存在的,占地面积比较大,接线方式非常简单,具有较高的安全性。
(二)主接线
地铁站的负荷类型非常多,所以,降压变电系统应该设计两个相对独立的供电系统,主要是由35kV接线端进入地铁站变压器内,通过变压器转换成400V输出。每个降压变电所的母线上,都有设置相对应的出线电源,实现对降压变电所的同时供电,从而保障供电的稳定性、安全性、可靠性。变压器的容量应该在很大程度上满足一台退出运行之后,另一台可以承担整个降压变电系统的电力负荷。降压变电所的主接线方式具体如图1所示。
(三)控制
地铁降压变电系统通常采用三种控制方式,即SCADA远动控制、就地控制以及变电所集中控制。三级负荷总开关、母联开关、低电压400V进线等采用SCADA远动控制以及就地控制,当发生火灾时,系统能够自动将开关断开。
(四)自动装置
一般情况下,35kV和400V母联断路器都会设置自动装置,这对实现降压变电系统的自动化控制发挥着重要作用。就直流部分来讲,应将两路交流进线都设置成自动化进线和自动投入方式。就交流部分来讲,应该将母联断路器设置成自动进线和自动投入方式。
(五)继电保护
降压变电所35kV系统的继电保护装置一般会采用综合测控保护方式,上位机可以对整个35kV系统,进行实时、全面监控、测量、保护、联动与联锁等,通过以太网,把信息数据传输到工控机。就400V系统来讲,环控、母联柜、进线柜等负荷馈线都设置接地保护、短路延时保护、短路瞬时保护和过载保护等,其他的低压柜设置接地保护、短路损失保护和过载保护。
二、地铁降压变电系统的特点
(一)采用分级双回路供电,确保变电系统的可靠性
无论是牵引供电系统还是降压供电系统,都分别组成相对独立的环路网络供电系统,这主要是保证在一个系统出现故障的时候,另一个系统能够正常运行。每一个降压变电所就要有两路进线,10kV进线电源来自于一个中心降压站或者上一个降压变电所。10kV输出线路通过环网电缆连接于下一个降?罕涞缢?进线,两个阶段的母线间加设联络断路器,这样在某个进线出现故障的时候,自动投入,保证两段母线正常供电。
(二)GIS和AIS组合供电、干式变压器以减少空间占用
在设计供电系统的时候,一般的35kV系统采用GIS组合电器系统,10kV系统采用AIS组合电器系统,400V采用的是抽屉式的单元低压柜,变压器都采用的是干式变压器,这样就节省了空间。
(三)降压变电系统中400V低压系统特点
采用自动化较高的设备,400V的进线盒母联断路器都采用的是快速断路器,并内置电流电压保护模块,设计有大电流脱扣定时限过电流等保护措施,可迅速切断故障电流,实现开关量和模拟量的采集和远程传输,并实现母线保护。负荷的分类较多,其中400V用电负荷主要是信号电源、通讯电源、售票系统等一类负荷;车站照明、电扶梯、通风电源等二类负荷;水冷机、采暖系统等为三类负荷。
三、降压变电系统施工调试
(一)电气设备调试的标准内容
1.标准。
一般采用国标《电气设备交接试验标准》和工程设计图纸为依据;或根据项目的具体调试要求进行试验。
2.试验内容。
主要设备单体试验、保护装置、整组试验、监控系统调试。整组试验主要是交流回路通电使用、控制信号检查、保护动作检查、自动装置使用等等,另外还需要联调调试监控系统。
(二)调试中常见问题
1.快速闭锁试验。
为了方便详细分析和了解快速闭锁过程,应提前了解快速闭锁的工作原理。而想要避免在进线或者联络保护与出现保护具有相同的动作延时时间下,尤其是在电流速断的情况下,馈线和出线故障的时候,地线或联络断路器跳闸,导致停电范围进一步扩大,从而影响有序运行。在进行设计的时候,增设了出现故障快速闭锁进线或联络断路器跳闸功能。在出线发生故障的时候,保护装置发出跳闸信号,出线断路器跳闸,与此同时,向进线断路器或者联络断路器发出跳闸快速闭锁信号,闭锁进线断路器和联络断路器跳闸,即快速闭锁功能。
2.PLC编程问题。
一旦PLC微机保护装置保护动作不稳定,装置工作也不稳定。在降压施工调试时,出现危机保护装置工作并不稳定的现象,保护动作有时会正常,有时会发生故障。经过查找原因和分析,及时排除二次配线接触不良和电磁静电干扰的可能性,就应对设备可编程控制器的逻辑程序,进行有序测试和详细检查,一旦发生逻辑程序中,出现大量变量,如果逻辑模块处理任务太多,会造成程序混乱,导致CPU死机,装置出现时好时坏的不良现象,这就需要重新改写并优化程序。
3.调试中整定组的切换问题。
PLC控制系统具有三组不同的整定值用在不同运行方式下保护的整定。地铁降压变电系统中,积极采用双边供电,正常来讲,会使用第一组整定值,在某35kV主所解列的时候,采用单边供电,主要分为非正常供电方式A和非正常供电方式B,分别对整定组2和整定组3,在试验的时候,发现在进行第一组整定值测试时,保护装置动作、跳闸都十分正常,但是,其所对应的断路器闭锁关系并不对,经过反复检查并核对程序逻辑,发现所属编程时,并没有将相应的闭锁关系逻辑编入二、三组整定中,经过修改程序,三组整定值的切换功能、闭锁关系、保护动作都属于正常现象。
(三)系统电力电缆检测
降压变电所进行10kV电缆检测时,如电缆在35kV试验电压下的泄漏电流严重不平衡。首先,要分析其工作的环境,造成的该种情况的原因,进行适当调整。如果A相泄漏电流正常,表明B、C相尽管泄漏电流偏大,电流随着电压的升高呈现平稳升高,无明显的陡升,也没有击穿,这样判断电缆没有受损,下一步需要检查电缆是否存在有明显的外伤以及弯曲超过要求等。
四、结语
地铁降压变电系统是负荷地铁日常站网供电的基本电源设备,主要功能是确保日常的基础功能运转,主要就是把35kV的高压电转变成0.4kV的低压供电基础设备使用。因此,降压变电系统构成主要是以变压和用电安全为基础进行设计,施工调试自然也是围绕这一核心开展。在设计过程中,适当添加电铃和电笛报警功能,防止在发生特殊情况的时候,运行人员并没有注意到线路灯的变化导致故障进一步扩大,并能够在触摸屏上显示故障信号。
参考文献
[1]周骏鑫.地铁降压变电系统的构成与维护要点研究[J].电源技术应用,2014(2).
第三篇:地铁变电施工小结
变电施工小结
武汉轨道交通四号线二期工程沿线变配电系统安装工程包括变电所系统、接触轨系统、电力监控系统、低压环控系统、环网供电系统、杂散系统六个系统。在该工程项目中,我主要参与了变电系统的施工,对接触轨系统等几个系统的参与相对较少;因此,个人简短的谈谈对变电所系统施工过程中几点认识。
一、开展较好的工作有如下几点:
1、施工调查做到了更加详细。工程开工的前期、施工过程中项目部领导安排了专业人员及时对现场施工作业面、物资设备的进场时间、吊装设备安排等工作做了详细的调查,编制了相应的调查记录表、形象进度图。在施工高峰期、在催促土建进度争取供电作业面上、在准备材料设备计划上、劳动力安排、专项方案的编制等方面,详细的施工现场调查为保证工期节点起到了关键的作用。
2、开工报告、图纸会审、设计图纸核对、施工技术交底等前期工作做得比较到位。项目部领导对工程前期准备、技术交底等工作比较重视,开工前期项目部专门邀请了业主、设计人员、监理人员共同组织召开了开工准备、图纸会审、设计交底等专题会。项目部技术人员对各项工作积极落实,按照施工技术交底要求进行了分层次分阶段、分工序的施工作业前交底,为日后工程质量提供了必备的保障,确保了工程顺利开工。
3、物资计划及时,材料发放合理。物资计划及时,材料发放合理是有效保障工期节点目标、成本目标的重要工作。项目部以“施工图纸结合现场优化,总结类似工程的实践经验为参考”的原则准备物资计划。例如:为提出合理的、符合现场的计划,技术人员从熟悉图纸,优化图纸、现场实际测量提出现场实际材料需求量,保证工艺、质量的前提下,控制材料在现场尽量低的消耗量。
4、施工工艺、质量上有很大进步
(1)设备基础槽钢预埋。由于该项目工期紧张,项目部利用开工前期相对空闲的时间里,技术人员将个站设备基础尺寸规格统计,在料库将现场所需的设备基础钢材,按照各变电所为单位全部加工下料完,为现场施工争取了更多时间,保证了施工质量,该项目上基础预埋基本上无返工现象,定位较准,在平直度控制上,也利用水准仪反复测量,均符合设计规范要求及安装精度。
(2)变电所电缆支架安装及电缆敷设。变电所电缆综合支架安装项目部坚持以设计图纸布置为主,结合现场“合理布置,优化路劲、不留死角、便于检修”的原则进行定位安装。电缆敷设严格按照施工图纸不同类分层敷设,避免相互干扰,便于日后检修;电缆敷设的观感质量也是我们项目部重点抓的工作之一,在施工过程中,项目部领导组织成立了“质量检查消缺小组”,坚持日常检查,在项目质量把控工作中起了重要作用;质量检查消缺小组在夹层支架固定、电缆支架接地、电缆敷设绑扎、电缆弧度预留、电缆牌标识等细节上严格把关,对不符合要求的工序、工艺要求认真整改,最后,在项目部领导的支持及分包队伍的努力下,夹层电缆支架安装及电缆敷设工程质量的进步得到了大家的一致认可。(3)设备安装精度控制及封堵较好。我项目部对设备的安装及封堵工作相当重视,设备的安装精度是设备正常运行的关键因素;设备的封堵是设备安全运行的重要因素。为保证设备的安装精度,项目部安排专业技术人员对35KV高压柜、750V直流柜等重要设备安装进行旁站盯控,制定了作业体关键工序作业指导书,相关交底式技术培训,施工技术交底;为保证设备封堵完好,项目部对作业层进行了专项设备封堵交底,在日常检查中列为了重点检查项目,检查标准是只要设备安装及电缆接线完成就必须封堵各类预留孔洞,要求是“美观、方正、牢靠(不塌不漏)”。
(4)二次接线正确率较高。二次接线正确率直接影响下一步调试工作是否顺利进行和设备安全的关键因素,也是保证送电节点的重要工序;为保证接线的正确率,项目部技术人员熟悉了设计图纸、厂家图纸、设备原理图,对设计图图纸与厂家图纸不符的情况及时与设计院和生产厂家沟通,再根据设备原理图纸,最终以确认后的接线端子位置为准,制作线号管,保证接线准确性。
5、安全工作落实较好。地铁供电施工作业的危险因素与安全隐患主要在设备吊装,现场临边作业,与土建交叉作业,施工临时用电,设备停送电等工作中。项目部为确保施工安全目标,采开展了一系列工作,针对现场编制专项方案、现场检查、安全交底、安全教育等工作。例如:设备吊作业采取了一站一方案(吊装专项方案),执行报批审核的制度,确保吊装的合理性;现场临边作业及土建交叉作业,安全部门对施工现场进行日常安全隐患排查,临边设置临时栏杆、临孔设置铁制防护盖板;在土建交叉作业区监护作业人员做好“两穿一戴”工作,做好安全交底工作;施工临时用电上,项目编制了临时用电方案及举行了作业人员培训,在现场严格执行带漏电保护器3级配电箱设置,并安排专业电工日常巡检,严禁电源线乱搭乱接;为确保停、送电安全,项目部制采取了系列措施制度,设置了操作员、监护员、唱票员,严格按照操作票、操作程序操作,以免误操作;为应急情况妥当处理,项目部针对现场调查情况编制了相应的应急预案。
6、竣工资料及时完成。项目开工前,项目部领导多次强调竣工资料问题,竣工资料的管理是项目部重点管理的工作之一,关系到工程移交、结算等活动;为保证资料和工程进度同步走,项目部忙的情况下,白天下现场,晚上做资料,在工程完工时竣工资料基本完成。
二、有待改进工作有如下几点:
1、二次接线线号反穿现象较多。线管号反穿现象较多,虽然不影响设备运行功能,但正确的穿法便于检修维护,故正确穿线号本端设备线号应是靠设备端子端(靠线头)。
2、基础、设备孔洞封堵不及时。基础、设备孔洞封堵不及时可能导致小动物钻进设备,影响设备运行,甚至造成短路跳闸发生。例如:“复兴路站发现低压柜小老鼠在断路器内,把机构卡死的情况”,幸好及时发现处理,为了避免类似事件发生对于基础空洞,设备孔洞安装工序完成后,及时封堵。
3、夹层积水问题的处理。施工过程中遇到设备房积水的想象比较多,无法排除,会严重影响夹层施工进度,作业人员施工使用电锤等用电器具时,有导线裸露时,有触电危险,威胁人身安全。故施工前需提前抽水,在条件允许的情况下,协调土建单位先将潜水泵及时安装,积水时可随时进行抽水,确保施工顺利推进。
4、环网、联跳电缆左右线标识不明。环网电缆和联跳电缆路径需通过区间隧道环网支架再至邻所,左线和右线敷设的电缆如未做标识,或标识脱落,电缆的走向难以辨别,可能对日后检修带来麻烦,存在左右误判的可能。故在施工的过程中现场人员务必确认好左右线,将电缆标识清楚才能敷设电缆,以免放错路径。(如:五里墩站至汉阳火车站的通道在中间左右线通道合并处容易混淆)。
6、直流柜绝缘安装绝缘阻值较低。直流柜绝缘安装大多数绝缘阻值不是很大,影响绝缘的大部分原因是由于潮气引起的,经现场观察,潮气影响是槽钢通过绝缘板孔与柜体接触,现绝缘板孔与柜体孔大小一致,建议将绝缘板孔缩小稍大于螺丝尺寸即可,可增大基础槽钢与柜体金属的距离,从而达到更好的绝缘。
7、杂散传感器强电电源线与信号线接反。电源线和信号线错接送电容易造成仪表烧坏,对仪表弱电系统破坏性极强;如,王家湾站右传感器主板烧坏。因此接线和送电之前,务必先确认接线的正确性,方可操作,以免造成仪表烧坏及经济损失
第四篇:地铁电气工程调试方案
调试方案
本工程我们主要是从事电气调试、空调调试工作,在电气调试方面主要是检查所有的电气盘柜及用电设备的性能,检查所有连接线的正确性。电气与消防、自控的接口连接,提供的接头或信号,我们都会正确地检查到接线端子排,其他专业只要把线连接在相应的端子排上,即可实现电气与各专业的接口连接。空调主要是水系统、风系统的测定及调整,与消防及自控有关联的电动(磁)阀门等,我们可以在调试过程中先检查其本身是否合格,消防及自控把线路接好后即可实现与空调系统的接口连接。
本工程的调试难点是联调,联调指的是电气、空调、消防、自控等各个专业的共同调试,协调难度大,但只要把各专业调试人员组织起来,成立一个联调小组,同业主牵头,编制好联调的详细计划及方案,各专业各尽其责,联调工作一定会顺利完成。
5.1单机调试
5.1.2电气工程单机调试 5.1.2.1低压开关柜调试。1)柜本体开关试验:
a、采用大电流发生器及标准表对进线、母联及出线开关,依据有关规定及设计定值要求进行长延时、短延时及速断电流整定。
b、用1000V兆欧表对开关各相进行绝缘检查,其绝缘电阻值应满足规范要求。c、对开关进行手动、电动分、合闸试验,开关动作应正常。
d、设有自动联络装置时,应依据有关原理检查联络线接线是否正确,并用临时试验电源对联络装置进行试验。
2)用调压器、标准电流互感器,标准电流、电压表等进行电流、电压表的精度校验。3)用调压器、标准电流互感器、标准电流表对电流互感器进行精度及变比校验,并用500V兆欧表对电流互感器一、二次进行绝缘检查。
4)柜体各供电回路热继电器整定,有设计整定值时,应根据设计整定值进行整定,加入整定值的1.5倍值,热继电器的动作时间在热态下应小于2分钟。没有设计整定值的,应根据负荷大小,计算出相应整定值后,再进行整定。整定试验设备主要采用调压器、升流器、标准电流表及标准电秒表等。
5)检查电控室低压配电柜母排绝缘电阻值,采用1000V或500V兆欧表,测得绝缘电阻值应符合有关规范的要求。检查母排绝缘电阻值时,应抽出抽屉柜及拆开母排上的二次连线。
6)用万用表检查柜内接线是否符合设计要求,柜外有连接的线应检查到外接端子排。5.1.2.2动力配电箱及照明配电箱本体检查调试
1)各供电回路开关进行绝缘检查,采用1000V或500V兆欧表。
2)用万用表检查开关分、合闸是否正常。
3)配有电流表或电压表的配电箱,应对箱上电流表或电压表进行精度校验。
4)配有电流互感器的配电箱,应对电流互感器进行变比比对及精度校验。5)配有热继电器的配电箱,应对箱内热继电器进行保护整定。
6)用万用表检查柜内接线是否符合设计要求,柜外有连接的线应检查到外接端子排。
5.1.2.3双电源切换箱调试
1)用500V兆欧表检查箱内开关及配线的绝缘电阻值,其值应符合规范要求。
2)有电流表、电压表或电流互感器的应对电流表、电压表及电流互感器进行比对精度检验。
3)用万用表检查自动切换联络线连接是否正确。
4)用两路临时电源模拟自动切换条件,检查能否实现电源自动切换。5)用万用表检查柜内接线是否符合设计要求,柜外有连接的线应检查到外接端子排。5.1.2.4控制箱(柜)调试
1)检查箱内各单元件(开关、接触器)等性能是否良好。
2)用万用表检查箱内接线是否符合设计要求,柜外有连接的线应检查到外接端子排
5.1.2.5变频及软启动柜应根据设计原理及产品技术文件进行调试,并对柜体的电气单元件进行单体调试或校验。
5.1.2.6空调机组、风机、泵、阀门电机等交流电机试验。
1)用1000V兆欧表测量电机绕组的绝缘电阻,在常温下绝缘电阻值不应低于0.5MΩ。
2)用直流单(双)臂电桥测量电动机各相绕组的直流电阻,其相互差值应不超过其最小值的2%;中性点末端引出的电动机线间直流电阻,其相互差别不应超过最小值的1%,在测量时,电动机转子应静止不动。
3)采用直流感应法及万用表检查电动机定子绕组极性及其连接的正确性。
4)电动机空载转动检查和空载电流测量
起动前,先将与电动机相连的机械设备拆除,对难以拆除的机械,要尽量减小电动机的负载。用钳型电流表或盘柜上的电流表测量并记录电动机的启动电流和空载电流;电动机起动后,应用硬木棍或螺丝刀靠在电机有关部位听电机内部声音,如果异常应立即停机。用转速表测量转速,在额定电压下测得的转速应与铭牌规定的转速相符。电动机空载运行2小时,运行一段时间后,用手触摸或用测温仪测量电动机轴承定子绕组等部位的温度,检查电机温升是否正常;用测振仪测量电动机的振动,检查其是否符合有关要求,记录电动机起动电流,空载电流,振动、温升、噪音等有关数据,其各种数据合格,正常运行2小时后,即可认为电机试运转合格。
5.1.2.7主回路电缆试验 1)用1000V或500V兆欧表检查各供电主回路电缆相间及相对地的绝缘电阻值,测得绝缘电阻值应符合有关规定。
2)用直流试验设备对各低压主回路电缆进行耐压试验。
3)用万用表或校线器检查各供电主回路相序及接线是否正确,是否有明显相序标示。5.1.2.8控制及信号回路电缆试验
1)用500V兆欧表检查各控制及信号电缆芯线的绝缘电阻值。
2)用万用表或校线器检查控制及信号电缆各芯线接线是否符合设计要求,接线是否正确。
5.1.2.9接地电阻测量
空调电控室接地网及盘柜,各类电气设备等均应可靠接地,采用接地电阻测试仪,对接地电阻进行测量,其测得的电阻值应满足设计及规范要求。接地网接地电阻测量点不得少于3处,且每点测量最少为3次,计算出数据的平均值即可认为是该点的接地电阻值。
5.2 系统调试
5.2.1.4系统调试步骤、方法 5.2.2 电气工程系统调试
5.2.2.1概况
西安地铁洒金桥站、五路口站、玉祥门站电气系统,主要包括动力及照明系统。动力及照明电源均来自车站两端的变电所,在车站二端各设有空调通风电控室,集中向车站二端空调通风设备供电。二端配电室负责厅、台及半个区间的照明电源。事故照明电源来自两端变电所的交流电源或蓄电池组。
动力设备配电主要采用放射式配电,如大功率风机、水泵、通信信号的电源直接由变电所 380/220V 系统配出,区间维修用电设有动力箱。照明配电采用放射式和树干式相结合的方式。
动力设备采用就地控制和集中控制两种控制方式,集中控制为在车站综合控制室由微机实现对风机、水泵、空调等设备的控制与监视。工作照明、节电照明均在配电室和车站综合控制室控制,附属房间及设备用房照明采用就地控制,事故照明由变电所直接控制,广告照明在车站集中控制室控制。
各类水泵可手动,水位自动控制,并在车站控制室显示水泵工作状态及危险水位报警信号,并在与这相关的控制箱,柜中留出与FAS BAS的遥控,遥位端子,由 FAS、BAS负责接出。
本工程接地系统与变电所共用一组联合接地体。
两个车站共有低压开关柜25台,双电源切换箱(柜)18台,动力及照明配电箱(柜)214多台,控制柜及按钮箱62台。
本工程具有供配电系统复杂,控制方式多变,联动调试需多方配合等特点。
5.2.2.2电气系统调试
(1)在低压配电室用兆欧表检查各供电回路及二次回路的绝缘电阻。
(2)用兆欧表检查空调电控室低压开关柜各供电回路及二次回路的绝缘电阻。
(3)用兆欧表检查现场动力配电箱及照明配电箱、双电源切换箱(柜)、控制柜及按钮箱各供电回路及二次回路的绝缘电阻。
(4)主回路不带电的条件下,送上控制回路及二次回路电源,在现场及控制室摸拟控制空调机组、风机、泵、阀门等用电设备,检查各用电设备控制系统是否正常,并在控制室及现场控制箱(柜)处检查各用电设备的运行状态指示及信号,并检查与其他专业相联系的端子排上的信号状态是否正确。
(5)空调电控室低配电送电试运行
1)在各段母排绝缘检查合格后,分别合上各段进线开关,使各段母排受电运行,并检查相序或相位。
2)设有自动联络装置的应模拟自动条件,进行自动联络试验。
(6)各动力、照明配电箱,电源自动切换箱、阀门控制箱、变频柜及软启动柜在各回路电缆检验合格,柜(箱)本体调试完成,各二次控制系统调试合格后均可进行受电试运行,并检查相序或相位。
(7)整理电气调试试验报告。
5.3 联动调试
5.3.1联动调试应该在各专业系统调试完成之后进行,在进行联动调试前应作好一些准备工作:
1)根据现场要求,成立一个由业主领导的联动调试小组,小组成员由各专业调试人员组成。
2)根据设计要求及现场实际,编制一个详细可行的联动方案,并经过业主、监理、设计、施工等各方讨论通过。
3)电气专业与通风空调、消防、BAS 等专业之间存在一些联系,依据联动调试方案,将积极配合个专业作好联调工作。
5.3.2本工程的空调自控系统包括中央控制、车站控制和就地控制。中央控制显示和控制全线各站和区间内隧道风机和相应风阀的运行状态,显示全线各车站制冷、公共区空调通风运行状态,显示、记录、打印室外空气状态,显示全线各车站设备管理用房状况。车站控制接受中央指令,控制、显示本车站所有空调通风系统设备的运行状态,接受故障报警信号和火灾报警信号,控制相应空调通
风兼排烟设备并转入火灾运行模式。就地控制是设备初调、检修时的就地控制。车站的空调通风系统根据不同室外工况实行:最小新风、全新风、通风工况,控制系统根据检测到的室外空气状况实行工况转换。空调冷冻水系统通过电动两通阀改变流经空调机组表冷器的水量来适应空调负荷的变化,在分水器和集水器上设置压差调节阀,通过改变供会回水旁通量来适应系统水流量变化。
通风与空调工程的控制和监测设备应能与系统的检测元件和执行机构正常沟通,系统的状态参数应能正确显示,设备联锁、自动调节器、自动保护应能正确动作。
(1)系统投运前的准备工作
1)室内校验:严格按照使用说明或其它规范对仪表逐台进行全面性能校验;
2)现场校验:仪表装到现场后,还需进行诸如零点、工作点、满刻度等一般性能校验。
(2)自动调节系统的线路检查
1)按控制系统设计图纸与有关的施工规程,仔细检查系统各组成部分的安装与连接情况;
2)检查敏感元件安装是否符合要求,所测信号是否正确反应工艺要求,对敏感元件的引出线,尤其是弱电信号线,要特别注意强电磁场干扰情况。
3)对调节器着重于手动输出、正反向调节作用、手动——自动的无扰切换。
4)对执行器着重于检查其开关方向和动作方向,阀门开度与调节器输出的线性关系、位置反馈、能否在规定数值起动、全行程是否正常、有无变差和呆滞现象。
5)对仪表连接线路的检查:着重查错、查绝缘情况和接触情况。
6)对继电信号检查:人为地施加信号,检查被调量超过预定上、下限时的自动报警及自动解除警报的情况等,此外,还要检查自动联锁线路和紧急停车按钮等安全措施。
(3)空调系统的联动运行
联动运行前的各项准备工作就绪后,为确保系统运行可靠,应与 电气调试人员、仪表调试人员、空调安装人员一起,仔细检查一下水、电、冷、热源的供应是否有误,系统的所有阀门位置是否动过,风量有无变化,自动调节仪表的整定值是否整定在要求的数值上等等。
联动运行的启动步骤是:冷却塔风机——冷却水泵——冷冻水泵——冷水机组。
上述步骤都投入运行无异常现象发生再将各环节的自动调节系统投入运行。
5.3.3质量安全措施
(1)进入现场调试人员应严格遵守现场各种规章制度。
(2)调试人员调试时,应遵守各种所调设备的操作规程,不得随意开启用电设备,及损坏现场设施。
(3)调试人员在高处作业时,应有人保护,以防梯子滑动。
(4)开启风机前,要仔细检查机组,以防杂物损坏机组。
(5)调试前应熟悉和掌握产品技术特性,明确试验标准及方法,否则不允许开展调试工作。
(6)调试所用的仪器、设备应完好。有检定合格标志,仪表精度应符合量值传递要求。
(7)试验接线应采用一人接线,另一人核对检查,防止误接,损坏仪器设备及损伤人员。
(8)试验操作人员应严格执行检测实施细则和相应的操作规程。
(9)试验时不允许带电接线。
(10)进入调试现场应带好安全帽,穿好工作服。
(11)所有调试人员应持证上岗,严禁无证操作。
(12)送电的设备应挂送电标记牌,防止危害人身安全和设备安全。
(13)送电或试车前,必须经过详细检查,符合要求可送电或试车。
(14)用万用表检查时,应先打好档位,方可进行。
第五篇:地铁供电系统的构成
地铁供电系统的构成根据功能的不同,地铁供电系统一般划分为以下几部分:外部电源;主变电所;牵引供电系统;动力照明系统;杂散电流腐蚀防护系统;电力监控系统。
1、外部电源
地铁供电系统的外部电源就是地铁供电系统主变电所供电的外部城市电网电源。外部电源方案的形式有集中式供电、分散式供电、混合式供电。集中式供电通常从城市电网110kV侧引入两回电源,按照地铁设计规范要求,至少有一回电源为专线。
2、主变电所
主变电所的功能是接受城网高压电源(通常为110kV),经降压为牵引变电所、降压变电所提供中压电源(通常为35kV或10kV),主变电所适用于集中式供电。主变电所接线方式为线变式或桥型接线。
3、牵引供电系统
牵引供电系统的功能是将交流中压经降压整流变成直流1500V或直流750V电压,为地铁列车提供牵引供电,系统包括牵引变电所与牵引网,牵引网包括接触网与回流网。接触网由架空接触网(直流1500V)和接触轨(直流1500V或750V)两种悬挂方式,大多数工程利用走行轨兼作回流网;少数工程单独设置回流轨。
4、动力照明供电系统
动力照明供电系统的功能是将交流中压(35kV或10kV)降压变成交流220/380V电压,为运营需要的各种机电设备提供电源。
5、杂散电流腐蚀防护系统
杂散电流腐蚀防护系统的功能是减少因直流牵引供电引起的杂散电流并防止其对外扩散,尽量避免杂散电流对城市轨道交通主体结构及其附近结构钢筋、金属管线的电腐蚀,并对杂散电流及其腐蚀保护情况进行监测。
6、电力监控系统
电力监控系统的功能是实时对地铁变电所、接触网设备进行远程数据采集和监控。在城市轨道交通控制中心,通过调度端、通信通道和变电所综合自动化系统对主要电气设备进行四遥控制,实现对整个供电系统的运营调度和管理。