雷达技术

时间:2019-05-12 21:52:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《雷达技术》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《雷达技术》。

第一篇:雷达技术

浅谈雷达技术

摘要:雷达具有发现目标距离远,测定目标坐标速度快,能全天候使用等特点。因此在警戒、引导、武器控制、侦察、航行保障、气象观察、敌我识别等方面获得广泛应用,成为现代战争中的一种重要电子技术装备。所以,雷达性能的好坏将不可避免的影响战争的胜负。

关键词:雷达

战争

军事应用

一、雷达的概念

“雷达”原意是无线电探测和测距。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。

二、雷达的组成与功用

各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。还有电源设备、数据录取设备、抗干扰设备等辅助设备。

雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。

测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

三、雷达的军事应用

激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。

快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。

由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定“规范”的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。器上显示障碍信息。该系统已在两种直升机上进行了试验。

四、雷达的未来发展趋势 这阶段的目标是赶上和缩小与世界雷达技术的差距。1991年的海湾战争既反映了雷达在情报侦察、指挥控制、作战管理效能评估等方面起到的不可替代的作用,同时也反映了雷达受到隐身技术、反辐射导弹、电子干扰、低空飞行器等方面的威胁,未来战争又将是一场多层次、全方位、大纵深、主体覆盖集陆、海、空、天、电为一体的高技术对抗,因此对雷达就提出了更新的要求。

①加速发展正在研究的雷达三超技术(超低副瓣、超宽带、超高分辨)和“四抗”技术(抗干扰、抗反雷达导弹、抗隐身、抗低空入侵),现在在研的超宽带和超低角跟踪技术已用于工程。

②雷达波段向两端扩展,即从米波延长到短波,从微米波扩展到毫米波、红外、可见光波段。

③雷达设计广泛采用计算机技术,使雷达能进行自适应处理控制,雷达内部以及与其它电子设备能进行数字数据传送。

④发展低截获概率雷达,实行分布式雷达新体制和雷达升空升天技术的研究。

五、结束语

经过五十年的艰苦奋斗,雷达行业已成为我国国防现代化建设和参与国民经济主战场的一支实力雄厚的产业大军,形成了中央与地方相结合、沿海与内地相结合、军用与民用结合、专业和门类比较齐全的工业体系。一批产品的性能指标已跨入先进行列。同时,培养和造就了一支素质高、能打硬仗的技术队伍。更可喜的是涌现了一大批年轻有为的雷达科技人员,培养和造就了一批高素质的跨世纪科技人才,从而使我国雷达工业以崭新的姿态迈入21世纪。

但我们还应清醒地看到,我国的雷达技术与装备水平距发达国家还有一定的差距,在某些领域还相当落后,落后就要挨打,这就要求我们的雷达科研人员牢记自己所肩负的神圣使命,刻苦攻关,发奋努力,研制出具有世界一流水平的雷达装备,为我国国防现代化事业作出应有的贡献。

参考文献

【1】

《现代军事》

2000年08期 【2】陈俊亮

《雷达信号处理技术》

清华大学出版社 【3】陈志杰 【4】熊辉丰

电子工业出版社 中国宇航出版社 《雷达系统分析与设计》

《激光技术》

第二篇:雷达技术论文

相控阵雷达技术

相控阵雷达有相当密集的天线阵列,在传统雷达天线面的面积上可安装上千个相控阵天线,任何一个天线都可收发雷达波,而相邻的数个天线即具有一个雷达的功能。扫描时,选定其中一个区块(数个天线单元)或数个区块对单一目标或区域进行扫描,因此整个雷达可同时对许多目标或区域进行扫描或追踪,具有多个雷达的功能。由于一个雷达可同时针对不同方向进行扫描,再加之扫描方式为电子控制而不必由机械转动,因此资料更新率大大提高,机械扫描雷达因受限于机械转动频率因而资料更新周期为秒或十秒级,电子扫描雷达则为毫秒或微秒级。因而它更适于对付高机动目标。此外由于可发射窄波束,因而也可充当电子战天线使用,如电磁干扰甚至是构想中发射反相位雷达波来抵消探测电波等。关键字 相控阵雷达

原理

特点

应用

分类

应用

历史

发展

正文

1.相控阵雷达

相控阵雷达又称作相位阵列雷达,是一种以改变雷达波相位来改变波束方向的雷达,因为是以电子方式控制波束而非传统的机械转动天线面方式,故又称电子扫描雷达。

1.1相控阵雷达的原理

我们知道,蜻蜓的每只眼睛由许许多多个小眼组成,每个小眼都能成完整的像,这样就使得蜻蜓所看到的范围要比人眼大得多。与此类似,相控阵雷达的天线阵面也由许多个辐射单元和接收单元(称为阵元)组成,单元数目和雷达的功能有关,可以从几百个到几万个。这些单元有规则地排列在平面上,构成阵列天线。利用电磁波相干原理,通过计算机控制馈往各辐射单元电流的相位,就可以改变波束的方向进行扫描,故称为电扫描。辐射单元把接收到的回波信号送入主机,完成雷达对目标的搜索、跟踪和测量。每个天线单元除了有天线振子之外,还有移相器等必须的器件。不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。天线的单元数目越多,则波束在空间可能的方位就越多。这种雷达的工作基础是相位可控的阵列天线。相位控制可采用相位法、实时法、频率法和电子馈电开关法。在一维上排列若干辐射单元即为线阵,在两维上排列若干辐射单元称为平面阵。辐射单元也可以排列在曲线上或曲面上.这种天线称为共形阵天线。共形阵天线可以克服线阵和平面阵扫描角小的缺点,能以一部天线实现全空域电扫。通常的共形阵线 应该具有以下的特点环形阵、圆面阵、圆锥面阵、圆柱面阵、半球面阵等。

1.2 相控阵雷达的特点

相控阵雷达之所以具有强大的生命力,因为它优胜于一般机械扫描雷达。它具有以下特点:

(1)能对付多目标。相控阵雷达利用电子扫描的灵活性、快速性和按时分割原理或多波束,可实现边搜索边跟踪工作方式,与电子计算机相配合,能同时搜索、探测和跟踪不同方向和不同高度的多批目标,并能同时制导多枚导弹攻击多个空中目标。因此,适用于多目标、多方向、多层次空袭的作战环境。

(2)功能多,机动性强。相控阵雷达能够同时形成多个独立控制的波束,分别用以执行搜索、探测、识别、跟踪、照射目标和跟踪、制导导弹等多种功能,一部相控阵雷达能起到多部专用雷达的作用,而且还远比它们能够同时对付的目标多。因此,可大大减少武器系统的设备,从而提高系统的机动能力。

(3)反应时间短、数据率高。相控阵雷达可不需要天线驱动系统,波束指向灵活,能实现无惯性快速扫描,从而缩短了对目标信号检测、录取、信息传递等所需的时间,具有较高的数据率。相控阵天线通常采用数字化工作方式,使雷达与数字计算机结合起来,能大大提高自动化程度,简化了雷达操作,缩短了目标搜索、跟踪和发控准备时间,便于快速、准确地实施畦达程序和数据处理。因而可提高跟踪空中高速机动目标的能力。

(4)抗干扰能力强。相控阵雷达可以利用分布在天线孔径上的多个辐射单元综合成非常高的功率,并能合理地管理能量和控制主瓣增益,可以根据不同方向上的需要分配不同的发射能量,易于实现自适应旁瓣抑制和自适应抗各种干扰,有利于发现远离目标和小雷达反射面目标(如隐形飞机),还可提高抗反辐射导弹的能力。

(5)可靠性高。相控阵雷达的阵列组较多,且并联使用,即使有少量组件失效,仍能正常工作,突然完全失效的可能性最小。此外,随着固态器件的发展,格控阵雷达的固态器件越来越多,甚至已生产出全固态儿控阵雷达,如美国的。“爱国者”雷达,其天线的平均故障间隔时间高达15万小时,即使有10%单元损坏也不会影响雷达的正常工作。[3][4]

1.2.1 相控阵雷达的优点

(1)波束指向灵活,能实现无惯性快速扫描,数据率高;(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;(3)目标容量大,可在空域内同时监视、跟踪数百个目标;(4)对复杂目标环境的适应能力强;(5)抗干扰性能好。全固态相控阵雷达的可靠性高

1.2.2 相控阵雷达的缺点

美中不足的是,相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90°~120°。当需要进行全方位监视时,需配置3~4个天线阵面。

2.相控阵雷达的应用

相控阵雷达与机械扫描雷达相比,扫描更灵活、性能更可靠、抗干扰能力更强,能快速适应战场条件的变化。多功能相控阵雷达已广泛用于地面远程预警系统、机载和舰载防空系统、机载和舰载系统、炮位测量、靶场测量等。美国“爱国者”防空系统的AN/MPQ-53雷达、舰载“宙斯盾”指挥控制系统中的雷达、B-1B轰炸机上的APQ-164雷达、俄罗斯C-300防空武器系统的多功能雷达等都是典型的相控阵雷达。随着微电子技术的发展,固体有源相控阵雷达得到了广泛应用,是新一代的战术防空、监视、火控雷达。

当相控阵雷达警戒、搜索远距离目标时,虽然看不到天线转动,但上万个辐射器通过电子计算机控制集中向一个方向发射、偏转,即使是上万公里外来袭的洲际导弹和几万公里远的卫星,也逃不过它的“眼睛”。如果是对付较近的目标,这些辐射器又可以分工负责,有的搜索、有的跟踪、有的引导,同时工作。每个“移相器”可根据自己担负的任务,使电磁瓣在不同的方向上偏转,相当于无数个天线在转动,其速度之快非一般天线所能相比。正是由于这种雷达天线摒弃了一般雷达天线的工作原理,利用“移相器”来实现电磁瓣的转动,人们给它起了个与众不同的名字--相控阵雷达,代表着“相位可以控制的天线阵”的含义。

3.相控阵雷达的历史及发展

3.1相控阵雷达的历史

相控阵技术,早在20世纪30年代后期就已经出现。1937年,美国首先开始这项研究工作。但一直到20世纪50年代中期才研制出2部实用型舰载相控阵雷达。

20世纪60年代,美国和前苏联相继研制和装备了多部相控阵雷达,多用于弹道导弹防御系统,如美国的AN/FPS-

46、AN/FPS-85、MAR、MSR,前苏联的“鸡笼”和“狗窝”等。这些都属于固定式大型相控阵雷达,其共同点:采用固定式平面阵天线,天线体积大、辐射功率高、作用距离远。其中美国的AN/FPS-85和前苏联的“狗窝”最为典型。

20世纪70年代,相控阵雷达得到了迅速发展,除美苏两国外,又有很多国家研制和装备了相控阵雷达,如英、法、日、意、德、瑞典等。其中最为典型的有:美国的AN/TPN-25、AN/TPQ-37和GE-592、英国的AR-3D、法国的AN/TPN-

25、日本的NPM-510和J/NPQ-P7、意大利的RAT-31S、德国的KR-75等。这一时期的相控阵雷达具有机动性高、天线小型化、天线扫描体制多样化、应用范围广等特点。

20世纪80年代,相控阵雷达由于具有很多独特的优点,得到了更进一步的应用。在已装备和正在研制的新一代中、远程防空导弹武器系统中多采用多功能相控阵雷达,它已成为第三代中、远程防空导弹武器系统的一个重要标志。从而,大大提高了防空导弹武器系统的作战性能。在21世纪,相控阵雷达随着科技的不断发展和现代战争兵器的特点,其制造和研究更上一层楼。

3.2 相控阵雷达技术的发展

3.2.1雷达体制从无源到有源

作为有源相控阵雷达的前身,无源相控阵雷达的发射机与天线分离配置,射频能量从发射机通过复杂昂贵的波导管馈送至天线。但是,波导管穿过甲板、隔舱等舰体结构,自然会影响舰体的强度;而且这种配置的可靠性也较低,一旦发射机组或波导管出现故障或战损,就会导致整个雷达系统的失效。同时,无源相控阵雷达由行波管之类的发射机来提供功率,要增大雷达发射功率不那样容易。人们认识到了无源相控阵雷达的上述缺点,设法寻找新的雷达模式。

微波集成电路的快速发展带来了机遇--人们可以在砷化镓晶片上做出几厘米大小、能发射/接收电磁波的小单元,用来取代庞大的行波管和天线。将一个个这种小单元(移相器)排成阵列,就成为发射机与天线合一的有源相控阵雷达。与无源相控阵雷达不同,有源相控阵雷达抛弃了集中式发射机,而是每一个天线单元都配备一个独立的雷达发射机,只要增加天线的发射/接收单元数,就可以增加发射功率。

有源相控阵雷达不使用穿过舰体的波导管,降低了系统的复杂性和体积,也相应减少了馈电系统造成的能量损耗;每个天线单元均具备独立发射与接收电磁波的功能,少数天线单元的故障或受损不会导致整个系统的失效,故可靠性与抗战损能力有了大幅度的提升;高峰值功率是通过诸多天线单元合成的方式来实现的,因此降低了对微波元件的峰值功率要求,有助于降低成本。同时,有源相控阵雷达在雷达波束的分配、管理与运用上也更加灵活,有利于提高雷达系统的反应速度与效率。

3.2.2 全面提升电子对抗能力

在电子对抗日趋激烈的未来海战场环境中,为了有效地发挥雷达的信息作战优势,强大的抗干扰、电子压制能力不可或缺。面对海军作战区域由远洋向近岸水域转变的趋势,水面舰艇所面临的威胁与实战环境也变得更加复杂。对舰载相控阵雷达来说,浅滩、急流、礁石、岛屿、海岸线陆地、丛林等复杂地形所造成的杂波和多重反射,对海空目标的侦测造成了很大干扰,急需提高雷达的抗干扰能力。而有效对抗反辐射导弹的威胁,也成为确保舰载相控阵雷达生存和有效运用的必要前提。采用雷达低截获概率技术

3.2.3增强弹道导弹侦测能力

海基导弹防御系统比陆基系统有更高的灵活性和远程机动部署能力,因此,侦测弹道导弹并引导防空导弹实施拦截,已成为舰载相控阵雷达的重要使命。美国改进AN/SPY-1系列相控阵雷达,以满足海基反导的需求;英国的“桑普森”相控阵雷达具备了相当的侦测弹道导弹的潜力,已获得美国弹道导弹防御局的资助;荷兰的“阿帕”雷达也具备一定的探测弹道导弹能力,有可能成为欧盟发展海基战区导弹防御的基础。

除此而外,舰载相控阵雷达还力求与舰载指控系统、数据链、编队网络整合并高速交换数据,争取能通过雷达反射特性快速辨识目标舰(机)。长远目标是整合各种舰载雷达的功能,以期用1部多功能相控阵雷达满足从远程导弹拦截到近距防御的多种需求,如远距离探测、跟踪、目标锁定以及各类舰载武器的导引、作战指挥,从根本上简化舰艇的雷达配置。

3.3 中国装备

经过十年时间,周万幸造就了“海之星”,不仅让中国成为了第三个拥有自主创新舰载多功能雷达的国家,还被美国中情局评价称,该雷达是中国真正自主创新研制的相控阵雷达。它的研制成功标志着中国第一部舰载多功能相控阵雷达的研制已达国际领先水平。

新型导弹驱逐舰“武汉”号、“海口”号的高技术装备广受关注。“海口”号上的相控阵雷达是目前最先进的雷达之一,不但能扫描探测目标,还能对发出的导弹进行跟踪,对空探测距离、引导能力和同时处理的目标数量,在世界范围内都处于领先地位。“武汉”号上的超视距雷达可对敌舰艇实施超视距攻击,并且可以同时攻击多批次水面目标。另外,两艘驱逐舰上都安装的三坐标对空警戒雷达能探测方位、距离、高度。美国环球战略网2009年10月8号刊登了名为《中国航母预警机》的文章。文章推测中国正将一种类似于曾装备的较大型“空警-200”型预警机的相控阵雷达设备配备在重达21吨、双引擎的“运-7”(Y-7)运输机上。运-7飞机为中国仿制俄罗斯安-24型运输机。中国的“运-7”预警机将承担类似于美国23吨重的E-2型航母舰载预警机作战职责。

4.参考文献

【1】飞扬军事 http://

【3】铁血网:科普:相控阵雷达工作原理及类型简介 http://bbs.tiexue.net/post2_3832670_1.html

【4】网易:美媒:中国为运7装相控阵雷达作为航母预警机,2009年10月10日 http://war.news.163.com/09/1010/09/5L8K081V00011MTO.html

【5】新浪网:官方揭秘:中国海军相控阵雷达已达世界先进水平http://blog.sina.com.cn/s/blog_5dfc28960100felq.html

【6】东方军事网:尹卓委员:我护航军舰的相控阵雷达世界领先,2009年3月3日 http://mil.eastday.com/m/20090303/u1a4214401.htm 【7】邵余红 圆柱状战术有源相控阵雷达1997 【8】赵杰 EL/M-2080反弹道导弹预警和火控雷达系统1997 【9】国外空地/地空导弹手册1985 【10】陈树峥 新技术在战略战术相控阵雷达中的应用1989

第三篇:雷达原理与对抗技术 复习资料

一、1震荡电压和定时器的触发脉冲均由同一基准信、如果雷达系统的发射信号,本振电压,相参号提供,那么所有这些信号之间均保持相位相参性。通常把这种系统称为全相参系统。2其他相关信息。、雷达是利用电磁波来测定并发现其他位置及3作用距离取决于、雷达的距离分辨力取决于 信噪比,雷达平均发射功率与脉冲宽度,雷达的占空比有关。4改变雷达波相位来改变波束方向的雷达、相控阵雷达又称作相位阵列雷达,是,一种以 故有称为电子扫描雷达。5频率为、某雷达的发射频率为2000HZ,发射脉冲宽度为10GHZ,发射脉冲重复2us,发射峰值功率为650KW,则该雷达的PRT=0.5ms,发射机平均功率=2600W。6用。、描述收发开关在发射状态和接收状态下的作 发射状态时发射功率很大,很容易将接收机烧毁。在发射状态时,收发开关削弱功率保护接收机。在接收状态时,收发开关恢复正常状态,使回波信号及时进入接收机。7根据雷达发射信号的不同,、目标距离测量就是要精确测定收发延迟时间。测定延迟时间通常采用脉冲法,频率法,相位法。8提高雷达距离的分辨力。采用、脉冲压缩雷达兼顾了扩大雷达的作用距离跟调制宽脉冲发射,以提高发射机平均功率,保证足够的最大作用距离,用脉冲压缩法获得窄脉冲,提高距离分辨力。9有应用,有哪两种实现方法。、波束形成方法在雷达、声呐及通信系统中均数字波速形成(DBF)、自适应数字波速形成(ADBF)1011、合成孔径雷达是对抗、声学、电子对抗从频域上可分为高分辨率成像三段。射频对抗,光电的雷达。12源干扰、复合干扰、干扰按照能量的来源分类为。P12 有源干扰、无13盖性干扰、、按照干扰信号的作用原理分类。欺骗性干扰。P12 干扰分为遮14资源主要分为、根据干扰信号的产生原理,引导式、转发式、合成式雷达干扰的基本。P14 15(、雷达对抗的主要技术特点是什么。1)宽频带、大视场、复杂电磁信号环境;P4(2)瞬时信号检测、测量和快速、非匹配信号处理。16索频率窗、毗邻频率窗、一类测频技术是直接在频域进行的。P19 包括搜17调变换到相位、时间、空间等其他物理域,再、变换法测频技术如何实现。将信号频率单通过对变换域信号的测量得到原信号频率。P19 18和、比想法测频技术的信号处理有19AD极性量化法差接收机中,常以、镜像信道干扰会引起频率测量错误,量化法。P25 镜像抑制比d在超外ms来衡量系统对镜像信道干扰的抑制能力。P22 13关器并用,其中采用、实际使用的比想法测频技术往往采用多路相最短迟延时间T的相关器保证无模糊测频范围,采用最长迟延时间nk-1T的相关器保证频率测量的精度。P26 14为哪两种定位方式。、定位技术分类按照参与定位的接收站数量分15多站定位与单站定位为、测向交汇定位法、测向多站定位按照定位采用的测量信息,/时差定位法、测时差主要分 定位法。P79、P52 10以特定的地理环境或接收站的运动为辅助定位、单站定位只用一个接收站的定位。一般需要条件。主要有飞越目标定位法、方位/仰角定位法、测向/方向变化率定位法、测向/相位差变化率定位法。P75、P52 16基带滤波测频、模拟信道化测频技术分为。P29 直接滤波测频和17线的波束宽度、搜索法测向的角度分辨力主要取决于,而波束宽度又主要取决于测向天天线口径d。18对幅度大小、振幅法测向是依据确定信号的到达方向。测向天线接收信号的相主要的侧向方法有最大信号法,比较信号法,等信号法。P52 19函数的时间变化率,、窄带信号,其频率的物理定义为其相位调制相位调制函数的二阶导数称为调制斜率。P17-18 20为、频率非搜索或瞬时宽开的测频如果频率测量范围等于瞬时带宽,系统。则系统称P18 21因此它适合于、时差法测向,由于时间差与信号频率无关,宽带测向。P52 22就能够达到侦查测向灵敏度,、如果在雷达天线任意旁瓣指向侦察机方向时则称为雷达侦察的旁瓣侦收。P56 23如信号的振幅、频率(或相位)、信号的稳定度的定义。指信号的各项参数,、脉冲宽度及脉冲重复频率等是否随时间作不应有的变化。24波器组、PD或雷达主要滤波方法是采用窄带跟踪滤波器,把所关心的运动目邻接的窄带滤标过滤出来。

二、1察的技术特点。、简述现代雷达对抗信号环境的特点和雷达侦P9,P11(1)辐射源数量多,分布密度大,脉冲重频高,信号交叠严重。(2)信号调制复杂,参数变化范围大,且多变、快变。(3)低截获概率雷达信号以及诱饵雷达和虚假雷达信号日益增多。技术特点:

1、作用距离远,安全隐蔽性好,获取信息多而准

2、简述tTOA测量。P92 3技术特点。、简述雷达对抗的基本条件、基本方法及主要P3 基本条件:雷达发射电磁波;侦察机接收到足够强的雷达信号;雷达信号的调制方式和参数位于侦察机处理能力之内;侦察机能够适应其当前所在的电磁信号环境。基本方法:破坏雷达探测目标的电磁波传播空间特性;产生干扰信号进入雷达接收机,破坏其检测目标和测量目标信息;减小目标的雷达截面积。技术特点:宽频带、大视场、复杂电磁信号环 境;瞬时信号检测、测量和快速、非匹配信号处理。4优点:、简述脉冲压缩雷达的优缺点。

1、通过匹配压缩处理获得高的距离分辨率。

2、脉冲宽度与有效频谱宽度这两个参数可以独立选取,增加了雷达波形设计的灵活性。

3、宽带信号有利于提高系统的抗干扰能力。缺点:

1、存在距离和速度耦合,影响测量。

2、存在距离旁瓣,通过加权处理抑制旁瓣。

3、收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。5信号分选和识别;引导干扰方向;引导武器系、简述测向定位的作用。P51 统攻击;提供告警信息;提供辐射源,方向和位置情报。

三、12、RCS3、UWB;雷达反射截面积;超宽带 4、5、DBF;数字波束形成

6、PDWELINT;脉冲描述字;电子情报侦查

7、STFT;短时傅里叶变换、ESM;电子支援侦查

四、120MW、某雷达用的发射机,要求输出脉冲功率为体微波源),现已知主振放大式发射机的主振器(固的输入功率为20mW,则此微波放大链的功率增益为多少才能满足要求? G=10lg(20*10^6)/(20*10^(-3))=90db 2[2GHz,4GHz]、一比向法测频接路相关器,n=4,最短延迟线时间为收机,测,一输入信号频率为0.5ns频2.761GHz,采用范围为,3下表给出各相关器无模糊的相位估计值。分别采用最长延时线相关器输出和所有相关器输出求得到的频率估计值。P27 k fˆRFˆkk1fn1ˆi0fˆRFi1 2πnT2πTnk1f03示样脉冲、压缩测频接收机,t测频范围为f1~f2 =1~2GHz,号经过接收机的延时时间是多少。SA=Tc=1us,那么频率为1.45GHzP50 的信τ =(f-f1)×TC/△fC =0.45us △fc=f2-f1 12GHz]、某超外差搜索接收机测频范围为中放带宽,中频频率2MHz,试求:30MHz,频率搜索周期[1GHz,1ms,(1)本真的频率变换范围和调谐函数f(2)若有频率为1125MHz的连续波信号到达,L(t)求视频输出波形。(1)测频范围:[1000+30MHz,2000+30MHz] 2)在搜索过程中,输出信号有无时间:中频 fL(t)=1000+30+(2000-1000)t/10-3=1030+106(t 频率两边 ffL(t1)-1125=29(t2)-1125=31 t1=0.124 Lt2=0.126(还有画图)

第四篇:浅谈雷达技术的发展概况及应用

浅谈雷达技术的发展概况及应用

文学院 潘荟程

雷达一词广义上来讲是指无线电工程的一部分,它研究如何发现并决定各种目标的位置(包括决定本身位置在内)。

在本世纪30年代,无线电技术出现了重大的突破,那就是雷达的发明。雷达又称作无线电测位,是利用无线电波的反射,来测量远处静止或移动目标的距离和方位,并辨认出被测目标的性质和形状。

早在1887年,赫兹进行验证电磁波存在的实验时就曾发现:发射的电磁波会被一大块金属片反射回来,正如光会被镜面反射一样。1897年夏天,在波罗的海的海面上,俄国科学家波波夫在“非洲号”巡洋舰和“欧洲号”练习船上直接进行5千米的通信试验时,发现每当联络舰“伊林中尉号”在两舰之间通过时,通信就中断,波波夫在工作日记上记载了障碍物对电磁波传播的影响,并在试验记录中提出了利用电磁波进行导航的可能性。这可以说是雷达思想的萌芽。1921年业余无线电爱好者发现了短波可以进行洲际通信后,科学家们发现了电离层。短波通信风行全球。1934年,一批英国科学家在R.W.瓦特领导下对地球大气层进行研究。有一天,瓦特被一个偶然观察到的现象吸引住了。它发现荧光屏上出现了一连串明亮的光点,但从亮度和距离分析,这些光点完全不同于被电离层反射回来的无线电回波信号。经过反复实验,他终于弄清,这些明亮的光点显示的正是被实验室附近一座大楼所反射的无线电回波信号。瓦特马上想到,在荧光屏上既然可以清楚地显示出被建筑物反射的无线电信号,那么活动的目标例如空中的飞机,不是也可以在荧光屏上得到反映吗? 根据上述的设想,瓦特和一批英国电机工程师终于在1935年研制成功第一部能用来探测飞机的雷达。后来,探测的目标又迅速扩展到船舶、海岸、岛屿、山峰、礁石、冰山,以及一切能够反射电磁波的物体。

当时研制雷达纯粹是为了军事需要,因此是在保密状态下进行的。实际上,几乎在同一时期,各国的科学家们都在保密的条件下独立地开展这方面的工作,都有杰出的代表人物。R.W瓦特只能说是在这方面已为大家知晓的代表人物而已。

到1939年为止,一些国家秘密发展起来的雷达技术已达到了完全实用的地步。就在这一年,爆发了第二次世界大战,这项新发明在二战中显示出了它的巨大威力。雷达技术首先在美国应用成功。二战中,俄、法、德、意、日等国都独立发展了雷达技术,但除美国、英国外,雷达频率都不超过600MHz。由于雷达的很大作用,产生了针对雷达的电子对抗,研制了大量的对雷达的电子侦察和干扰设备,并成立了反雷达特种兵部队。二战后,特别是五、六十年代,由于航空航天技术的飞速发展,用雷达探测飞机、导弹、卫星、以及反洲际弹道导弹的需要,对雷达提出了远距离、高精度、高分辨率及多目标测量的要求,雷达进入了蓬勃发展的阶段,解决了一系列关键性问题:脉冲压缩技术、单脉冲雷达技术、微波高功率管、脉冲多普勒雷达、微波接收机低噪声放大器(低噪声行波管、量子、参量、隧首二极管放大器等)、相控阵雷达。七十至九十年代,由于发展反弹道导弹、空间卫星探测与监视、军用对地侦察、民用环境和资源勘探等的需要,推动了雷达的发展。出现了合成孔径雷达(SAR),高频超视距雷达(OTHR),双/多基地雷达,超宽带雷达(UWB),逆合成孔径雷达(ISAR),干涉仪合成孔径雷达(InSAR),综合脉冲与孔径雷达等新技术新体制。

在现代社会中,雷达机被广泛地应用和平的和军事的目的。在和平用途中,应用雷达机来作无线电导航具有很大的实际意义。首先,在航空方面,它用来对飞机作远程和近程领航、指挥和监督飞机在空中的飞行、引导飞机着陆(包括盲目着陆),最后,还用来指挥飞机在机场上的运动。在航海方面,雷达机被广泛地用来对船舰作远程和近程领航、防止船舰和冰山以及其他障碍物碰撞、指挥船舰在港口内的运动等等。用无线电定位的方法可以进行地形测量,气象台中可以用它来预测气候(根据气流和暴风雨前沿运动的数据),天文学中可以用它来研究宇宙的空间。

目前投入使用的对空情报雷达的共同特点是探测距离远,分辨率高,反有源干扰 和无源干扰能力比较强,能对抗反辐射导弹的攻击,工作可靠,情报容量比较大,可在 2000年后继续服役。随着各种空袭兵器和反雷达技术的迅猛发展,雷达与反雷达的相对平衡状态也随之被打 破,使雷达的有效工作和生存面临严重挑战。目前国外正在加紧开发雷达高新技术,研制性 能更为先进的新一代对空情报雷达。预计,这些新型雷达将在2000年前后陆续投入实战使 用。其中比较有代表性的型号有:美国的ARSR-4和ASTAR雷达系列,法国的TRS-2140(Flair)以及西班牙的“伦赛”三坐标监视雷达。这些雷达的战术技术特点主要有:

①综合采用一系列新技术、新体制,如全相参、全固态、超低副瓣天线、数字波束形 成、捷变频、脉压及大时宽—带宽等先进技术。

②发射机将增加一系列输出功率管理系统,以便自适应于各种作战环境。

③可靠性指标将进一步提高,如美国在研的W-2100雷达的致命故障间隔时间将大于 5000h。另外雷达的自检功能将渗透到各个分系统,故障检知率可超过98%,从而可使雷达 的可用性大幅度提高。

④将具备探测诸如隐身飞机这样的小雷达散射截面目标的能力。例如W-2100雷达,对 目标的有效探测距离可达170km以上。它还采用了一种新型滤波器,将最大时速为1389km的高速鸟群和昆虫群滤波,从而把与这些鸟群和昆虫群具有同样雷达 截面积的“隐身”目标探测出来。

⑤电子防御措施比较齐全。新型三坐标雷达一般都从体制、参数选择和附加措施三个方 面来提高电子防御能力。

新型防空情报雷达大-都兼有数种新技术体制的优点,如层叠波 束、相控阵等。参数选择有波形可变、脉宽可变、重频可变、极化可变以及自适应发射频率 选择、瞬时寂静、反辐射诱饵等。综合运用上述措施,将会大大提高雷达的有效性和生存能 力。

雷达技术对国防科技和武器装备发展的影响主要体现在下列三方面:1.是军事上实时、主动、全天候获取各类目标信息不可缺少的技术探测手段,是收集各种军事情报的传感器技术之一,是“千里眼”。在当今高技术条件下,对一个战区乃至全球多方面的情报收集、处理、分发是指挥员做出正确决策和快速响应必不可少的前提,在防空及各军兵种与各个级别上的战略、战术指挥控制与通信(C3I)系统中,雷达技术是主动获取信息的重要手段,是其它探测手段不能替代的。2.雷达是先进作战平台的组成部分,其作用是人们研制各类武器系统最为关心的。例如,先进的机载脉冲多普勒火控雷达是战斗机火控系统的关键设备,西方主要国家早已将其装备部队,它们还在为更先进的战斗机研制固态相控阵雷达,以提高战斗机的多目标、多功能及远程攻击能力;机载轰炸雷达是轰炸机提高轰炸成功率的重要保证,使轰炸可以不受气象条件和白天黑夜的限制,并可与激光瞄准设备相配合,实现精确打击的目的;地形跟踪和地形回避雷达可使轰炸机、战斗机和巡航导弹实现低空、超低空安全隐蔽接近作战地域和要攻击的目标。3.雷达技术是发展先进武器系统测试评估的技术手段。例如各种精密打击武器,在其研制过程及最终性能评估中,必须要有精密测量雷达对其飞行轨迹、落点精度等进行测量与鉴定;在导弹和卫星的研制和发展中,雷达是弹道参数测量、真假目标识别、突防能力检验、卫星安全控制及轨道测量等必不可少的手段。由此可见,雷达技术是一个国家国防和武器装备现代化以及国防科技发展必不可少的技术。

我国雷达技术发展的现状较发达国家而言还较为落后。雷达门类较多,发展历程不尽相同,起步有早有晚,仿制和自行设计互有交叉。为常规武器配套的雷达一般是仿制与自行设计并举,新体制的雷达、自动化作战指挥系统、激光红外雷达和导弹、卫星无线电测控系统等则是随着雷达技术的发展在自力更生基础上自行设计研制开发而成的。但从我国雷达技术和产品发展总体来说,大致经历了修配、仿制、自行设计和发展提高四个阶段。

修配阶段(1949年~1953年)

这一阶段以开创基业和修配美、日旧雷达为主要标志。1949年5月,我军接管了国民党的雷达研究所,标志着我国雷达工业的发展从此揭开了序幕。

新中国成立后,盘踞在台湾和沿海岛屿上的国民党部队不断突袭大陆沿海城市,我防空部队急需雷达。不久,抗美援朝战争开始,前方十分需要各种雷达设备,国家对雷达研究所从人力、物力等方面大力支持,利用缴获的雷达器材和美、日在二次大战中留下的旧雷达进行维修和补缺配套,装备部队使用。这些修复的雷达绝大多数是警戒雷达,也有炮瞄雷达、用于高炮或探照灯引导的美国早期单目标跟踪雷达、舰艇上搜索海面活动目标雷达。后期也修理过少量苏式雷达。

以仿制为主的发展阶段(1953年底~60年代初)这一阶段以建立雷达生产基地和仿制苏式雷达产品为主要标志。新中国诞生后,苏联援助的100多个项目中雷达占了7项,新建了雷达、指挥仪生产厂,后又与苏联签订了有关协定,开始仿制苏式雷达产品。仿制出了警戒雷达、炮瞄雷达、舰用雷达、机载雷达、指标仪、制导雷达和末制导雷达等。地面防空雷达的仿制和自行设计几乎是同时开始的。1954年仿制成功的中程警戒雷达是我国第一批装备部队的国产雷达,1956年设计成功我国第一部微波对海远程警戒雷达。

仿制的海用雷达有海军警戒雷达、舰艇搜索雷达、搜索攻击雷达、导弹制导雷达、鱼雷快艇攻击雷达和鱼雷潜艇攻击雷达。1960年苏联专家全部撤退,停止援助合同,给仿制工作带来很大损失和困难。经努力,绝大多数有资料、样机或只有样机的苏式产品都仿制成功。

这一阶段仿制的雷达大多数相当于苏联50年代初、中期装备水平。仿制的成功扩展了我国装备部队雷达产品的门类系列,形成了雷达为陆、海、空部队服务的雏型,通过多部雷达的引进仿制,掌握了雷达试制生产的全过程。

经过五十年的艰苦奋斗,雷达行业已成为我国国防现代化建设和参与国民经济主战场的一支实力雄厚的产业大军,形成了中央与地方相结合、沿海与内地相结合、军用与民用结合、专业和门类比较齐全的工业体系。一批产品的性能指标已跨入先进行列。同时,培养和造就了一支素质高、能打硬仗的技术队伍。更可喜的是涌现了一大批年轻有为的雷达科技人员,培养和造就了一批高素质的跨世纪科技人才,从而使我国雷达工业以崭新的姿态迈入21世纪。但我们还应清醒地看到,我国的雷达技术与装备水平距发达国家还有一定的差距,在某些领域还相当落后,落后就要挨打,这就要求我们的雷达科研人员牢记自己所肩负的神圣使命,刻苦攻关,发奋努力,研制出具有世界一流水平的雷达装备,为我国国防现代化事业作出应有的贡献。

第五篇:雷达基础知识

雷达工作时发射无线电波,依靠接收器接收物体反射回波来判断其距离,速度和移动路线 雷达技术定义:

[ 转自铁血社区 http://bbs.tiexue.net/

雷达技术就是利用电磁波对目标进行测向和定位。它发射电磁波对目标进行照射并接收其回波,经过处理来获取目标的距离、方位和高度等信息。雷达一词是英文Radar的音译,它是Radio Detection and Ranging几个英文单词词头的缩写,意为“无线电检测和测距”。雷达技术涉及到天线、接收、发射、控制、显示、数据处理、收发开关、调制器、定时器及微电子等技术领域。雷达技术作为一种技术探测手段,具有白天黑夜均能检测到远距离的较小目标,不为云、雾和两所阻挡,具有探测距离远,测量目标参数速度快等特点,因此,它不仅用于军事目的,还广泛地应用到民用事业和各项科学研究中,如交通管制、气象预报、资源探测、航天、电离层结构和天体研究等等。雷达可以按照不同的方法进行分类:按雷达波段可分为米波雷达、分米波雷达、厘米波雷达、毫米波雷达及其他波段雷达等;按雷达发射信号形式或信息加工方式可分为脉冲雷达、连续波雷达、脉冲压缩雷达、动目标显示雷达、脉冲多卜勒雷达等;按雷达架设地点不同可分为地面雷达、航空器载(机载)雷达、船舶载雷达、航天器载雷达等;按雷达完成的战术任务不同可分为:远程和超远程警戒雷达、指挥引导雷达、炮瞄雷达、跟踪测量雷达、导弹制导雷达、航空管制雷达和气象雷达等;按天线特点可分为相控阵雷达,合成孔径雷达和共形天线雷达等等。不论怎么分类,雷达基本上划分为连续波和脉冲雷达两大类。各类雷达的研究、发展和设置由雷达所承担的任务来决定。国外概况:

雷达技术的基本概念形成于20世纪初。20年代的研究证明了雷达技术可发现船只,并用于测量电离层的高度。30年代初开始研制探测飞机的脉冲雷达技术。从30年代中开始,军事部门利用雷达技术来测定远距离或看不见的目标的方向、距离和大小之后,雷达技术得到了迅速发展。特别是在第二次世界大战初期,英国利用新出现的雷达设备在邻近德国的本土海岸线上(英伦海峡沿岸)布设了一道观测敌方飞机的早期报警雷达链,使伦敦城及其周围的机场不致遭到德国法西斯入侵飞机的突袭,对保卫英国本土起了决定性的作用,从此,雷达技术引起世界各国的关注。在第二次世界大战期间,由于作战的需要,雷达技术发展极为迅速,新的雷达器件不断现出,雷达使用频率不断扩展,作战使用效率不断提高。在战前的雷达器件和技术只能达到几十兆赫。大战初期,德国首先研制成大功率三、四极电子管后,雷达工作频率可达500兆赫以上,这不仅提高了雷达探索和引导飞机的精度,而且也提高了高炮控制雷达的性能,使高炮命中率更高,1939年,英国发明工作频率为3000兆赫的功率磁控管以后,雷达技术开始向空中发展,地面与空中雷达投入使用,使盟军在空战和海-空作战方面取得了优势。大战后期,美国进一步把雷达技术使用的磁控管的工作频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。在高炮火控方面,精密自动跟踪雷达技术使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机,命中率提高了二个数量级。随着电子技术和武器装备的发展,雷达技术不断向前推进,新的雷达体制不断涌现,并相继建立了许多防空预警雷达系统(网)。就雷达技术和体制而言,40年代后期出现了动目标显示技术,诞生了动目标显示雷达,这有利于从地杂波和云雨等杂波背景中发现目标。50年代,雷达技术已经较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术,并研制出高分辨力的合成孔径雷达技术。60年代出现了相控阵雷达、超视距雷达和三坐标雷达,并将合成孔径雷达推广到民用。70年代固态相控阵雷达和脉冲多普勒雷达问世。从雷达技术的应用而言,随着50年代高速喷气式飞机的出现,60年代低空突防飞机、部分轨道轰炸武器和中、远程弹道导弹以及军用卫星的出现,人们研制了低空警戒雷达、超远程警戒和跟踪测量雷达,并建立了专门用于对付这些目标的雷达预警系统,如50年代美国为对付前苏联远程轰炸机的威胁,相继建立了“松树预警线”、“远程预警线”和“中加拿大预警线”;60年代为对付弹道导弹威胁建立了“北方弹道导弹预警系统”;60年代至70年代初建立了“潜射弹道导弹预警系统”;到70年代和80年代又决定用更先进的雷达(包括固态大型相控阵雷达)对上述系统进行改进,以使这些防空预警系统现代化,并使其中的一些大型系统具备一机多能(情报搜集、预警、跟踪、对空间目标的编目监视以及攻击制定)和对付多目标的能力。目前,美国和前苏联的雷达(现在主要由俄罗斯接管)无论从雷达体制的多样性、雷达技术水平的先进性、雷达预警系统的完整性以及大型雷达的数量等方面看,它们均处于世界前列,各种体制的雷达,它们都拥有,有的只有它们建成了,如大型后向散射超视距雷达,美国从80年代初到90年代初建造了两部。前苏联从80年代初开始至苏联解体时为止,共建造了四部。探测距离与跟踪距离达数千公里的大型雷达及雷达网,国外只有它们两家拥有。如陆(海)基先进的大型相控阵雷达系统,前苏联最多,达20多部,美国也有9部。这些大型雷达系统一部的建造费用少则几千万美元,多则达数亿美元,如美国的后向散射超视距雷达(原计划用25亿美元建四部)。陆基大型相控阵雷达尽管技术上已经成熟和完善,但是,冷战结束后,其发展暂处于稳定状态,近几年,美国和俄罗斯很少新建这类雷达,相反,俄罗斯由于经济方面的原因,其大型相控阵雷达的数量还在减少,如1998年8月已关闭了位于拉脱维亚的雷达站。另一方面,由于相控阵雷达具有一机多能、波束易控以及对付多目标等优点,它在机载和舰船载应用方面仍是雷达技术发展的方向,国外仍在大力发展中,如美国、英国、法国等均在为先进战斗机及联合攻击战斗机研制固态相控阵雷达,以提高战斗机的多目标、多功能及远程攻击能力;美国和以色列等国家还在研制新的装载相控阵雷达的预警飞机。

雷达技术从军方开始利用它来测定远距离或看不见的目标的方向、距离、大小等为起点,其发展已经历了六十多年,时至今日,仍方兴未艾,蓬勃发展。雷达体制从开始时单一的脉冲制,发展成为今天拥有动目标显示、合成孔径、相控阵、超视距以及脉冲多普勒等多种体制。雷达功能不断扩展,当初主要是观察空中飞机,现在观测目标已拓宽到从地下到空间的多类目标,如地下工事、地下指挥所、地面和海面慢速移动目标、低空和超低空飞行目标、空中的有人驾驶和无人驾驶飞行器、固定机翼和旋转机翼飞行器、空间航天飞行器、运载火箭以及弹道导弹等等;当初主要是主动、快速获取目标信息的手段,除此之外,它现在还是各类先进作战平台实现精确打击的必备设备,是发展先进武器系统测试评估的手段。雷达功能的拓展要求雷达技术的发展必须满足这些要求,这就促使雷达技术向多功能(搜索、检测和跟踪);多模工作方式;地面和海上雷达相互融汇;天线系统采用电扫阵列、合成孔径、工作频段宽、辐射能力强、重量轻和噪声低的器件;机动性强、可移动或易移动;采用双/多基地雷达和逆合成孔径雷达,以进一步提高抗干扰、抗摧毁和对付隐身目标的能力;采用相控阵技术发展三坐标低空补盲雷达;雷达系统信号处理的数字化和智能化等方向发展。影响:

雷达技术对国防科技和武器装备发展的影响主要体现在下列三方面:1.是军事上实时、主动、全天候获取各类目标信息不可缺少的技术探测手段,是收集各种军事情报的传感器技术之一,是“千里眼”。在当今高技术条件下,对一个战区乃至全球多方面的情报收集、处理、分发是指挥员做出正确决策和快速响应必不可少的前提,在防空及各军兵种与各个级别上的战略、战术指挥控制与通信(C3I)系统中,雷达技术是主动获取信息的重要手段,是其它探测手段不能替代的。2.雷达是先进作战平台的组成部分,其作用是人们研制各类武器系统最为关心的。例如,先进的机载脉冲多普勒火控雷达是战斗机火控系统的关键设备,西方主要国家早已将其装备部队,它们还在为更先进的战斗机研制固态相控阵雷达,以提高战斗机的多目标、多功能及远程攻击能力;机载轰炸雷达是轰炸机提高轰炸成功率的重要保证,使轰炸可以不受气象条件和白天黑夜的限制,并可与激光瞄准设备相配合,实现精确打击的目的;地形跟踪和地形回避雷达可使轰炸机、战斗机和巡航导弹实现低空、超低空安全隐蔽接近作战地域和要攻击的目标。3.雷达技术是发展先进武器系统测试评估的技术手段。例如各种精密打击武器,在其研制过程及最终性能评估中,必须要有精密测量雷达对其飞行轨迹、落点精度等进行测量与鉴定;在导弹和卫星的研制和发展中,雷达是弹道参数测量、真假目标识别、突防能力检验、卫星安全控制及轨道测量等必不可少的手段。由此可见,雷达技术是一个国家国防和武器装备现代化以及国防科技发展必不可少的技术。?? [ 转自铁血社区 http://bbs.tiexue.net/ [技术难点] 雷达技术经历了六十多年的发展之后,目前最关键的是如何与数字计算机相结合,使之成为一个完整的统一体,以实现从原始的回波信号中实时提取大量有用信息,并以简便、直观方式显示给操作人员,送达到与其相配合的武器系统,使雷达系统能执行更多的任务,能自适应环境而工作。由于雷达技术与现代武器系统密不可分,它所要探测的目标种类越来越多,这就要求雷达需要解决的技术难题也很多。1.要解决多目标识别(尤以非合作目标的识别)问题;2.要解决对低空、超低空目标的探测以及对低空和地面移动目标的探测问题;3.要解决对付隐身目标、寻的导弹、反辐射导弹的攻击;4.要解决一机多能及抗电子干扰问题;5.要解决轻重量、以满足平台升高、机载和星载应用要求;6.要研制不同波段的合成孔径雷达等。机载雷达的发展概况

六十年来,国外机载雷达已发展成九大类,数百个型号。其中,军用机载雷达占大多数。现在,军用机载达不但已经成为各种军用飞机必不可少的重要电子装备,而且其性能优劣已成为军用飞机性能的重要标志。

1、六十年的发展历程

军用机载雷达是30 年代诞生的。当时机载雷达使用的是笨重的米波振子阵列天线,而且被安装在飞机机头和机翼的外侧。二战期间,尽管磁控管在雷达中广泛使用后出现了多种型号的10 厘米和3 厘米波段的军用机载雷达,有了空对地(搜索)轰炸、空对空(截击)火控、敌我识别、无线电高度(计)、护尾告警等类型,但它们的技术水平却很低。它们所采用的信号不过是脉冲调制和调频连续波两种;发射管不过是多极真空管和磁控管;天线不过是振子和抛物反射面;显示器全都采用阴极射线管;自动角度跟踪和距离跟踪系统多数用机电式,技术上还不够完善。当时较新的技术只有机械式电扫描天线,动目标显示和传送雷达信号到地面观测站的中继线路这三项。

二战以后,机载雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动截击火控系统、地形回避和地形跟随、无源或有源的相控阵,频率捷变、多目标探测与跟踪等新的雷达系统。分系统所采用的新技术有高效矩阵平板线、全固态相控阵的收发单元功能模块、低噪声射频接收场效应放大器、高频率稳定频率综合器、数字式信号处理与数据处理、可编程的功率控制和数字处理、彩色电视光栅扫描变换显示、大功率的液压或力矩马达的天线驱动、控制指令和信息传输的数字总线、计算机控制的机内自检系统等。所采用的新器件有栅控功率行波管、砷化镓射频器件、高速大规模集成电路等。目前装备各国的军用飞机的雷达已有所需的各种类型、各种性能;覆盖从分米波到光波的宽广频域;不同复杂程度雷达的可*性达到100~1000小时MTBF。

[ 转自铁血社区 http://bbs.tiexue.net/、90年代的机载雷达

90年代在各国军用飞机上装备的产品都具有很高的技术水平。雷达波段通常为X与Ku波段;预警雷达使用更长波段;直升机雷达使用毫米波段。雷达的波形通常为具有高、中、低脉冲重复频率的全波形脉冲多普勒全相参系统。发射机通常使用功率行波管。天线一般使用平板缝阵天线,并向无源相控阵以至有源相控阵过渡。信号处理已基本实现数字化;数据处理也已实现数字计算机化;由于微处理机的快速发展而使信号处理与数据处理合并在同一个可编程处理机中进行。机载雷达的显示信息均已变换成电视制式信号在飞机的综合显示系统中显示。雷达的可*性因大规模集成电路的使用和模块化设计而大幅度提高;雷达的维护性则由于机内自检与试验台的广泛使用而得到极大改善。雷达的体积与重量逐年降低;功耗则稳定在合理水平上。

美国隐形飞机上装备的最新一代机载雷达与过去50年装备使用的有很大差别。出于隐形的要求,必须装备低截获概率雷达。相控阵天线具有较好的隐身性能,而其技术进展已到了实用阶段,因而成为首选的系统。B-2隐身轰炸机的AN/APQ-181和F-22隐形战斗机的AN/APG-77分别采用无源和有源的二维相控阵天线。F-117A隐形攻击机为了保持其隐形特性与突出对地攻击的能力,它仅装备红外探测和制导激光炸弹的激光照射设备,没有装备主动微波雷达。正在研制的隐形直升机RAH-66则采用传播衰减较大的短毫米波段以保持其隐形特性。新一代军用机载雷达的另一特点是模块化和在航空电子系统中的集成化。无论是APG-77还是APG-181雷达,它所构成的组件大量采用其它主力飞机所装备的APG-68、APG-70/APG-73和APG-164等雷达的模块,它们之中有很高比例的模块通用性。由于这一代飞机已逐步采用集成航空电子系统设计,雷达在传统上作为一个完整设备的特征开始消失。在“数字航空集成系统(DAIS)”中,雷达的数据输入与输出,及其控制指令都通过数据总线(在美军用飞机中采用军用1553B数据总线)传输,雷达已没有独立的显示控制分系统。在F-22飞机的“宝石柱”模块化集成航空电子系统中,由于大量的信号处理,数据处理和显示控制功能都已由飞机的集成航空电子系统的信号处理区、任务处理区与集成显示器来完成,APG-77雷达只剩下有源单元电扫阵列(AESA)和可编程信号处理机。有源单元是用砷化镓材料制造的单片微波集成电路(MMIC)收发模块,并直接连接小型辐射器。新一代军用机载雷达在使用上的特点便于维护、使用周期长。航空电子系统的机内自检(BIT)系统能够自动检测与隔离故障。判明故障以后,更换通用性较强的模块也很方便。而有源阵列天线更具备“整机性能柔性下降”的能力,不会发生致命性突然失效,因而在很大程度上减少了外场的维护工作。、21世纪的机载雷达

90年代以来,国际形势趋于缓和,因而大大减少了军用飞机用雷达的需求。军用飞机未来发展方向可归纳为隐形、高机动性、多用途化以及武器制导的精确化。21世纪军用飞机的航行、探测与识别目标、隐蔽自身、精确攻击、战果确认等各个阶段都需要有更先进的雷达设备。以相控阵技术为基础的多功能机载雷达可使未来的军用飞机履行多种类型的作战任务,使之成为多用途的军用飞机。

20世纪后半叶,以数字计算和大模集成电路为基础的电子技术得到飞速发展,为军用机载雷达跨进21世纪和实现重大转折奠定了技术基础。雷达获取的信息已从最初的回波有无的检测和距离测量发展到距离、角度、速度四维参数的测量和目标频率特征的分析;从单频单极化发展到宽频多极化以获取更广泛的目标与背景信息;用逆散射特征获取目标尺寸和形状的信息。雷达的频段将向更短(毫米波、红外、激光)和更长(分米波、米波)两个方向发展,以获得更高分辨率、更高抗干扰能力、更多的目标特征或更高的穿透能力。雷达射频能量的产生、辐射、波束控制和接收将由传统的发射机、天线、接收机三大部件转变为数以百、千计的相位控制阵列的收发组件。这种无需转动天线、可用计算机控制天线波束以及“柔性性能下降”特性,更适应多功能机载场合的需要。随着工艺和技术水平的进一步提高,相控阵列还会向飞机机体的仿形阵和敏感蒙皮的方向发展,那将是机载雷达由目前的立体结构向面状分布的根本变化。雷达的信号、数据等信息的处理将实现数字化和综合化。不但雷达内部各种处理系统可以通过编程完成各项处理功能,而且航空电子系统可以把包括雷达在内的各电子设备的信息处理综合在一起,由统一的处理机来处理。这就是美国目前已经推行的“宝石柱”和即将推行的“宝石台”航空电子集成化计划的要点。雷达的控制和显示,目前已通过数据总线并入航空电子集成系统之中。数据总线将逐步改用光纤传送;控制将尽量由计算机按程序来完成;必需由人员亲自干预的控制将用语音来完成,以减少手控动作和控制装置;雷达显示将在集成彩色平板显示屏上出现。

21世纪,雷达的可*性和可维修性将有根本的改进。虽然雷达的功能和性能都已不断发展与提高,但经过长期对可*性改进、雷达测试设备和机内自检系统的研究,目前已使平均无故障工作时间达到200小时以上,外场平均修复时间降到20分钟。相控阵雷达所具有的柔性性能下降特性还有可能使机载雷达逐步做到使用期内免修。雷达的设计和研制方法已经发生很大的变化。计算机在设计、制造、测试过程中取代了大量的人力。雷达的标准化、系列化和组合(模块)化改变了传统的设计方法。它将使机载雷达的设计量减少、研制周期缩短;零部件的通用性提高;雷达的发展已形成系列。由于目前军用机载雷达已面临人为电子干扰、目标低空突防、遭受反辐射导弹攻击、目标隐身和高功率能束武器攻击等多种对抗环境,人们需要更多地研究与采用各种对抗措施。未来的雷达研制工作将侧重系统研究和设计,按照用户的各项要求采用成熟的雷达技术和商用元器件与模块,并用较短时间制成所需的产品。

若综合应用上述已取得或正在取得的高新技术成果,21世纪的军用机载雷达将会普遍采用脉冲多普勒系统,以具备下视能力;具有多目标探测、识别和攻击能力,以对付多个目标;同时具有地形跟随与地形回避能力,以超低空突防;具有合成孔径和逆合成孔径能力,以具备高分辨能力;采用无源或有源相控阵天线,以具备多功能、高可*性等超级能力;采用毫米波、红外与激光探测跟踪器,以适应特殊要求;具有风切变探测能力,以确保飞机着陆时的安全。21世纪的军用机载雷达还会继续探索并解决一系列新概念、新课题,以对付隐身目标、抑制干扰、识别敌我、充分利用电磁信息的能力。军用机载雷达将会发展成一个以微波雷达为主体、集多频段探测器为一体,进行多传感器数据融合的集成系统;将是一个低截获概率的、能探测隐身目标的探测系统;将具备自适应对抗各种人为电子干扰、抗击反辐射武器和高功率束射武器能力的探测系统;将具备远距离识别敌方目标、二维高分辨能力的探测系统;将是一个利用机身和机翼外表仿形安装的共形阵探测系统或敏感蒙皮系统。

战斗机雷达基本概念

首先,现在在世界上能够独立设计和制造现代战斗机雷达的能力的公司,仅有十几个而已。美国有休斯(后来被合并到雷锡恩公司)、西屋(Westinghouse,后被合并到诺斯若普-格鲁曼)公司、埃莫森(Emerson)公司和GE(后被合并到洛克西德-马丁)公司等。从以上说明也可以看到,美国的雷达公司们一般来说开始都是综合性电子公司出身,后来则逐步被合并到航空、防务公司集团中去的。在欧洲,本来有英国的马克罗尼公司(Gec Marconi)和法国的汤普森CSF公司,后来合并为泰雷斯公司。这两者都是有名的雷达制造企业,我国在外贸产品上也采用过这些公司的产品。另外,法国的达索公司不是专门的雷达公司,但为了阵风的开发,也参与制造战斗机雷达。另外的国家,这有瑞典的萨伯(Saab)公司,和以色列的埃尔塔(Elta)公司等。这些几乎就是西方系列的主流雷达制造公司的全部了。这也反映了要设计一个当代的优秀战斗机雷达,是一件多么困难的事情。先说两个术语,波段(Band)和模式(Mode)。

[ 转自铁血社区 http://bbs.tiexue.net/ 波段:指的是雷达波长的范围,根据雷达的种类和用途,其使用的波段都不一样,像C波段,Ku波段等等,都是指这些(译者注:波段的编号有新旧两种记号方式,后续文章再进行说明)。

模式:说的就是雷达用于特种目的的使用方式,现代的雷达都是采用多种模式的雷达。简单来说,有空对空模式,空对地模式等等等,第三代战斗机的雷达一般拥有18种左右的模式,但F-18战斗机采用的AN/APG-65雷达则拥有28个模式(因为F-18应该称为F/A-18,是第三代战斗机中少数拥有常备多任务的战斗机)。现在简单罗列一下这些模式: * AIR-TO-AIR.空对空模式

Range While Search(RWS)– 搜索及测距模式

Track While Scan(TWS)– 边扫描边追踪模式 TRACK AND SCAN(TAS)34.....F-104 的雷达 AN/APG-50......F-4 基本型的雷达。雷达是什么?

RADAR 是RAdio Detection And Ranging的缩略语。简单来说,雷达就是一种发射电磁能量(electromagnetic energy),并收到从目标物体反射而来的反射波(echo)来知道目标方位信息的一种仪器。现在随着雷达技术的发展,已经能够把握目标物体的外形特征了。从这里可以看出,从目标物体反射的信号(echo signal)体现则所有目标信息,重要性如同雷达工学中的生命。

从反射波可以获得很多信息。首先,与目标的距离(军用名词标识为range,与distance同义)是通过说放出的电磁波返回的时间(Round trip time)来测算的。由于电磁波的速度相当于光速,是通过常数C(约 30万 km/sec)乘与 Round trip time/2 来计算的。(往返距离应该除以2是吧?)?}然后是目标的方向。首先目标的坐标(coordinates)根据目标所处的空间可分为2维(2 Dimension, 2D)和3维(3 Dimension, 3D)。(做图形设计或者玩游戏的人都知道^^)海上的舰艇或者地面目标,由于不能上下移动,可看作二维物体,而飞在空中的飞机或者水下的潜艇,拥有一个高度(或者潜深)的概念,当然要适用三维坐标。

[ 转自铁血社区 http://bbs.tiexue.net/ 一般的航海雷达或者远程预警雷达(Air Surveillance)都是2D雷达。反之,战斗机雷达则都是三维雷达(没有高度信息的雷达,对蕉坊比皇敲挥玫腲^)。二位雷达一般进行360度旋转,而战斗机雷达不能监控360赌全方位,一般来说120度是期探测极限范围。再对2D和3D进行分析:

首先要区分的概念,就是方位(Bearing)和方向(Direction)。

“方位”是二维概念,以自身位置为中心来标识目标的相对位置。相对的,“方向”是包括了“方位 + 高度”的三维概念。这里面的方位和二维所说的方位是同一个东西,但一般用Azimuth来表示。一般的表现方式就是以方位角(azimuth angle)来标识的。在雷达用名词里面,高度不是以一般名词Altitude,而是用Elevation来表示的。因为这里所说的高度并不是海拔高度,而是相对于自身的目标相对高度。因此表示起来也不会用“**米高度”而是以“高度角××”来表示的,英语就是elevation angle。整理一下,就是: 2D = Bearing + Range(方位 + 距离)3D = Azimuth + Elevation + Range(方位 + 高度 + 距离 = 方向 + 距离)[ 转自铁血社区 http://bbs.tiexue.net/ 这样,就能确定目标的二维或三维位置信息。以飞机目标为例,就会表示为“Azimuth angle 270度 + Elevation angle 15 度 + Range 70 km” 这种方式。

想象一下无线广播。就像是从一个火堆散发热量,从一个大大的天线中,电波会散播到周围。这时候是不能知道接收信息的对象是哪些的。如果雷达波也是这样的话,就只会根据反射波知道周围有物体,而不能知道目标在什么地方。

那么雷达是怎么探知目标位置的呢? 雷达之所以能够认知到目标方位,是因为雷达是将电磁波作为控制得很窄的波束(beam)的形态来发射的。用这种控制良好的波束来“很勤劳地”反复射向想要搜索的目标区域,并用一定的顺序来扫描,所以就能够探测到目标的方位的。举例来说,弱这个波束的宽度是90度角,那么向东西南北各发射看看,如果南方有回波,那就能知道目标在南边,就是这个原理。同样,如果将波束的宽度再次细分,调整到每1度、2度,那么就能够获得更加精确的方向。就是这种精确探测能力的程度,被称为角解析度(Angular Resolution)。波束宽度变得越窄,角解析度救护变得越高。在雷达天线的驱动装置上面,就有Angle Tracking System,当接收到 echo的时候,就会一直不断地计算正确的角度。这个角度,就是目标的方向信息。雷达的波束鞑子可以分为两类:一个是伞形波束(fan beam),另一个是铅笔波束(pancil beam)。伞形波束就如同以切好的西瓜片,铅笔波束这是一个如同铅笔的很细很长的圆锥形波束。形容波束的形状也是用角度(angle)来表示的。就像“Azimuth 几度, Elevation 几度”这个样子。

下载雷达技术word格式文档
下载雷达技术.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    雷达总结

    雷达气象学是一门与大气探测、大气物理,天气系统探测相关联的学科 Radar:通过无线电技术对目标物的探测和定位。测定目标位置的无线电技术范畴 气象雷达:是用于探测气象要素和......

    雷达通信

    雷达通信简介 一、雷达简介 雷达这个名称是“无线电探测和测距”(Radio Detection and Ranging)英文的缩写。而雷达的出现对地(搜索)轰炸、空对空(截击)脉冲角度跟踪、脉冲......

    军用雷达技术在现代战争中的应用

    军用雷达技术在现代战争中的应用 ??点击上面国科环宇快捷关注军用雷达是专门为特定的军事用途而设计制造的无线电探测和定位装置。它的基本战术性能指标有:探测目标类型、覆......

    军队雷达器材保障信息化 RFID技术功劳大

    军队雷达器材保障信息化 RFID技术应用方案 技术性能先进的雷达在投入部队使用后,却难以很快形成战斗力,无法发挥其应有的作战效能,主要表现在可靠性低、维修性差、备件需求......

    雷达知识点总结

    雷达知识点总结 1. 雷达的工作原理 1 雷达测距原理 超高频无线电波在空间传播具有等速、直线传播的特性,并且遇到物标有良好的反射现象。用发射机产生高频无线电脉冲波,用天线......

    雷达原理论文

    雷达原理论文 姓名: 班级: 学号: 指导老师: 2014年3月 雷达的隐身与反隐身技术 在现代战争中,隐身和反隐身技术具有重要作用和战略意义, 上个世纪的局部战争已充分证实了这一点,......

    雷达原理大作业

    雷达目标识别技术综述 1引言 目标识别是现代雷达技术发展的一个重要组成部分。对雷达目标识别的研究,在国内外已经形成热点,但由于问题本身的复杂性,以及多干扰信号,特别是多噪......

    雷达工作 原理

    雷达的原理 雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收......