第一篇:北师大版七年级上数学教材各节所渗透的数学思想和方法
北师大版七年级上数学教材各节所渗透的数学思想和方法
结合初中学生的认知特点,在教学中要求学生理解如下几种主要的数学思想方法 1.分类思想方法.2.转化的思想方法.3.数形结合思想方法.4.函数与“方程”的思想.5.建模思想.掌握如下几种具体解题方法
1、配方法
2、因式分解法
3、换元法
4、求根公式与韦达定理
5、待定系数法
6、构造法
7、反证法
8、面积法
9、几何变换法
10、消元法 主要观点;
1.注重在平时的教学中渗透数学思想方法.2.任何数学问题的解决无不以数学思想为指导,以数学方法为手段的.3.学生明确解题的思想方法后,才能脱离题海,以不变应万变.
4.从不同的方向看
(一)经历“从不同方向观察物体”的活动过程,发展学生的空间概念和合理的想象.(数形结合思想方法)5.生活中的平面图形
在具体的情境中认识多边形、扇形,培养学生的观察与概括能力.(注重在平时的教学中渗透数学思想方法)
掌握有理数乘法的概念,能进行有理数的乘方运算.(建模思想)10.有理数的乘法
(二)参与折纸操作数学活动,在具体的情境中初步掌握估算的方法,获得一些经险,为本册书
1.线段、射线、直线
通过识图、辨析、观察、猜测验证等数学探究过程,发展几何意识、合情推理和探究意识.(数形结合思想方法)2.线段的大小比较
通过思考想象、合作交流、动手操作等数学探究过程,了解线段大小比较的方法策略,学习开始使用几何工具操作方法,发展几何图形意识和探究意识.(数形结合思想方法)3.角的度量与表示
通过实际操作,体会角在实际生活中的应用,培养学生的抽象思维.(建模思想)4.角的比较
在解决问题的过程中体验(类比、联想等思维方法).5.平行
这课时是通过两直线的位置关系来研究问题,变换了问题研究的角度,教学中应提供大量的现实生活情境让学生在素材中归纳出“平行线段”、“平行线”的定义,并通过大量的操作活动让学生经历平行线的性质探索,发展学生的几何直觉和合情推理能力,初步体会研究数学问题的方法.(几何变换法)6.垂直
通过丰富的画、折等操作活动探究并归纳垂直的性质.用类比“平行”的研究方法来研究垂直的表示和性质归纳,初步感受有条理的说明问题;强化表达能力和用数学交流的能力.(分类思想方法)7.有趣的七巧板
通过七巧板的制作、拼摆等活动,丰富学生对平行、垂直及角等有关内容的认识,积累数学活动的经验。在探索图形的性质、图形的变换活动中,初步建立空间观念。在拼图活动中,让学生对所拼的图形给出自己所赋予的意义以及美好的愿望,既培养了学生的想像能力,又给了学生充分表达自己的机会.(建模思想)
2.解方程
(三)数学知识的规律性。解方程中方程的类型多种多样,但它的解法过程,有一个常见的规律,“去分母,去括号,移项,合并同类项,将未知数的系数化为1,把一元一次方程转化为x=a(a为常数)的形式。”(分类思想方法)3.日历中的方程
列方程解应用题实际上是一个“数学化”的过程,本节安排日历中的方程.日历中数与数之间的关系,给予问题中的未知量、已知量间关系以规律性的东西,为学生得出方程整体做了诸多的铺垫.(建模思想)4.我变胖了
通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.(建模思想)5.打折销售
在学习数学过程中,体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学生热爱数学的热情,实事求是的态度及与人合作、交流的能力.(数形结合思想方法)
6.“希望工程”义演
通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.(建模思想)7.能追上小明吗
培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.(建模思想)8.教育储蓄
通过分析教育储蓄中的数量关系,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型.(建模思想)
让学生观察、思考、讨论、交流,唤起对旧知识的回忆,有步骤、有层次建构新知识;通过引导学生课下亲自经历收集数据、整理数据后进行分析、决策,体会到扇形统计图是展示数据的重要方法。在教学手段上采用计算机辅助教学,使课堂中所呈现的扇形统计图更接近学生的生活,提高教学效率,使教学过程中学生的实践活动得以有效实施.(分类思想方法)4.你有信心吗
理解、掌握制作扇形统计图的步骤,结合实际问题制作扇形统计图来描述数据。学生在处理生活中问题时,提高自己的制图、计算、归纳和合作交流的能力.(分类思想方法)5.统计图的选择
让学生在统计活动过程中,通过相互间的合作与交流,取长补短,掌握识统计图、画统计图和选择统计图的方法;让学生经历数据的收集、整理和简单分析、作出决策的统计活动过程,发展其统计观念.(分类思想方法)
北师大版八年级下数学教材各节所渗透的数学思想和方法
6.一元一次不等式组
(一)本节课除了让学生体验自主求知的学习兴趣,增强自信之外,还要充分发挥本小节教材与方程组的特点。从注重双基、揭示知识发生过程着手,充分体现老师的主导功能,更好地发展学生有条理地进行归纳、猜想和总结的能力.(分类思想方法)6.一元一次不等式组
(二)通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能力.(建模思想)6.一元一次不等式组
(三)通过例题的讲解,让学生初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识.(建模思想)
2.分式的乘除法
通过师生讨论、交流,培养学生(合作探究的意识和能力),培养学生的(创新意识和应用意识).3.分式的加减法
(一)在相关知识的学习过程中,学生经历过一些从实际问题建模的思想.(建模思想)3.分式的加减法
(二)经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养教学学习中转化未知问题为已知问题的能力.(转化的思想方法)4.分式方程
(一)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的(数学模型),并能归纳出分式方程的描述性定义,采用的是尝试——(归纳相结合的方法),根据开始提出的多个实际问题。教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的.(类比思想和方法)4.分式方程
(二)学生活动经验基础:本节课主要采用观察、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程转化为一元一次方程的基础上,再次体会(数学转化思想). 4.分式方程
(三)能将实际问题中的等量关系用分式方程表示,体会分式方程的(模型作用),经历“实际问题——分式方程模型——求解——解释解的合理性”的过程.(建模思想)
识,建立初步的空间观念,发展形象思维.(数形结合思想方法)4.相似多边形
在探索相似多边形本质特征的过程中,进一步发展学生(观察、操作、归纳、类比)等多方面的能力,提高学生的数学思维水平.5.相似三角形
经历相似多边形有关概念的类比,(渗透类比的数学思想),并领会特殊与一般的关系,深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,(建模意识),空间观念等,培养学生积极的情感和态度.6.探索三角形相似的条件
(一)在进行探索的活动过程中发展学生的探索发现归纳意识和合作交流的习惯,发展学生的合情推理的能力和初步的逻辑推理意识,体会(数学思维的价值).6.探索三角形相似的条件
(二)在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯.(归纳法)7.测量旗杆的高度
通过对此问题的解决方案的探究,渗透数学(识模和建模的思想),从而提高学生解决实际问题的能力,增强应用意识.
8.相似多边形的性质
(一)通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识。通过运用相似三角形的性质,增强学生的应用意识.(类比思想)8.相似多边形的性质
(二)经历探索相似多边形的性质的过程,培养学生的(探索能力,合作意识).9.图形的放大与缩小
(一)有意识地培养学生学习数学的积极情感,激发学生对图形学习的好奇心,形成(多角度,多方法想问题)的学习习惯.9.图形的放大与缩小
(二)有意识地培养学生学习数学的积极情感,激发学生对图形学习的好奇心,(形成多角度、多方法想问题)的学习习惯,通过小组合作调查研究,培养学生的合作意识和处理问题的能力;通过解决身边的实际问题,让学生(认识数学与人类生活的密切联系及对人类历史发展的作用).
1.每周干家务活的时间
通过解决身边的实际问题,让学生认识(数学与人类生活的密切联系及对人类历史发展的作用).2.数据的收集
培养学生的收集数据的能力,进一步发展学生的(统计思想),通过几个不同的事例等不同情况的分析,培养学生(求真的科学态度). 3.频数与频率
(一)理解频数、频率等概念,并能读懂相应的频数分布直方图和频数折线图;体会用样本估计总体的思想.(建模思想)3.频数与频率
(二)(1)能根据数据处理的结果,作出合理的决策.(2)培养学生对各种图表信息的识别与获取能力;(3)进一步发展学生的(统计思想). 4.数据的波动
(一)通过几个不同厂家的鸡腿的三个量度的分析,培养学生(对事物的理性思考). 4.数据的波动
(二)1.通过解决现实情境中的问题,提高学生数学(统计的素养),用(数学的眼光看世界).2.通过小组活动,培养学生的(合作意识和能力).
进一步发展学生的合情推理能力,培养学生的逻辑思维能力,培养学生的严密性,更关注学生对(科学的严谨态度,认识论证的必要性).5.三角形内角和定理的证明
用多种方法证明三角形定理,培养(一题多解的能力),对比过去撕纸等探索过程,体会(思维实验和符号化的理性作用).6.关注三角形的外角
通过在数学活动中进行教学,使学生能自主地“做数学”,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
(识模和建模思想)
第二篇:七年级上数学法制渗透教案
七年级上数学法制渗透教案
教师:刘娜
渗透点1:
学科内容:七年级 上册 第一章第1.1 节正数和负数
渗透法制内容:《中华人民共和国计量法》、《中华人民共和国产品质量法》 第六条、第十二条、第十四条
第六条 国家鼓励推行科学的质量管理方法,采用先进的科学技术,鼓励企业产品质量达到并且超过行业标准、国家标准和国际标准。对产品质量管理先进和产品质量达到国际先进水平、成绩显著的单位和个人,给予奖励。
第十二条 产品质量应当检验合格,不得以不合格产品冒充合格产品。第十四条 国家根据国际通用的质量管理标准,推行企业质量体系认证制度。企业根据自愿原则可以向国务院产品质量监督部门认可的或者国务院产品质量监督部门授权的部门认可的认证机构申请企业质量体系认证。经认证合格的,由认证机构颁发企业质量体系认证证书。国家参照国际先进的产品标准和技术要求,推行产品质量认证制度。企业根据自愿原则可以向国务院产品质量监督部门认可的或者国务院产品质量监督部门授权的部门认可的认证机构申请产品质量认证。经认证合格的,由认证机构颁发产品质量认证证书,准许企业在产品或者其包装上使用产品质量认证标志。
教学方法与要求: 要求:初步了解 方法:拓展延伸 示例或说明:
1.正数和负数可以表示很多实际问题,例如:某个汽车零件的直径要求是10cm,加工允许的误差是±0.005cm,表示加工出的零件直径在9.995~10.005之间,就合格,如果不在这个范围,就不合格.(结合教材阅读与思考)
2.如果汽车、飞机等安装了不合格的零件,可能会有什么后果?如果商场的称不准确,会有什么后果?国家有没有必要对这些问题作出规定呢?(借机简单介绍有关法律)
3.学习和了解正负数的含义,有利于我们解决实际问题,同学们嗨可以继续寻找,看正负数还可以表示哪些实际问题?
第三篇:北师大版七年级数学下册教材分析(本站推荐)
北师大版七年级数学下册教材分析
本学期学习的章节: 有《整式的运算》、《平行线与相交线》、《生活中的数据》、《概率》、《三角形》、《变量之间的关系》、《生活中的轴对称》。各章教学内容概述如下:《整式的运算》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础。重点是探索整式运算的运算法则,理解整式运算的算理,推导乘法公式。难点是灵活运用整式运算法则解决一些实际问题,正确地运用乘法公式。
《平行线与相交线》两条直线被第三条直线所截,即所谓的“三线八角”问题和对平行线的讨论是平面几何中重要的议题,也是基础性的内容,有很大的教育价值。让学生通过探索和简单的推理熟悉相关的性质与判定等几何事实,并确信它们成立,成为这册教材“公理化”的经验背景。在这章的最后设置了“用尺规作线段和角”一节,是理解和运用相关几何知识的极好机会,只要求按步骤作图并保留作图的痕迹,暂时只要求用自己的语言表述出作法。平行线的条件和平行线的特征是本章的重点,也是难点。
《生活中的数据》包括“数”和“数据的表示”两部分内容。在数的讨论中,使学生认识“很小”的单位分数(百万分之一)和有效数字的概念,体会其意义和作用。“数据的表示”则提供了“世界新生儿”图,它是一种有别于条形、折线、扇形图的数据统计图,同样提供了丰富的信息,同时暗示了统计图的多样性。重点是会用科学记数法表示较小的数据,能按要求取近似数,能读懂统计图并能从中获取信息。难点是用生活中的事例感受和表述百
万分之一的大小,培养数感和建立统计观念,正确掌握近似数、有效数字的特点及数位的关系;对数据信息的处理、加工的能力。
《概率》一章,在七年级上册感受了可能性有大有小的基础上,进一步刻画可能性的大小,因而十分自然地给出了概率的概念,当然概率模型仅仅定位于简单的 “古典概型”和可化为“古典概型”的“几何概型”(“停留在黑砖上的概率”)。重点是理解概率的意义,并会计算一些事件发生的概率,能设计出符合要求的简单概率模型。难点是理解概率的意义,并会计算一些事件发生的概率,理解现实世界中不确定现象的特点,树立一定的随机观念。
《三角形》:教材提供许多活动,给学生充分的实践和探索的空间,使他们通过探索和交流发现一些与三角形有关的结论,并应用它解决实际问题,给学生提供积累数学经验的可能,建立推理意识,用自己的方式来表达推理过程。重点是三角形的性质与三角形全等的判定、三角形的分类。难点是能进行简单的说理。
《变量之间的关系》:把变量之间的关系列为单独一章,这是在学习了代数式求值和探索规律等地方渗透了变化的思想基础上引入的,为进一步学习函数概念进行铺垫,因为函数是一种特殊的变量之间的“关系”。重点是在具体情景中从表格关系式、图像中获取信息找出自变量、因变量及其相互之间的关系。难点是通过观察和思考能用自己的语言表达,变量之间的关系以及正确把对变量之间关系进行分析和对变化趋势进行预测。
《生活中的轴对称》:实际上是轴对称图形的认识和讨论,并通过轴对称图形来探索轴对称图形的性质。轴对称可以看成反射变换,也是一种几何变换。事实上,平移和旋转可以经过两次反射变换得到,因此它更基本。重点是研究轴对称及轴对称的基本性质。难点是从具体的现实情境中抽象出轴对称的过程。
第四篇:北师大七年级数学课件
数学教学的内容一般都比较抽象,因此教学过程中非常讲究方式方法,下面就是小编为您收集整理的北师大七年级数学课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!
北师大七年级数学课件
一、教学目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备
课件
五、教学过程(师生活动)
(一)情境引入
老师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
问题3:能否用方程的知识来解决这个问题呢?
建议按以下的顺序进行:
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流。
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后老师点评.
解:(1)x+18=54;(2)(27-x)=4x.列出方程后老师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1)列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的差的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1)12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后老师补充的方式进行,主要围绕以下问题:
1、本节课我们学了什么知识?
2、你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、必做题:第84--85页习题3.1第1,5题。
2、选做题:根据下列条件,用式表示问题的结果:
(1)一打铅笔有12支,m打铅笔有多少支?
(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
第五篇:数学思想与方法
小学数学教学研究 第四次作业答案
1.下列不属于数学性质特征的是()。
A.抽象性 B.严谨性 C.客观性 D.应用广泛性
2.下列不属于当今国际小学数学课程目标特征的是()。
A.注重问题解决 B.注重数学应用 C.注重解题能力 D.注重数学交流
3.新世纪我国数学课程内容从学习的目标切入可以分为“知识与技能”、“数学思考”、“解决问题”以及()等四个纬度。
A.数与代数 B.统计与概率 C.空间观念 D.情感与态度
4.下列不属于儿童数学问题解决能力发展阶段的是()。
A.语言表述阶段 B.理解结构阶段 C.学会解题阶段 D.符号运算阶段
5.问题的主观方面就是指()。
A.问题的起始状态 B.问题空间 C.问题的目标状态 D.问题的中间状态
6.下列不属于小学数学学习评价价值的是()。
A.导向价值 B.甄别价值 C.反馈价值 D.诊断价值
7.从逻辑层面看,在小学数学运算规则学习中,主要包含“运算法则”、“运算性质”和()等一些内容。
A.数的认识 B.运算方法 C.简便运算 D.理解算理
8.儿童形成空间观念的主要知觉的障碍主要表现在“空间识别障碍”和()等两个方面。
A.空间想象障碍 B.性质理解障碍 C.视觉知觉障碍 D.空间描述障碍
9.数学问题解决的基本心理模式是“理解问题”、“设计方案”、()和“评价结果”。
A.填补认知空隙 B.执行方案 C.反思修正 D.调查资料
10.一般地看数学问题解决的过程,主要运用的策略有“算法化”、“顿悟”和()等。
A.探究启发式 B.尝试错误法 C.逆推法 D.逼近法
11.皮亚杰的“前运算阶段为主向具体运算阶段过渡”阶段,相对于布鲁纳的分类来说,就是()阶段。
A.映象式阶段 B.动作式阶段 C.符号式阶段
D.映象式阶段向符号式阶段过渡
12.下列不属于“客观性知识”的是()。
A.运算规则 B.数的概念 C.图形分解的思路 D.不同量之间的关系
13.传统的小学数学课程内容的呈现具有“螺旋递进式的体系组织”、“逻辑推理式的知识呈现”和()等这样三个特征。
A.论述体系的归纳式 B.以计算为主线 C.模仿例题式的练习配套 D.训练体系的网络式
14.儿童在数学能力的结构类型中所表现出来的差异主要有分析型、几何型和()三种。
A.计算型 B.具体型 C.调和型 D.概括型
15.属于以学生面对新的问题,形成认知冲突为起点,通过在教师引导下的自学,并在集体质疑或小组讨论的基础上形成新的认知为特征的小学数学课堂学习的活动结构的是()。
A.以问题解决为主线的课堂学习的活动结构 B.以信息探索为主线的课堂教学的活动结构 C.以实验操作为主线的课堂教学的活动结构 D.以自学尝试为主线的课堂教学的活动结构
16.下列不属于常见教学手段的是()。
A.操作材料 B.辅助学具 C.音像资料 D.计算机技术
17.下列不属于在建立概念阶段的主要教学策略的是()。
A.多例比较策略 B.生活化策略 C.操作分类策略 D.表象过渡策略
18.在小学数学运算规则教学的规则的导入阶段中常见的策略有“情境导入”、“活动导入”和()等。
A.练习导入 B.问题导入 C.经验导入 D.算理导入
19.在儿童的几何思维水平的发展阶段中,处于描述(分析)阶段被认为是()。
A.水平0 B.水平1 C.水平2 D.水平
20.儿童在解决数学问题过程中的理解问题阶段也称作()。
A.问题表征阶段 B.明确条件阶段 C.感觉阶段 D.理解联想阶段
答案:CCDCBBBCBA BCCCDCBBCA 第五次作业参考答案:
1. 创设情境、提出假设、检验假设、总结运用。2.(创设的)问题情境(须)有效、注重儿童发现知识的过程、(要)注意适时(的)指导 3.(运用)情境的方式呈现学习任务、数学活动是以任务来驱动的、探索是数学活动的重要形式 4. 关注儿童对现实生活的经历、增强在数学活动中的体验、强化将知识运用于现实情景 5. 定向环节、行动环节、反馈环节 6. 目标取向的评价、过程取向的评价、主体取向的评价 7. 淡化严格证明,强化合情推理、重要规则逐步深化、有些规则不给结语 8. 空间方位、空间距离、空间大小 9. 认知(能力)、操作(能力)、策略(能力)10.(设置)问题情景、提出假设、获得结论 11. 行为(参与)、情感(参与)、认知(参与)12. 已有的生活经验和数学概念、数学思维能力、数学的语言能力 13. 动作(思维)、形象(思维)、抽象(思维)14. 情景(导入)、活动(导入)、问题(导入)15. 认知、联结、自动化
数学思想与方法 第一次答案
1.古埃及数学最辉煌的成就可以说是()的发现。A.进位制的发明 B.四棱锥台体积公式 C.圆面积公式 D.球体积公式
2.欧几里得的《几何原本》几乎概括了古希腊当时所有理论的(),成为近代西方数学的主要源泉。
A.几何 B.代数与数论 C.数论及几何学 D.几何与代数
3.金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是使用了()的方法。
A.几何测量 B.代数计算 C.占卜 D.天文测量
4.《几何原本》中的素材并非是欧几里得所独创,大部分材料来自同他一起学习的()。
A.爱奥尼亚学派 B.毕达哥拉斯学派 C.亚历山大学派 D.柏拉图学派
5.数学在中国萌芽以后,得到较快的发展,至少在()已经形成了一些几何与数目概念。
A.五千年前 B.春秋战国时期 C.六七千年前 D.新石器时代
6.在丢番图时代(约250)以前的一切代数学都是用()表示的,甚至在十五世纪以前,西欧的代数学几乎都是用()表示。
A.符号,符号 B.文字,文字 C.文字,符号 D.符号,文字
7.古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫”指时间长度)的长度就是(),这个数字和现代人们计算的宇宙年龄十分接近。
A.100亿年 B.10亿年 C.1亿年 D.1000亿年
8.巴比伦人是最早将数学应用于()的。在现有的泥板中有复利问题及指数方程
A.商业 B.农业 C.运输 D.工程
9.《九章算术》成书于(),它包括了算术、代数、几何的绝大部分初等数学知识。
A.西汉末年 B.汉朝 C.战国时期 D.商朝
10.根据亚里士多德的想法,一个完整的理论体系应该是一种演绎体系的结构,知识都是从()中演绎出的结论。
A.最终原理 B.一般原理 C.自然命题 D.初始原理
答案:BCDDCBAAAD 第二次答案
1.《几何原本》就是用()的链子由此及彼的展开全部几何学,它的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
A.代数 B.统计 C.分析 D.逻辑
2.《九章算术》确定了中国古代数学的框架,不仅以()归纳体系、()内容、()方法为特点影响我国数学成就的建立,而且在培养和造就我国数学家方面起到了促进作用。
A.封闭的、算法化的、演绎化的 B.封闭的、逻辑化的、模型化的 C.开放的、逻辑化的、演绎化的 D.开放的、算法化的、模型化的
3.《九章算术》确定了中国古代数学的框架,以计算为中心的特点。《九章算术》亦有其不容忽视的缺点:没有任何()数学概念的定义,也没有给出任何()。
A.代数概念,推导和证明 B.集合概念,推导和证明 C.数学概念,推导和证明 D.几何概念,推导和证明
4.欧几里得的《几何原本》是一本极具生命力的经典著作,它的著名的平行公设是()。
A.过两点能作且只能作一直线 B.线段(有限直线)可以无限地延长
C.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交
D.以任一点为圆心,任意长为半径,可作一圆
5.《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容:()。A.定义、公理、公设、命题 B.定义、公式、公设、命题 C.定义、公理、公设、推论 D.定理、公理、公设、命题
6.《九章算术》是中国汉族学者在古代第一部数学专著,它的内容十分丰富,全书采用()的形式,与生产、生活实践密切相关。
A.推论形式 B.问题形式 C.证明形式 D.叙述形式
7.《九章算术》是中国汉族学者在古代第一部数学专著,是“算经十书”中最重要的一种,成书于()左右。
A.公元一世纪 B.公元前一世纪 C.300A.C.D.300B.C.8.《九章算术》的叙述方式以()为主,先给出若干例题,再给出解法;《几何原本》的叙述方以()为主,先给出公理,再通过逻辑推出其他命题。
A.化归,推论 B.归纳,演绎 C.反驳,演绎 D.计算,证明
9.《几何原本》的理论体系并不是完美无缺的,比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在()中起什么作用。
A.计算算法 B.模型方法 C.几何作图 D.逻辑推理
10.《九章算术》是我国古代的一本数学名著。“算”是指(),“术”是指()。
A.算法、证明 B.算法、技术 C.算筹、技术 D.算筹、解题方法
答案:DDCCABABDD 第三次作业
1.从16世纪开始,自然科学研究的中心问题是运动,科学家们相信对各种运动过程和各种变化着的量之间的依赖关系的研究可以用数学来描述。因此,作为运动着的量的一般性质及各个数量之间存在着相依而变的规律,科学家们引出了数学的一个基本概念()。
A.微分 B.积分 C.导数 D.函数
2.初等数学都是以()为其研究对象,运用这些知识可以有效地描述和解释相对稳定的事物和现象,对于运动变化的事物和现象,它们显然无能为力。
A.数量和图形
B.不变的数量和固定的图形 C.变化的数字和固定的图形 D.不变的数量和变化的图形
3.就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定数学到随机数学等是数学思想方法的几次重要突破。代数形成解决了具有复杂()的问题,变量数学创立刻划了()的事物与现象,随机数学出现揭示了()背后所蕴涵的规律。
A.代数关系、几何问题、统计现象 B.映射关系、对应关系、随机现象 C.数量关系,运动与变化、统计现象 D.数量关系,运动与变化,随机现象
4.代数不但讨论正整数、正分数和零,而且讨论负数、虚数和复数。其特点是用()来表示各种数
A.字母符号 B.数字记号 C.图示符号 D.箭头符号
5.第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。而这场争论是指()。
A.无穷小量是零
B.无穷小量究竟是不是零 C.无穷大量究竟是很大的数 D.无穷大量究竟是不是有限
6.算术解题方法的基本思想是:首先要围绕所求的数量,收集和整理各种(),并依据问题的条件列出用()表示所求数量的算式,然后通过四则运算求得算式的结果。
A.未知数据,未知数据 B.已知数据,未知数据 C.已知数据,未知数据 D.已知数据,已知数据
7.人们在社会实践活动常常遇到两类截然不同的现象,一类是确定性现象;另一类是随机现象。随机现象并不是杂乱无章的现象,当同类现象大量出现时,从总体上却呈现出一种规律性。于是,一种专门适用于分析随机现象的数学工具——()诞生了。
A.分形数学与模糊数学 B.概率理论与数理统计 C.群论与数论
D.希尔伯特空间与集合论
8.变量数学产生的数学基础应该是(),标志是()。
A.线性代数、几何学 B.概率统计、微积分 C.解析几何、微积分 D.数论初步、几何学
9.第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自()的发现起,到公元前370年左右,以()的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派。
A.B.C.D.10.代数学形成过程经历了漫长过程:()。
A.文字代数,简写代数,图标代数 B.文字代数,简写代数,符号代数 C.文字代数,符号代数,简写代数 D.符号代数,文字代数,简写代数
答案:DBDABDBCAB 第四次作业
1.客观世界具有统一性,数学作为描述客观世界的语言必然也具有统一性。因此,数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现。布尔巴基学派在集合论的基础上建立了三个基本结构:(),然后根据不同的条件,由这三个基本结构交叉产生新的结构。可以说,布尔巴基学派用数学结构显示了数学的统一性。
A.集合、几何结构和群结构 B.代数结构、几何结构和群结构 C.代数结构、序结构和拓扑结构 D.代数结构、序结构和群结构
2.哥德尔不完备性定理是他在1931年提出来的。这一理论使数学基础研究发生了划时代的变化,更是现代逻辑史上很重要的一座里程碑。它证明了任何一个形式系统,只要包括了简单的初等数论描述,而且是()的,它必定包含某些系统内所允许的方法既不能证明真也不能证伪的命题。
A.自洽 B.自足 C.自主 D.逻辑
3.公理方法就是从()出发,按照一定的规定(逻辑规则)定义出其他所有的概念,推导出其他一切命题的一种演绎方法。
A.初始概念和公理 B.定理和概念 C.公理和推理 D.定理和命题
4.第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的(),促使了数理逻辑这门学科诞生,其中,十九世纪七十年代康托尔创立的()是产生危机的直接来源。
A.理论化集合论 B.数学化集合论 C.数学化数论 D.数学化超穷数理论
5.公理化方法的发展大致经历了这样三个阶段:(),用它们建构起来的理论体系典范分别对应的是《几何原本》、《几何基础》和ZFC公理系统。
A.形式公理化阶段、实质公理化阶段和纯形式公理化阶段 B.纯形式公理化阶段、形式公理化阶段和实质公理化阶段 C.实质公理化阶段、纯形式公理化阶段和形式公理化阶段 D.实质公理化阶段、形式公理化阶段和纯形式公理化阶段
6.罗素悖论引发了数学的第三次危机,它的一个通俗解释就是理发师悖论:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”现在的问题是:如果理发师的胡子长了,他能给自己刮脸吗?()
A.能 B.不能 C.无结果
7.为避免数学以后再出现类似问题,数学家对集合论的严格性以及数学中的概念构成法和数学论证方法进行逻辑上、哲学上的思考,其目的是力图为整个数学奠定一个坚实的基础。随着对数学基础的深入研究,在数学界产生了数学基础研究的三大学派:()。
A.几何学派、抽象学派、现实学派 B.集合主义、抽象主义、形式主义 C.抽象主义、现实主义、直觉主义 D.逻辑主义、直觉主义、形式主义
8.三段论是演绎推理的主要形式,由()三部分组成。
A.小前提、大前提、结论 B.大前提、小前提、结论 C.大前提、小推理、结论 D.前提、推理、结论
9.自然科学研究存在着两种方式:定性研究和定量研究。定性研究揭示研究对象是否具有(),定量研究揭示研究对象具有某种特征的()。
A.某种特征数量状态 B.某种特征实际状态 C.内在关系数量状态 D.内在关系实际状态
10.哥德尔不完全性定理一举粉碎了数学家两千年来的信念。他告诉我们:真与可证是两个概念,()。某种意义上,悖论的阴影将永远伴随着我们。
A.可证的一定是真的,但真的不一定可证 B.可证的一定是真的,但真的不一定可证 C.可证的一定是真的,但真的不一定可证 D.可证的一定是真的,但真的不一定可证
答案:DAABDCDBAC 第五次作业答案
强抽象就是指通过把—些(a)加入到某一概念中而形成()的抽象过程。
A.新特征新概念 B.特征概念
C.非特征因素新概念 D.新特征原始概念
2.弱抽象又称“概念扩张式抽象”,是指由原型中选取某一特征或侧面加以抽象,从而形成比原型更为一般的概念或理论。这时,原型成为新的概念或理论的(a)。
A.特例 B.依据 C.猜测 D.证明
3.例如,“等腰直角三角形→等腰三角形→直角三角形→三角形”这是一个(b)过程。
A.强抽象 B.弱抽象 C.浅层抽象 D.深层抽象
4.概括是在思维中由认识个别事物的本质属性,发展到认识具有这种本质属性的一切事物,从而形成关于这类事物的普遍概念。由概括得出的新概念是表述概括对象概念的一个(d)。
A.种概念 B.子集概念 C.空集概念 D.属概念
5.例如,“菱形→等边四边形→平行四边形→四边形”这是一个(a)过程。A.强抽象 B.弱抽象 C.浅层抽象 D.深层抽象
6.人们在思维中,抽象过程是通过一系列的(c)的思维操作实现的。
A.比较、区分和舍弃 B.区分、舍弃和收括 C.比较、区分、舍弃和收括 D.比较、区分、增加和收括
7.抽象是对同类事物抽取其(d)的本质属性或特征,舍去其非本质的属性或特征的思维过程。
A.一般 B.特殊 C.异同 D.共同
8.一个概括过程包括等几个主要环节。d A.比较、区分和扩张 B.区分、扩张和分析 C.比较、概括、扩张和分析 D.比较、区分、扩张和分析
9.概括就是把同类事物的(b)联结起来,或把个别事物的某些属性推广到同类事物中去的思维方法。
A.不同属性 B.共同属性 C.本质属性 D.非本质属性
10.抽象是舍弃事物的一些属性而收括固定出其固有的另一些属性的思维过程,抽象得到的新概念与表述原来的对象的概念之间不一定有(a)。A.种属关系 B.非种属关系 C.一般关系 D.固有关系
第六次作业
1.猜想就是根据事物的现象,对其本质属性进行(D),或者是根据一类事物中的个别事物的属性对该类事物的共同属性进行(),这样的思维方法叫做猜想。
A.论证、论证 B.推测、论证 C.论证、论证 D.推测、推测
2.归纳猜想的思维步骤为:(C)。
A.猜想—特例—归纳 B.归纳—特例—猜想 C.特例—归纳—猜想 D.特例—猜想—归纳
3.人们运用类比法,根据一类事物所具有的某种属性,得出与其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为(A)。
A.类比猜想 B.类比法 C.猜想法 D.类比证实法
4.反例反驳的理论依据是形式逻辑的(A)。
A.矛盾律 B.同一律 C.统一律 D.悖论 5.数学猜想具有两个明显的特点:(B)与()。
A.科学性、假想性 B.科学性、推测性 C.预测性、推测性 D.预测性、假想性
6.完全归纳法是根据对某类事物中的(C)的情况分析,进而作出关于该类事物的一般性结论的推理方法。
A.部分对象 B.特征 C.每一对象 D.原因
7.反驳反例是用(D)否定()的一种思维形式。
A.一般、特殊
B.一个矛盾、另一个矛盾 C.特殊、特殊 D.特殊、一般
8.所谓不完全归纳法,是根据对某类事物中的(B)的分析,作出关于该类事物的一般性结论的推理方法。
A.全部对象 B.部分对象 C.特征 D.原因
9.归纳法是通过对一些(B)情况加以观察、分析,进而导出一个一般性结论的推理方法。
A.一般的、普遍的 B.个别的、特殊的 C.个别的、强化的 D.一般的、特殊的 10.人们运用归纳法,得出对一类现象的某种一般性认识的一种推测性的判断,即猜想,这种思想方法称为(C)。
A.猜想证实法 B.猜想法 C.归纳猜想法 D.归纳法
第七次作业
1.三段论:“偶数能被2整除,是偶数,所以能被2整除”。A A.“是偶数”是小前提 B.“是偶数”是结论 C.“能被2整除”是小前提 D.“能被2整除”是大前提
2.三段论:“因为3258的各位数字之和能被3整除,所以3258能被3整除”。D A.“3258能被3整除”是小前提
B.“3258能被3整除”是大前提
C.“3258的各位数字之和能被3整除”是大前提
D.“各位数字之和能被3整除的数都能被3整除”是省略的大前提
3.在化归过程中应遵循以下几个原则:(C)。
A.一般化原则、熟悉化原则、和谐化原则 B.简单化原则、归一化原则、和谐化原则 C.简单化原则、熟悉化原则、和谐化原则 D.简单化原则、熟悉化原则、统一化原则
4.数学公理发展有三个阶段:欧氏空间、各种几何空间、(C)。
A.具体空间 B.三维空间
C.一般意义上的空间 D.二维空间
5.演绎推理是以一个(A)一般性判断(或再加上一个特殊的判断)为前提,推出一个作为结论的判断的推理形式。
A.个别的或特殊的 B.一般的或特殊的 C.个别的或普遍的 D.一般的或普遍的
6.化归方法是指数学家们把待解决的问题,通过某种转化过程,归结到一类(A)的问题中,最终获得原问题的解答的一种手段和方法。
A.已经能解决或者比较容易解决 B.可以解决或比较容易解决 C.具有特定因素 D.具有普遍特征
7.古希腊欧几里得的《几何原本》是人们所建立的第一个公理体系,由于它具有特定的研究对象,其公理以人们的直观经验为基础反映为认为公理是自明的,所以称为(C)的公理体系。
A.抽象 B.形式化 C.具体 D.特殊化
8.演绎推理的根本特点是(C)。
A.前提为真,结论为假 B.前提为假,结论必真 C.前提为真,结论必真 D.前提为真,结论可能是真
9.化归方法包括三个要素:(D)。
A.化归目标、化归策略和化归途径 B.化归对象、化归目标和化归原则 C.化归对象、化归策略和化归原则 D.化归对象、化归目标和化归途径
10.化归的途径:(B)。
A.分解、组合、变形 B.分解、组合、恒等变形 C.分解、归纳、恒等变形 D.分解、归纳、变形
第八次作业
1.在古代的游戏与赌博活动中就有()的雏形,但是作为一门学科则产生于17世纪中期前后,它的起源与一个所谓的点数问题有关。
A.概率思想 B.统计方法 C.组合方法 D.分类思想
2.算法具有下列特点:()、()、()。
A.有限性、确定性、有效性 B.无限性、确定性、有效性 C.有限性、确定性、有限性 D.无限性、确定性、有限性
3.所谓计算是指根据已知数量通过()求得未知数。计算是一种重要的数学方法,任何一门科学所采用的定量分析都离不开计算。
A.数学试验 B.数学推论 C.数学方法 D.数学证明
4.算术与代数的解题方法基本思想的区别:算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是(),而代数方法的关键之处是()。
A.计算、等式 B.列算法、列步骤 C.列算式、列方程 D.列算式、列方法
5.算法大致可以分为()和()两大类。
A.单项式算法、指数型算法 B.多项式算法、指数型算法 C.多项式算法、对数型算法 D.单项式算法、对数型算法
6.学生理解或掌握数学思想方法的过程有如下三个主要阶段()、()、()。
A.潜意识阶段、明朗化阶段、了解阶段 B.了解阶段、理解阶段、深刻理解阶段 C.潜意识阶段、理解阶段、深刻理解阶段 D.潜意识阶段、明朗化阶段、深刻理解阶段
7.代数解题方法的基本思想是,①首先依据问题的条件组成内含()的代数式,并按等量关系列出方程,②然后通过对方程进行恒等变换求出未知数的值。
A.字母 B.数据
C.已知数和未知数 D.数据和符号
8.计算工具的发展:①经历了();②手摇计算机、对数计算尺等机械式计算工具;电动式计算机;③机电式计算机。④集成电路计算机、大规模集成电路计算机几个主要阶段。
A.算盘
B.古代的计算工具 C.尺规 D.绳子
9.算法是由一组()组成的一个过程。一个算法实质上就是解决一类问题的一个处方。
A.合理公式 B.有限规则 C.有限数据 D.合理推论
10.在计算机时代,()已成为与理论方法、实验方法并列的第三种科学方法。
A.计算方法 B.逻辑推论 C.数据分析 D.虚拟试验
答案:AACCBDCBBA 第九次作业
1.数学建模的基本步骤:弄清实际问题、()、建模、求解、检验。
A.化简问题 B.寻找条件 C.建立对应关系 D.深化问题
2.数学学科的新发展——分形几何,其分形的思想就是将某一对象的细微部分放大后,其()。
A.结构更加明朗 B.结构与原先一样 C.结构更加模糊 D.结构与原先不同
3.根据学生掌握数学思想方法的过程有潜意识阶段、明朗化阶段和深刻理解阶段等三个阶段,可相应地将小学数学思想方法教学设计成()、()、()三个阶段。
A.多次孕育、初步理解、简单应用 B.思考、求解、应用 C.多次分析、初步理解、简单应用 D.多次分析、简化求解、深化应用
4.英国的牛顿和德国的莱布尼兹分别以()为背景用无穷小量方法建立了微积分。
A.数学与几何学 B.物理和坐标法 C.数学和解析几何 D.物理学和几何学
5.数学建模是指根据具体问题,在一定假设下使(),建立起适合该问题的数学模型,求出模型的解,并对它进行检验的全过程。
A.问题化简 B.条件明朗 C.问题归类 D.条件简化
6.鸽笼原理可叙述为:若n+1只鸽子飞进n个笼子里,则至少有一个笼子里至少飞进()只鸽子。
A.3 B.2 C.4 D.1 7.已知某物体在运动过程中,其路程函数S(t)是二次函数,当时间t=0、1、2时,S(t)的值分别是0、3、8。求路程函数。
A.B.C.D.8.数学模型具有(抽象性)、(准确性)、()、()特性。
A.公理性、归纳性 B.简单化、虚拟化 C.演绎性、预测性 D.演绎性、模糊性
9.数学模型可以分为三类:(1)概念型数学模型;(2)();(3)结构型数学模型。
A.实验型数学模型 B.推理型数学模型 C.逻辑型数学模型 D.方法型数学模型
10.在建立数学模型的过程中,()这一环节是很重要的。
A.数学猜想 B.数学抽象 C.数学证明 D.数学模拟
答案:ABADABACDB 第十次答案
1.数学分类有现象分类和本质分类的区别。所谓现象分类,是指仅仅根据数学对象的()进行分类。
A.特征 B.表象 C.内因
D.外部特征或外部联系
2.数学教育效益,是指通过一定时间的教学后,学生在数学学习方面能获得的发展和进步。数学教育效益既包括学生获取()的效益,也包括学生掌握()以及提高学习能力的效益。
A.人文知识、哲学思考方法 B.数学知识、数学思想方法 C.数学知识、数学实验步骤 D.数学文化、数学方法
3.一个科学的分类标准必须能够将需要分类的数学对象,进行()、()的划分。
A.不重复、无遗漏 B.不复制、无遗漏 C.不重复、无标准 D.不复制、无标准
4.所谓数形结合方法是指在研究数学问题时,()、()、数形结合考虑问题的一种思想方法。
A.由数思数、见形思形 B.由数思形、见形思形 C.由数思数、见形思数 D.由数思形、见形思数
5.菱形概念的抽象过程就是把一个新的特征:()加入到平行四边形概念中去,使平行四边形概念得到了强化。
A.组邻边相等 B.钝角相等 C.边相等 D.直角
6.所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的()的思想方法。
A.平行子集 B.空集 C.较小集合 D.较大集合
7.所谓本质分类,即根据事物的()进行分类。
A.本质特征或内部联系 B.特征 C.性质 D.内因
8.数学思想方法,是指现实世界的()反映到人们的意识之中,经过()而产生的结果。数学思想方法是对数学事实和理论经过概括后产生的本质认识。
A.空间形式和数量关系、讨论活动 B.空间形式和数量关系、思维活动 C.空间形式和逻辑关系、思维活动 D.空间形式和数量关系、辩证活动
9.匀速直线运动的数学模型是()。
A.一次函数 B.二次函数 C.对数函数 D.指数函数
10.特殊化的作用在于,当研究的对象比较复杂时,通过研究对象的特殊情况,能使我们对研究对象有个初步了,且它的作用还在于,事物的()存在于()之中。
A.个性、共性 B.共性、个性 C.性质、个性 D.共性、性质
答案:dcadacabab 第十一次作业与第十二次无答案