一元一次方程教案(含教学建议)

时间:2019-05-12 22:17:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元一次方程教案(含教学建议)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元一次方程教案(含教学建议)》。

第一篇:一元一次方程教案(含教学建议)

教学设计示例

一、素质教育目标

(-)知识教学点

1.了解二元一次方程、二元一次方程组和它的解的概念.

2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

3.会检验一对数值是不是某个二元一次方程组的解.

(二)能力训练点

培养学生分析问题、解决问题的能力和计算能力.

(三)德育渗透点

培养学生严格认真的学习态度.

(四)美育渗透点

通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

二、学法引导

1.教学方法:讨论法、练习法、尝试指导法.

2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

三、重点·难点·疑点及解决办法

(-)重点

使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.

(二)难点

了解二元一次方程组的解的含义.

(三)疑点及解决办法

检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

教学建议

一、重点、难点分析

本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

二、知识结构

本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念.

三、教法建议

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

和矛盾方程组如

等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

第二篇:一元一次方程教案

一元一次方程讲学稿

执笔:苏阳 审核:

教学目标: 1.了解什么是方程,什么是一元一次方程;

2.经历把“实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效地模型,认识从算式到方程是数学的进步。

教学重难点:

会根据实际问题列出一元一次方程。教学过程:

(一)复习

1.含有 叫方程,比如:。2.判断下列式子是不是方程,正确打“√”,错误打“x ”.

(1)1+2=3()(2)1+2x=4()

(3)x+1-3()(6)x-1=0()3.引入

我问开店李三公,多少客人在店中?一房七客多七客,一房九客一房空。请你仔细算一算,一共有多少房间?

用算术方法容易解决这个实际问题吗?

(二)新授 Ⅰ.方程的概念

师:列方程时,要先设字母表示未知数,(通常用x、y、z等字母表示未知数),然后根据问题中的相等关系,写出含有未知数的等式——方程。

Ⅱ.一元一次方程的概念

先看例1: 根据下列问题,设未知数并列出方程:

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 解:(1)设(2)设

2(3)设

观察以上所列出的各方程,有什么特点:每个方程有几个未知数?未知数的次数是多少?

师:上面各方程都只含有一个未知数(元),未知数的次数都是1(次),这样的方程叫做一元一次方程。

像4x,1700+150x,0.52x-(1-0.52)x.等这样的式子,可以表示实际问题中的数量关系。例如,0.52x-(1-0.52)x在(3)中表示女生数与男生数的差。

归纳:

上面的分析过程可以表示如下:

分析实际问题的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

(三)练习

1.下列方程中,是一元一次方程的是()A.x+2y=1 B.2y +

y52+1=0 C.61 D.2y=8

x22.已知方程2xm135是一元一次方程,则m=.a33.已知方程((a4)x4.课本82面练习.(四)小结:

50是关于x的一元一次方程,则a=.含有 的等式叫方程.只含有 未知数,并且未知数的次数,这样的方程叫一元一次方程.列方程的一般步骤:

分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程). 列方程的关键是找相等关系.(五)作业:

课本84面1.2.课本85面5.6.7.8.9.

第三篇:一元一次方程教案

一元一次方程(1)公开课教案

授课:张福仁 地点:七年级 教学目标:

1.知识与技能

(1)通过观察,归纳一元一次方程的概念.

(2)根据方程解的概念,会估算出简单的一元一次方程的解.

2.过程与方法.

通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

3.情感态度与价值观

鼓励学生进行观察思考,发展合作交流的意识和能力.

重、难点与关键

1.重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,•列出简单的一元一次方程,并会估计方程的解.

2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.

3.关键:找出能表示实际问题的相等关系.

教具准备 投影仪.

教学过程

一、情境导入:

1、德国世界杯足球赛场为长方形足球场,周长为310米,长和宽之 差 为25米,足球场长与宽分别是多少米?

提问:你会用算术方法解决这个问题吗?不妨试试列式。

提问:设球场长度为X米宽度用含x的式子表示为 米.根据“长方形周长=(长 + 宽)×2”,你能列出方程吗?

2、青藏铁路格尔木至拉萨段全长共1142千米,途中经过冻土路段和非冻土路段.若列车在冻土路段的速度为每小时80千米,非冻土路段的速度为每小时110千米,全程行驶时间为12小时,你能算出列车经过的冻土路段有多少千米吗?

提问:设列车经过的冻土路段为X千米,非冻土路段行驶路程为 千米,可得到方程?

提问:分析数量关系,找相等关系是关键,试试看,你能找到吗?

相等关系:冻土路程+非冻土路程=全程 冻土行驶时间+非冻土行驶时间=全程行驶时间

学生讨论完成。

二、新课:

观察前面得到的两个方程有什么共同特点?

答:

1、只含有一个未知数

2、这未知数的指都为

1含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程

“ 一元”是指一个未知数;

“一次”是指未知数的指数是一次.

比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.

有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.

列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,•然后根据问题中的相等关系,写出含有未知数的等式即方程.

例1:根据下列问题,设未知数并列出方程.

(1)用一根长 24cm 的铁丝围成一个正方形,正方形的边长是多少?

分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

分析:设再经过x月这台计算机的使用时间达到规定的检测时间,•根据每月再使用150小时,那么x月共使用150x小时.

能表示这个问题的相等关系是什么?

相等关系是:已使用的时间1700小时+还可以使用的时间150x小时=规定的检测时间2450小时.

从而列出方程:1700+150x=2450.

找出表达问题意义的相等关系是列出方程的关键.

以上分析过程可归纳为:

分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).

列方程是解决实际问题的一种重要方法,利用方程可以解出未知数.

填空1、4×()=24 2、2 ×()-1=

5如:方程 1、4x=24 2、2x-1=5当x为何值时,等号左右两边相等?

通过观察可知:

1、当x=6时;

2、当x=3时:

像这样,能使方程左右两边的值相等的未知数的值,叫做方程的解

巩固练习:

1.环形跑道 400cm ,沿跑道多少周,可以跑3 000m ?

设沿跑道跑x周,可以跑 3000m,根据相等关系──x周共长 3000m .

所以列方程:400x=3000,2.如果设买甲种铅笔x枝,那么买乙种铅笔(20-x)枝,买甲种铅笔用去0.3x元,乙种铅笔用去0.6(20-x)元,相等关系是:

两种铅笔共用了9元钱,由此可列方程.

0.3x+0.6(20-x)=93、方程 的解为()

A、-3 B、12 C、-12 D、4、方程x=3是下列哪个方程的解?()

A、3x+9=0 B、x=10-4x

C、x(x-2)=3 D、2x-7=125、x=1 000和2 000中哪一个是

方程0.52-(1-0.52)x=80的解?

小结:本节课学了哪些内容?哪些方法?

作业:P83: 5、6、7

第四篇:一元一次方程教案

3.1一元一次方程教案

上课人:周艳

一、教学目标

知识目标:掌握方程、一元一次方程的及其解的概念,理解等式的基本性质,并利用等式的基本性质解一元一次方程。

能力目标:通过列方程培养学生的抽象思维能力;通过求方程的解培养学生从“未知”向“已知”转化的数学思想。

情感目标: 让学生初步感受到数学方程与现实世界的密切联系,认识到方程是刻画现实世界的一种有效的数学模型;在自主观察,探索,发现的过程中培养学生的探索精神,体会成功的乐趣。

二、教学重点和难点

教学重点:理解一元一次方程的概念,会运用等式的基本性质解简单的一元一次方程。

教学难点:利用等式的性质解一元一次方程。

三、教学过程

(一)联系实际,创设情境

1、今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

提问学生:能够用算术方法得出答案吗?如果不能,那应该用什么方法解决?(引入方程的概念,引导学生回顾小学学过的方程的概念)在小学里我们已经知道,像这样含有未知数的等式叫做方程。[选一选]:下列各式中,哪些是方程?

⑴ 5x=0;

⑵ 42÷6=7;

⑶ y2=4+y;

⑷ 3m+2=1-m; ⑸ 1+3x; 注意:关于

2、在参加2008年北京奥运会的中国代表队中,羽毛球运动员有19人,比跳水运动员的2倍少1人,参加奥运会的跳水运动员有多少人?

设参加奥运会的跳水运动员有x人,根据题意得:2x-1=19

3、王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍? 设再过x年,王玲的年龄是(12+x)岁,他爸爸的年龄为(36+x)岁,根据题意得:36+x=2(12+x)

(通过以上实际问题,进一步回顾小学已经学过的方程的概念和列方程)

(二)观察归纳,建构新知:

[议一议]:观察以上你所列的方程,这些方程之间有什么共同的特点?

(学生进行观察与思考,并用自己的语言进行描述,然后进行小组交流。教师在学生发言的基础上,给出一元一次方程的概念。)

在原有方程概念的基础上,鼓励学生观察、归纳自我建构新的概念—— 一元一次方程。

提示:上述所列的方程中,方程的两边都是__式,只含有__个未知数,并且未知数的指数是__次,这样的方程叫做一元一次方程。(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。)

最后总结提出:要成为一元一次方程需要几个条件? [做一做]:⒈下列各式中,哪些是一元一次方程?

⑴ 7x=9;

⑵ y2=4+y;

⑶ 3m+2=1-m;

⑷ x-=-; ⑸ xy=1;

⒉你能写出一个一元一次方程吗?

(让学生回答,教师在黑板上板书,其他学生帮忙纠正)点评:1.方程是含有未知数的等式,方程一定是等式,但等式不一定是方程;

2.方程中未知数可以不止一个,未知数的次数也可以不是1,但一元一次方程是只含有一个未知数,并且未知数的指数是一次,另外方程的两边必须都是整式.(三)交流对话,自主探索

在小学里我们还知道,使方程左右两边的值相等的未知数的值叫做方程的解。你们知道“创设情境”第2、3题的方程的解吗?(方程的解的概念和解方程的概念)你们是怎么得到的?

(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)强调:我们知道x能取0,1,2,3,4,5,6,7, 8, 9, 10, 11。把这些值分别代入方程左边的代数式,求出代数式的值,就可以知道x=10和x=12是2、3方程的解。这种尝试检验的方法是解决问题的一种重要的思想方法。课本介绍了用尝试,检验的方法求解,以让学生经历尝试,检验的过程,体验尝试作为问题解决的策略的重要性,在这一过程中,学生还能获得不少其他方面的收获,如进一步认识方程的解的意义,体会为什么要先确定x的尝试取值范围,如何确定x的尝试取值范围等。

[做一做]:

⒈判断下列t的值是不是方程2t+1=7-t的解:

⑴ t=-2;

⑵ t=2.注意:检验过程要注意格式的书写规范,不能直接将数值代入方程.如(1)不能这样写:把t=-2代入原方程,得-4+1=7-(-2),-3=9,所以t=-2不是原方程的解.这样写不对的原因在于未检验之前尚不知t=-2是否原方程的解,也就不知t=-2时方程两边是否相等,这样就不能用等号连接.在初学阶段,要求学生写出解的检验过程是有必要的,这能加深学生对方程解的认识。作业检验过程的表述可以模仿范例。追问:你能否写出一个一元一次方程,使它的解是t=-2? ⒉解方程:⑴ x-2=8;

⑵ 5y=8.(让学生思考解法,只要合理均以鼓励。)

除了这些方法,还有没有其它的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。

(四)理解性质,应用巩固

实验:1.如果天平两边同时增加或减少相同质量的砝码,那么天平还保持平衡吗?

2.如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?

归纳等式的性质:

⒈等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。即:如果a=b,那么a+c=b+c,a-c=b-c ⒉等式的两边都乘以(或除以)同一个不为零的数(除数不为0),所得结果仍是等式。

即:a=b,那么ac=ab,a/c=b/c(c不等于0)3.如果a=b,那么b=a(对称性)4.如果a=b,b=c,那么a=c(传递性)

例1.利用等式的性质解下列方程:

2x-1=19 解:两边都加上1得,2x=19+1(等式基本性质1)

即 2x=20 两边都除以2,得

x=10(等式基本性质2)

检验:把x=10分别代入原方程的两边,得

左边=2*10-1=19 右边=19 左边=右边 所以x=10是原方程的解。

例⒉解下列方程:(按照例一解题步骤进行作答)

⑴ 5x=50+4x;

⑵ 8-2x=9-4x.(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式,这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)

提示:为了使含未知数的项都集中到等式的左边,应对方程做怎样的变形?依据是什么?为了使常数项集中到等式的右边,又应对方程作怎样的变形?依据是什么?渗透化归的思想。

[做一做]:

课堂检测

1.判断下列各式是不是方程,是的打“√”,不是的打“x”.①-2+5=3()② 3x-1=7()③ m=0()④x﹥3()

⑤x+y=8()

⑥S=ab()

⑦2a +b()2.x=3是下列哪个方程的解?()

A.3x-1-9=0

B.x=10-4x C.x(x-2)=3

D.2x-7=12

3.利用等式性质解方程:4x-15=13

(五)总结反思,布置作业

必做题: 第87页:1----2

第88页:1----2

选做题: 第89页:82 [说一说]:通过上面的学习,你有什么收获?另外你有什么感触或疑惑?

总结理清知识脉络,强化重点

 方程的概念  一元一次方程的概念  方程的解和解方程的概念  等式的基本性质

 运用等式的基本性质解一元一次方程

第五篇:认识一元一次方程_教学设计_教案

教学准备

1.教学目标

1、通过天平实验,归纳出等式的基本性质,并会用数学符号表达;

2、理解等式的基本性质,能用它们来解方程;

3、通过观察、操作、归纳等数学活动,感受数学思考过程的条理性和数学结论的严密性.2.教学重点/难点

教学重点与难点

重点:理解等式的基本性质,并能用它们来解方程 难点:利用等式的基本性质进行等式变形.3.教学用具

课件

4.标签

认识一元一次方程

教学过程

一、创设情境,引入新课

引言:上节课我们学习了一元一次方程、方程的解的概念,那么方程的解是怎样获得的呢?今天我们就来研究一元一次方程的解法.教师:同学们还记得我们小学学过的简易方程的解法吗?比如x+2=4.生1:x+2-2=4-2,x=2.生2:一个加数等于和减去另一个加数,所以x=4-2,x=2.教师:同学们回答得很好.今天我们一起研究利用等式的性质解一元一次方程.(教师板书课题)等式就像平衡的天平,你能否通过加、减天平两边的重量,使天平继续保持平衡呢?大家动手实验一下.(组织学生分组自己动手,利用天平进一步探索、体会这种等式的变化.这次要求学生把研究的结果分成几种情况,并试着用精炼的语言叙述出来,或分组推荐代表回答.设计意图:从学生已有的知识出发,提出新问题,激发学习的兴趣和动机,让学生从一开始就充满好奇心和获取知识的欲望.然后提供实验器材,通过天平实验,形象直观的展示等式的基本性质,并让学生在动手操作过程中,主动获取知识,丰富教学活动经验,学会探索,自然过渡到新课学习.让学生在动手活动中自主探索,合作交流,并要求学生除了在操作时注意记录个人获得的成功体验外,还要多了解他人的想法,把在试验和观察中获得的直观感受,用数学语言表述出来,教师要积极参与到实验中,多观察每个学生的表现,注重学生知识的形成过程.二、动手实践,探究新知

1、实验总结

教师让学生观察下图:

教师:通过以上这两个图形,你能得到什么结论?

学生:如果在平衡的天平的两边都加同样的量,天平保持平衡;反过来,如果在平衡的天平的两边都减去同样的量,天平仍保持平衡.教师:你们能够根据天平的性质归纳出等式的性质吗? 学生:等式两边同时加上(或减去)同一个数后,其结果仍相等.教师:如果扩大范围,将等式两边同时加上(或减去)同一个代数式呢?结果还是等式吗?请大家试一试.组织学生小组内列举,交流,得到肯定答案.教师:上述性质该怎么样叙述呢?

学生:等式两边同时加(或减)同一个代数式,所得结果仍是等式.教师:你能试着用数学符号表达出这个性质吗?

学生:若x=y,则x+c=y+c(c为代数式);x-c=y-c(c为代数式).教师再让学生观察下图:

教师:请同学们继续观察这幅图片,它反映的问题和第一幅一样吗? 学生:不一样,这里的物品数是成倍增加的.教师:如果天平两边的物品的重量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗? 学生:仍平衡.教师:你能模仿性质1总结一下吗?

(这里学生的回答是多种多样的,并且出现了像“等式两边同时乘以或除以同一个数,所得结果仍是等式”等不正确的结论,教师要把握好,组织学生充分讨论,确定性质2所必需的限制条件.)等式两边同时乘同一个数(或除以同一个不为零的数),所得结果仍是等式.用数学符号可以表示为:

若x=y,则cx=cy(c为一数值);(c为一数值,且c≠0).设计意图:本环节是学生从活动中总结规律,经历知识形成的重要过程.学生在天平实验的操作过程中,通过多次演示,能够收集到许多和等式的性质有关的信息,而把这些信息先梳理,再分类,最后用文字语言表述出来,对学生来说有一定难度,教师应特别做好引导和启发工作,既要鼓励学生大胆表述自己的见解,也要及时修正表述中不确切的语句,特别要突出性质2中对于除法运算中零不能作除数这个限制条件,反复强化本节课的重难点.三、应用新知,解决问题

等式的基本性质是我们今后解一元一次方程的重要依据,利用等式的基本性质解方程.例1:解下列方程(1)x+2=5;(2)3=x-5.解:(1)方程两边同时减去2,(2)方程两边同时加上5,分别得到x+2-2=5-2,3+5=x-5+5,于是分别可得解x=3于是8=x,习惯上,我们写成x=8.(先让学生尝试自己解方程,然后请他们讲解每一步的步骤,并说出依据,体会等式的性质在解方程中的应用.)教师:你们解得的答案对不对呢?怎样验证你的答案? 学生:将解得的答案带入原方程,计算方程两边的值是否相等.教师:怎样检验呢? 学生:把 =3入原方程 左边= +2=3+2=5,右边=5,因为左边=右边.所以 =3是原方程的解.设计意图:在实际变形的过程中,让学生体会等式基本性质一的真正含义,让学生感受到负数的引进及有理数运算的介入,用等式的基本性质解方程,相比小学的逆运算更具理性思维.在经历等式变形的过程中,增强学生数学理性思维问题的意识,规范的数学书写格式.实际效果:学生习惯于用加法和减法逆运算的算理求出这两个方程的解,用等式的性质来解方程、读书能看懂,但有点思维不习惯,学生都能理解将未知数写在等号左边,值写在等号右边.有同学提出:检验方程的解.应给予肯定和表扬.例2:解下列方程(1)-3x=15;(2).解:(1)方程两边同时除以-3,得,化简得x=-5(2)方程两边同时加上2化简,得,方程两边同时乘-3,得n=-36.本例题有师生共同完成,学生说出自己的想法,教师示范性板书解题过程,对于学生不同的解法和思维,教师予以肯定,错误的及时纠正,并强调书写的格式.设计意图:在实际变形的过程中,让学生体会等式基本性质一、二的真正含义,培养学生严谨、科学的思维习惯,规范的数学书写格式.实际效果:学生在感受了例1的思考过程后,能比较顺利地完成本例的解答.学生习惯于用乘法和除法逆运算的算理求出这两个方程的解,有点思维不习惯,学生对等式性质中的限制性条件理解不深刻.如“同时乘以或除以同一个非零数”运用不够好.教学建议:讲授以上两例时,创设一种师生交流互动的环节,教师引导学生用等式的基本性质解方程,此过程中与学生平等交流,并给予恰倒好处的点拨.教师鼓励学生表达,并且在加深对等式基本性质理解的基础上,对不同的答案开展讨论,引导学生分享彼此的思想和结果,并重新审视自己的想法.如:解方程 时,整理得.有同学说方程两边都乘以-3,得n=-36;也有同学说方程两边都除以,得n=-36.以上两种思考方式教师给予了客观公正的评价,只要能用等式的基本性质将原来的方程变形成 =a(a为常数)的形式即可.)

四、巩固训练,提升能力

让学生独立完成课本133页的随堂练习和134页2、3两小题,做完后同学小组间进行讨论交流,教师给予指导.课堂小结

1、本节课你有哪些收获?

2、你还有哪些困惑?你还希望在哪方面老师给你再进行指导?

师生共同归纳总结主要内容:等式的基本性质及注意事项.通过对本课所学内容的归纳,一方面清晰地梳理出本课学过的基本知识及数学思想;另一方面,习惯地将新学的知识及方法构建到原有的知识体系中,找出“承前启后”的“承接点”、“启发点”.)

课堂小结

学了这节课,你有什么收获?

课后习题 完成课后练习题。

板书 认识一元一次方程

下载一元一次方程教案(含教学建议)word格式文档
下载一元一次方程教案(含教学建议).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    求解一元一次方程_教学设计_教案

    教学准备 1. 教学目标 1、会解含有括号的一元一次方程,进一步体会解方程是运用方程解决实际问题重要环节. 2、通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解......

    一元一次方程教案(合集8篇)

    篇1:一元一次方程教案一、教材分析1、本节内容的地位和作用(1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节......

    一元一次方程及其解法教案

    一元一次方程及其解法 教学目标: 1、经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题。 2、通过观察,归纳一元一次方程的概念。 3......

    解一元一次方程教案

    解一元一次方程教案 教学过程 解一元一次方程来探究方程中含有括号的一元一次方程的解法. 解方程2(x-2)-3(4x-1)=9(1-x). 分析 方程中有括号,设法先去括号. 解2x-4-12x + 3......

    解一元一次方程 教案

    3.2解一元一次方程(一)----合并同类项与移项(第1课时) 教学目标:1、知识与技能目标:①经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。② 学会合并同类项......

    解一元一次方程教案

    解一元一次方程—合并同类项教案 执教人:王杰 执教时间:十月四日 教学目标: 知识与技能:学会合并同类项,会解“ax+bx=c”类型的一元一次方程. 过程与方法:能够找出实际问题中的......

    《解一元一次方程》教案

    《解一元一次方程》教案 儋州市兰洋中学 曹辉球 第1课时教学目标 1.了解一元一次方程的概念。 2.掌握含有括号的一元一次方程的解法。重点、难点 1.重点;解含有括号的一元一......

    一元一次方程应用题教案

    《列一元一次方程解应用题》教学设计 ----- 多角度寻找题目中的等量关系与列方程主讲教师:刘露莲 【教学目标】 1. 弄清楚题目中各数量之间的关系,找出等量关系。 2. 能根据......