第一篇:求解一元一次方程_教学设计_教案
教学准备
1.教学目标
1、会解含有括号的一元一次方程,进一步体会解方程是运用方程解决实际问题重要环节.2、通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解方程,提高解决问题的能力.3、通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.2.教学重点/难点
教学重点
灵活解含有括号的一元一次方程.教学难点
灵活运用解一元一次方程的步骤.3.教学用具
课件
4.标签
求解一元一次方程
教学过程
一、小组讨论,引入课题
内容:设置问题串,观看课本(或课前预习),请同学回答:
1、上课时解一元一次方程的题型有什么特点?
2、解方程:4(x+0.5)+x=17.此方程有什么特点?与上课时的题型差异何在?
3、解方程:x-6(2x-1)=4.此方程又该如何解呢?
二、合作学习内容:请同学们分析理解137页图解题.1、由同学根据图示编出一道合理的应用题.2、比较此题与本章节第一节引例的实际问题有何区别? 完整编出此题:
小林到超市,准备买1听果奶和4听可乐,小明告诉他一听可乐比一听果奶贵5角钱,小林给了营业员10元钱,找回了3元,大家帮助小林算算一听果奶,一听可乐各是多少钱?完成的过程中体现出学生对图例中已知、未知等相关方面的信息掌握全面,梳理清晰,表达准确.本例学生们发现设问中的未知量由原来的一个增加到现在的两个,并给出完整的解答过程.这些方面学生都能很完整、准确地给予书面语言的表达,完成得非常好,为后续课程的学习奠定了很好的基础.列出方程:4(x+0.5)+x=10-3.这个方程列的对吗?怎样解所列的方程? 例3解方程:4(x+0.5)+ x=7.解:去括号,得4x+2+x=7.移项,得4x+x=7-2.合并同类项,得5x=5.方程两边同除以5,得x=1.此题通过师生合作解决,强调规范的步骤格式.三、探索交流,深化认识
内容:课本137页,例4解方程:-2(x-1)=4.解法一:去括号,得-2x+2=4.移项,得-2x=4-2.化简,得-2x=2.方程两边同时除以-2,得x=-1.解法二:方程两边同时除以-2,得x-1=-2.移项,得x=-2+1.即x=-1.四、巩固提高
让同学们独立完成课本138页随堂练习的八道题,完成后小组间进行讨论交流,教师最后再对同学们解答过程中的存在的一些问题给予指导和纠正.课堂小结
1、本节课我们学习了哪些内容?
2、解含有括号的一元一次方程的一般步骤是什么?每步变形的依据及需注意什么?
课堂小结
学了这节课,你有什么收获?
课后习题 完成课后练习题。
板书 求解一元一次方程
第二篇:5.2求解一元一次方程(一)教案
§5.2求解一元一次方程
(一)教案
备课时间:2012.11.27 授课时间:2012.12.3 教学目标:
1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能. 2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.
3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.教学重点:掌握用移项法解一元一次方程.教学难点:灵活用移项法解一元一次方程.教学过程
一、复习引入
复习上节课用等式基本性质一解方程的过程,观察、分析、概括出移项法则.解下列一元一次方程,学生先自主完成,然后以小组形式交流各种解法,要说明这样解的依据.
(1)5x28 ;
解:方程两同时加上2,得5x2282.
也就是
5x=8+2.方程两边同除以5,得
x=2.此题学生可能会用差+减数=被减数的方法(2)5x28x .
解:方程两都加上28x,得5x228x8x28x
也就是
5x-8x=2.化简,得
-3x=2.方程两边同除以-3,得
x=23.设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么? 设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?
设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上28x的目的是什
么?
归纳:像这样把原方程中的某一项改变 后,从 一边移到,这种变
形叫做移项 思考:(1)移项的依据是什么?移项的目的是什么?(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)
二、达标训练 【达标训练1】
1.把下列方程进行移项变形(未知数的项集中于方程的左边,常数项集中于方程的右边)(1)4x35移项,得 ;(2)5x27x8移项,得 ;(3)3x204x25移项,得 ;(4)132x3x52移项,得 ;
2.下列变形符合移项法则的是()
A.由53x2,得3x25 B.由10x5=2x,得10x2x5 C.由7x94x1,得7x4x19
D.由5x29,得5x92
目的:通过及时的训练落实移项变形,并由学生总结出移项的注意事项并归纳出移项法则. 总结:移动的项要
;移项通常是将,已知项 ;(移项法则)例1 解方程:(1)2x61;
解: 移项,得 2x16.
化简,得
2x5.
方程两边同时除以2,得x52
(2)3x32x7.
解: 移项,得 3x2x73.
合并同类项,得
x4.
【达标训练2】
(1)4x39;
(2)4y23y;(3)3x204x25.
(通过例题分析,规范学生的书写步骤格式,并训练落实.)
三、合作学习例2.解方程14x12x3.解: 移项,得 14x12x3.
合并同类项,得 34x3.
方程两边同时除以344(或同乘以3),得x4
学生独立完成例2,学生互评(有哪些方法)
2.以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答,组长负责检查,组员负责看解答结果如何.目的:
1.学生自己出题的过程本身就是对本课时题型的一种掌握.2.学生互解对方题目的过程,也是一个互相学习、取长补短的过程.3.合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的.四、巩固提高 解下列方程:
⑴4x23x ⑵7x22x4
⑶x25x1 ⑷2x13x32
五、课堂小结
1.本节课学习了哪些内容?哪些思想方法?
2.移项的目的是什么?为什么学习了等式的性质还要学习移项法则呢?
六、布置作业.
习题5.3第1题 自我检测: 解下列方程:
⑴3x76x⑵0.5x0.76.51.3x
⑶23x1x
⑷34x21314x2、若3x3y
m-
1与-
12xn+1y
3是同类项,请求出 m,n的值。
3、已知x=12是关于x的方程3m+8x=12+x的解,求关于x的方程,m+2x=2m-3x的解。
第三篇:认识一元一次方程_教学设计_教案
教学准备
1.教学目标
1、通过天平实验,归纳出等式的基本性质,并会用数学符号表达;
2、理解等式的基本性质,能用它们来解方程;
3、通过观察、操作、归纳等数学活动,感受数学思考过程的条理性和数学结论的严密性.2.教学重点/难点
教学重点与难点
重点:理解等式的基本性质,并能用它们来解方程 难点:利用等式的基本性质进行等式变形.3.教学用具
课件
4.标签
认识一元一次方程
教学过程
一、创设情境,引入新课
引言:上节课我们学习了一元一次方程、方程的解的概念,那么方程的解是怎样获得的呢?今天我们就来研究一元一次方程的解法.教师:同学们还记得我们小学学过的简易方程的解法吗?比如x+2=4.生1:x+2-2=4-2,x=2.生2:一个加数等于和减去另一个加数,所以x=4-2,x=2.教师:同学们回答得很好.今天我们一起研究利用等式的性质解一元一次方程.(教师板书课题)等式就像平衡的天平,你能否通过加、减天平两边的重量,使天平继续保持平衡呢?大家动手实验一下.(组织学生分组自己动手,利用天平进一步探索、体会这种等式的变化.这次要求学生把研究的结果分成几种情况,并试着用精炼的语言叙述出来,或分组推荐代表回答.设计意图:从学生已有的知识出发,提出新问题,激发学习的兴趣和动机,让学生从一开始就充满好奇心和获取知识的欲望.然后提供实验器材,通过天平实验,形象直观的展示等式的基本性质,并让学生在动手操作过程中,主动获取知识,丰富教学活动经验,学会探索,自然过渡到新课学习.让学生在动手活动中自主探索,合作交流,并要求学生除了在操作时注意记录个人获得的成功体验外,还要多了解他人的想法,把在试验和观察中获得的直观感受,用数学语言表述出来,教师要积极参与到实验中,多观察每个学生的表现,注重学生知识的形成过程.二、动手实践,探究新知
1、实验总结
教师让学生观察下图:
教师:通过以上这两个图形,你能得到什么结论?
学生:如果在平衡的天平的两边都加同样的量,天平保持平衡;反过来,如果在平衡的天平的两边都减去同样的量,天平仍保持平衡.教师:你们能够根据天平的性质归纳出等式的性质吗? 学生:等式两边同时加上(或减去)同一个数后,其结果仍相等.教师:如果扩大范围,将等式两边同时加上(或减去)同一个代数式呢?结果还是等式吗?请大家试一试.组织学生小组内列举,交流,得到肯定答案.教师:上述性质该怎么样叙述呢?
学生:等式两边同时加(或减)同一个代数式,所得结果仍是等式.教师:你能试着用数学符号表达出这个性质吗?
学生:若x=y,则x+c=y+c(c为代数式);x-c=y-c(c为代数式).教师再让学生观察下图:
教师:请同学们继续观察这幅图片,它反映的问题和第一幅一样吗? 学生:不一样,这里的物品数是成倍增加的.教师:如果天平两边的物品的重量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗? 学生:仍平衡.教师:你能模仿性质1总结一下吗?
(这里学生的回答是多种多样的,并且出现了像“等式两边同时乘以或除以同一个数,所得结果仍是等式”等不正确的结论,教师要把握好,组织学生充分讨论,确定性质2所必需的限制条件.)等式两边同时乘同一个数(或除以同一个不为零的数),所得结果仍是等式.用数学符号可以表示为:
若x=y,则cx=cy(c为一数值);(c为一数值,且c≠0).设计意图:本环节是学生从活动中总结规律,经历知识形成的重要过程.学生在天平实验的操作过程中,通过多次演示,能够收集到许多和等式的性质有关的信息,而把这些信息先梳理,再分类,最后用文字语言表述出来,对学生来说有一定难度,教师应特别做好引导和启发工作,既要鼓励学生大胆表述自己的见解,也要及时修正表述中不确切的语句,特别要突出性质2中对于除法运算中零不能作除数这个限制条件,反复强化本节课的重难点.三、应用新知,解决问题
等式的基本性质是我们今后解一元一次方程的重要依据,利用等式的基本性质解方程.例1:解下列方程(1)x+2=5;(2)3=x-5.解:(1)方程两边同时减去2,(2)方程两边同时加上5,分别得到x+2-2=5-2,3+5=x-5+5,于是分别可得解x=3于是8=x,习惯上,我们写成x=8.(先让学生尝试自己解方程,然后请他们讲解每一步的步骤,并说出依据,体会等式的性质在解方程中的应用.)教师:你们解得的答案对不对呢?怎样验证你的答案? 学生:将解得的答案带入原方程,计算方程两边的值是否相等.教师:怎样检验呢? 学生:把 =3入原方程 左边= +2=3+2=5,右边=5,因为左边=右边.所以 =3是原方程的解.设计意图:在实际变形的过程中,让学生体会等式基本性质一的真正含义,让学生感受到负数的引进及有理数运算的介入,用等式的基本性质解方程,相比小学的逆运算更具理性思维.在经历等式变形的过程中,增强学生数学理性思维问题的意识,规范的数学书写格式.实际效果:学生习惯于用加法和减法逆运算的算理求出这两个方程的解,用等式的性质来解方程、读书能看懂,但有点思维不习惯,学生都能理解将未知数写在等号左边,值写在等号右边.有同学提出:检验方程的解.应给予肯定和表扬.例2:解下列方程(1)-3x=15;(2).解:(1)方程两边同时除以-3,得,化简得x=-5(2)方程两边同时加上2化简,得,方程两边同时乘-3,得n=-36.本例题有师生共同完成,学生说出自己的想法,教师示范性板书解题过程,对于学生不同的解法和思维,教师予以肯定,错误的及时纠正,并强调书写的格式.设计意图:在实际变形的过程中,让学生体会等式基本性质一、二的真正含义,培养学生严谨、科学的思维习惯,规范的数学书写格式.实际效果:学生在感受了例1的思考过程后,能比较顺利地完成本例的解答.学生习惯于用乘法和除法逆运算的算理求出这两个方程的解,有点思维不习惯,学生对等式性质中的限制性条件理解不深刻.如“同时乘以或除以同一个非零数”运用不够好.教学建议:讲授以上两例时,创设一种师生交流互动的环节,教师引导学生用等式的基本性质解方程,此过程中与学生平等交流,并给予恰倒好处的点拨.教师鼓励学生表达,并且在加深对等式基本性质理解的基础上,对不同的答案开展讨论,引导学生分享彼此的思想和结果,并重新审视自己的想法.如:解方程 时,整理得.有同学说方程两边都乘以-3,得n=-36;也有同学说方程两边都除以,得n=-36.以上两种思考方式教师给予了客观公正的评价,只要能用等式的基本性质将原来的方程变形成 =a(a为常数)的形式即可.)
四、巩固训练,提升能力
让学生独立完成课本133页的随堂练习和134页2、3两小题,做完后同学小组间进行讨论交流,教师给予指导.课堂小结
1、本节课你有哪些收获?
2、你还有哪些困惑?你还希望在哪方面老师给你再进行指导?
师生共同归纳总结主要内容:等式的基本性质及注意事项.通过对本课所学内容的归纳,一方面清晰地梳理出本课学过的基本知识及数学思想;另一方面,习惯地将新学的知识及方法构建到原有的知识体系中,找出“承前启后”的“承接点”、“启发点”.)
课堂小结
学了这节课,你有什么收获?
课后习题 完成课后练习题。
板书 认识一元一次方程
第四篇:《一元一次方程》教学设计
兰州城市学院
《一元一次方程 》 的教学设计
[2014/4/10]
数学学院112本 马保清
《一元一次方程》教学设计
一. 教材:人教版七年级数学(上册). 二. 课时安排:45分钟(一节课).三. 教学对象:七年级学生.四. 授课老师:数学学院112本 马保清.五. 教学目标:
1、知识与技能:了解方程和方程的解以及一元一次方程的概念,从而会判断一元一次方程
2、过程与方法:使学生从简单的实际问题中建立一元一次方程的模型;
3、情感态度价值观:经历把具体问题转化成一元一次方程的过程。七.教学重点和难点:
重点:一元一次方程的概念,正确列出一元一次方程。难点:正确列出一元一次方程。
八.教学过程:
1. 创设情境,引入新课:
课始,老师问学生:“你们知道前段时间很多市民抢购纯净水吗?你们有没有抢购纯净水呢?”这样一问引起学生极大的兴趣,学生各抒己见纷纷举手争抢发言。
生1:我买了三瓶1.5升的康师傅矿泉水,一瓶要5元钱。生2:我没有买,但我听说周围的同学买了一箱纯净水花了一百多元钱呢。生3:学校通知完后,我去超市没有买到水.生4:大家抢购纯净水都是受了有些传谣,是骗人的。师:同学们,你们知道为什么会出现这种造谣吗?
生5:因为兰州水质的问题,大家都但心饮水问题,所以进行了抢水,其实政府在发现水质出现问题之前已经有了解决方案,不知道的人都在盲目的抢购纯净水。
师:这位同学回答的非常好。因为人们听信谣言,盲目抢购纯净水,使得本地区的纯净水供不应求,一些商贩乘机哄抬纯净水价格,使得一时纯净水的价格暴涨。政府对这个问题非常重视,一方面通过媒体向人们宣传不要听信谣言;一方面加紧市场整治,维护消费者的利益,同时紧急从其他地方调运纯净水,满足人们日常生活的需求。
师:同学们,现在我们一起探讨如下问题。(教师将事先准备好的题目贴
于黑板上。)
问题1:甲地纯净水紧缺,现有3万瓶,乙地还有纯净水27万瓶,为了调解市场,问从乙地调运多少纯净水到甲地,才能使两地的纯净水数量相等。
师:请同学们讲出自己的想法。生1:(273)2312(万瓶)生2:(273)212(万瓶)
273271512(万瓶)生3:272生4:(272)(32)15,15312(万瓶)生5:(272)(32)13.51.512(万瓶)师:请同学们判断一下,这几位同学的做法正确吗?他们采用了什么方法。生:答案都正确,他们用小学学过的的直接列算式求出答案的。
师:回答的非常好,同学们都是用小学学过的的直接列算式求出答案的。那同学们有没有什么其他方法呢?
生:设未知数。
师:对,这位同学很聪明。接下来我们就看怎样通过设未知数,求解这个问题。
这时提出方法的概念:含有未知数的等式叫方程。
注:等式的分类:
1.等号两端总是相等,这类等式叫做绝对等式,也叫恒等式。如:5=5 2.只有当x等于某个数时,两端才相等,这种等式叫做条件等式。如:x35
3.等号两端总不相等,这种等式叫做假等式。如:5=3 练一练:
判断下列各式是不是方程,并讲明理由。
(1)-2+5=3(2)3x17
(3)xy8(4)2ab 继续进入问题1 1.设从乙地应调水x万瓶到甲地。(设未知数)
2.乙地水的瓶数= 甲地水的瓶数(找出等量关系)3.27x3x(万瓶)(列出方程)2.建立一元一次方程模型:
根据下列问题,设未知数并列出方程: 章节图中的汽车匀速行驶经王家庄、青山、秀水三地的时间表如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。王家庄到翠湖的路程有多远?
解:设王家庄到翠湖的路程为x千米。(设未知数)
万家庄到青山的速度=万家庄到秀水的速度。(找出等量关系)
x50x70
(km/h)(列出方程)35师:老师接着继续给大家写出三个例子请同学们按照我们解问题1的方法列出等式。(小组讨论)① 用一根长24cm的铁丝围成一个正方形,正方形的边长是多少? 解:(1)设未知数:设正方形的边长为xcm(2)等量关系:4*边长=24(3)列出方程:4x24
② 一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
解:(1)设未知数:设x月后这台计算机的使用时间达到规定的检修时间2450小时。
(2)等量关系:这台计算机的使用时间。(3)列出方程:1700150x2450
③某校的女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:(1)设未知数:设这个学校的学生人数为x人,则女生为0.52x人,男生人数为(10.52)x人。
(2)等量关系:女生人数-男生人数=80(3)列出方程:0.52x(10.52)x80 3.一元一次方程的认识:
请同学们比较一下刚才你们列的三个方程,有什么样的特点? 1.4x24 1700+150x=2450 0.52x(10.52)x80 注意:方程两边都是整式;
只含有一个未知数(元);
未知数的指数(次数)是一次。
给出定义:只含有一个未知数(元),未知数的次数是1,这样的方程叫做一元一次方程
问题①:一元一次方程中元指的是什么?次指的是什么?
②判断下列成员是否是一元一次方程家庭成员,能否进入家庭聚会之门?若不行,请说明理由。
第一组: 1).5x0(2).13x
3).y24y(4).3m21n
第二组: 若2xb4,(a1)x2x3也想参加聚会,a,b应满足什么条件?
九、巩固练习:
(1)-1=4是方程吗?(是)1x
(2)列式表示a与3的差等于-2。(a32)
(3)上题列出的式子是方程吗?如果是,未知数是什么?并说明自己的理由。(4)综合题:天平的两个盘A、B分别盛有51g,45g盐,应该从盘A内拿出多少g盐到盘B内,才能使两者所盛盐的质量相等? 解:设应该从盘A内拿出a克盐到B盘内。51a45a
十.教学方法:教练结合,讨论交流,引导探究。十一.教学手段:ppt,计算机,板书。
第五篇:《一元一次方程》教学设计
人教版七年级数学上册《一元一次方程》教学设计
教学内容:人教版七年级上册3.1.1一元一次方程
教学目标:
知识与技能:
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用
新知识解决实际问题的能力。
情感态度和价值观:
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。
教学难点:根据具体问题中的相等关系,列出方程。
教学准备:多媒体教室,配套课件。
教学过程:
设计理念:
数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。
一、游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25
师:同学们想学会这个魔术吗?生:想!
师:通过这节课的学习,同学们一定能学会!
【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】
二、突出主题,突出主体
1、师:看大屏幕,独立思考下列问题,根据条件列出式子。
(1)x的2倍与3的差是5,(2)长方形的的长为a,宽比长少5,周长为36,则=36
(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180
师:这些式子小学学习过,它们是()?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程
学生讨论出上述答案后
师:大屏幕显示上述问题的答案
【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!】
五、我的课堂,我做主,我来说
生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;
生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;
生3:我会检查一个数值是不是方程的解;
生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!
生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!
师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!
【课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!】
五、基础巩固与知识延伸
(1)基础练习见同步练习册
(2)拓展练习如下;
1、下列四个式子中,是一元一次方程的是()
A.1+2+3+4>8B.2x3C.x=1
D.|10.5x|=0.5yE、2、已知关于x的方程ax+b=c的解是x=1,则=
3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!
【作业设计也一改从前,千篇一律,本节课后作业分出了层次,也体现了趣味性和挑战性,激发了学生的求知欲!】
六、课后反思:
数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。