第一篇:高中数学教学论文 中学数学中的反证法
中学数学中的反证法
摘要:对于反证法,人们常常有一种对其功能认识不是的误解。为此本文对反证 法的基本概念、步骤、及其正确使用等方向进行了阐述。关键词:中学数学;反证法;间接证法
引言:
去掉大米中的砂粒,有两种方法。一种是直接从大米中把砂粒一粒一粒地捡出来;一种是用间接的方法——淘洗法,把砂粒残留下来。这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的。但直接方法困难得很,间接方法却容易的多。在数学解题中,也常用间接的方法(即有些命题不易用直接的方法去证明,这时可通过证明它的等价命题真,从而断定原命题真的证明方法)来证题。下面我们就来谈谈数学证明的间接方法之一——反证法。
一、反证法的基本概念
反证法是指“证明某个命题时,现假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果。这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立。”这种证明的方法,叫做反证法。
反证法的原理是:假设命题不真,也就是说,我们附加一个与要证明的结论完全相反的假设条件(反正假设)到已知条件中去,利用一系列的推理,得到矛盾的结论(与已知条件矛盾,与已证明过的数学命题矛盾,与刚提出的反证假设矛盾,或是导出两个自相矛盾的结论),依据排中律,附加的条件不真,从而,证得原命题成立。
反证法的基本思想是:将否定结论作为条件就会导致矛盾。这种基本思想可以用下面的公式来表示: “否定推理矛盾肯定”
“否定”——假设所要证明的结论不成立,而结论的反面成立。即首先否定结论。
“推论”——从原条件和新作的假设出发,引用一系列的论据进行推理。
“矛盾”——通过推理,导致矛盾,即得出与已知条件、定义、公理、定理或明显的事实相矛盾的结果。
“肯定”——由于推理过程正确,矛盾产生的原因是由假设所引起,因此假设是错的,从而肯定原结论的正确。
二、反证法的步骤:
用反证法证题一般分为三个步骤:
1.假设原命题的结论不成立;
2.从这个结论出发,经过推理论证,得出矛盾;
3.由矛盾判定假设不成立,从而肯定原命题的结论正确。
即:提出假设例1:已知:求证:直线
推出矛盾
和是异面直线。
肯定结论
证明:【提出假设】假设直线内,那么这个平面一定经过点【推出矛盾】直线,经过点
内 矛盾。
和是异面直线。
和在同一平面 和直线。
和直线只能有一个平面
与应在平面,这与已知【肯定结论】直线在运用反证法证题时,必须认真考察原命题的结论,并找出结论反面的所有情况,因为结论的反面可能只有一种情况,也可能有多种情况。因此,反证法分为归谬法和穷举法两种。当结论的反面只有一种情况时,只要否定这一情况就能证明原命题结论的正确,这种反证法叫归谬法;当结论的反面有多种情况时,必须一一予以否定才能证明原命题的正确,这种反证法叫穷举法。例2:已知:,求证:。
>2,因此用反证法证明时,只要否定了这种情分析:此题的结论的否定只有一种情况况,就能肯定证明:假设>>的这种情况了。>2,则>
==
由此可知:
例3:已知:平面求证:与,这与已知矛盾。
∥平面,直线.也相交。
分析:此题结论的否定有两种情况: 1;2∥.用反证法证明时,只有把这两种情况都否定了,才肯定与相交。
能
证明省略。
三、反证法的正确使用
任何方法都有它成立的条件,都有它适用的范围。离开了条件超越了范围就会犯错误,同样,也会影响解题的成功率。因此,我们应该学会正确使用反证法来解题。
1.注意其适用范围。虽然反证法是一种很积极的证明方法,而且用反证法证题还有很多优点:如适用范围广、思想选择的余地大、推理方便等。但是并不是每一道题都能用反证法来解的。例4:如果对任何正数试证之。
证明:假设>0,则二次函数当增大时,抛物线就沿
轴向上平移,而当的图象是开口向上的抛物线,显然可见,值增大到相当大的正数时,抛物线就上开
>0,这,二次方程的两个根是正实数,则系数,到与轴没有交点,则对这样的一些一假设与已知矛盾。同理,<0,也不合题意。
值,二次方程的实数根就不存在。因此,综上所述,当>0和<0时均不合题意。因此,分析:看了本题的证明过程似乎很合理,但其实第三步,即肯定原结论成立的论证错了。因为,本题的题设条件为对任意正数设条件与结论是矛盾的; 当何正数时,二次方程就变成了一次方程,它只有一个根;在时,仅当,此一次方程在时,对于任,有两个正实数根,结论是,但本题的题
>0的条件下,它有无数个根,否则无根,但总之不会有两个根。题设条件和结论矛盾。因此,本题不能反证法来处理。若原题改为“如果对于任何正数,只存在正实根,则系数
”,就能用反证法证明了。
因此,对于下列命题,较适用反证法来解决。
1对于结论是否定形式的命题;
2对于结论是以“至多”,“至少”或“无限”的形式出现的命题; 3对于结论是以“唯一”或“必然”的形式出现的命题;
4对于可利用的公理定理较少或者较以与已知条件相沟通的命题。
例5:设、都是正数,求证:.证明:反设不成立,便有>,由对称性知:>
相加:>
即:>
这一矛盾说明正确
从而
即
交换、位置:
合并得:
2.提出假设时,要分清结论反面的全部情况,即不能多,也不能少。例6:求证:五个连续自然数的平方和不可能是一个完全平方数。证明:设五个连续自然数是,,则
是一个关于为一个完全平方数,即二次三项式
与
矛盾。的二次三项式,若其
有两个相等的实根,于是有即五个连续自然数的平方和不是一个完全平方数。
分析:本题的证明过程似乎也合理,但其实它的假设发生了错误。原结论是对于任何大于2的自然数,数使是不能推出例如:不是完全平方数,所以结论的反面应是至少存在一个大于2的自然是一个完全平方数,而不是对所有的。当
时是一个完全平方数,但是
是一个完全平方数,于3.推出矛盾时,一般说来,根据条件和假设,通过推理导出与下列矛盾之一即可: 1与题设矛盾; 2与定义相矛盾; 3与定理相矛盾; 4与公理相矛盾; 5与客观事实相矛盾; 6自相矛盾;
例7:设、、>0,求证:,三个数中至少有一个不大于.证明:假设三个数都大于,则
>【1】
另一方面,根据平均值不等式:
5,同理:,于是:【1】与【2】矛盾。所以原命题成立。小结:
【2】
反证法是数学证明中的一种重要方法。牛顿曾经说过:“反证法是数学家最精当的武器之一”。它是从否定命题的结论出发,通过正确的逻辑推理导出矛盾,从而证明了原命题的正确性的一种重要方法。反证法之所以有效是因为它对结论的否定实际上增加了论证的条件,这对发现正确的解题思路是有帮助的。对于具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。在现代数学中,反证法已成为最常用和最有效的解决问题的方法之一。参考文献:
反证法初探;数学通讯;2001年13期 浅议反证法;教育实践与研究;2002年02期 反证法;数学通讯;2000年24期 反证法的应用;中等数学;2005年03期
第二篇:高中数学反证法
反证法解题
反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
Ⅰ、题组:
1.已知函数f(x)在其定义域内是减函数,则方程f(x)=0 ______。
A.至多一个实根B.至少一个实根C.一个实根D.无实根
2.已知a<0,-1
A.a>ab> abB.ab>ab>aC.ab>a> abD.ab> ab>a
3.已知α∩β=l,aα,bβ,若a、b为异面直线,则_____。
A.a、b都与l相交B.a、b中至少一条与l相交
C.a、b中至多有一条与l相交D.a、b都与l相交
4.四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____。
5.A.150种B.147种C.144种D.141种
S 例1.如图,设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB 上一点。求证:AC与平面SOB不垂直。
2222例2.若下列方程:x+4ax-4a+3=0,x+(a-1)x+a=0, x+2ax-2a=0至少有一个方程有实根。试求实数a的取值范围。
例3.给定实数a,a≠0且a≠1,设函数y=222221x1(其中x∈R且x≠),证明:①.经过这个函数ax1a
图像上任意两个不同点的直线不平行于x轴;②.这个函数的图像关于直线y=x成轴对称图像。练习:
1.已知f(x)=x,求证:当x1≠x2时,f(x1)≠f(x2)。1|x|
2.已知非零实数a、b、c成等差数列,a≠c,求证:1、1、1不可能成等差数列。abc
3.已知f(x)=x+px+q,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于1。
24.求证:抛物线y=x-1上不存在关于直线x+y=0对称的两点。22
5.已知a、b∈R,且|a|+|b|<1,求证:方程x+ax+b=0的两个根的绝对值均小于1。2
第三篇:中学数学教学论文
中学数学教学论文:中学数学教学之我见 “创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力。”这是江泽民同志在全国第二次教育工作会议上的讲话,可见,他将创新教育提高到何等的高度。在中学数学教学过程中要充分发挥教师的指导作用,但是,不能因为现代教育理念中要突出学生的主体作用而降低教师的作用。教学是学生在教师指导下获取知识的活动。教师是教学活动的组织者、设计者和指导者,这一点是毋庸置疑的。教师对学生的指导主要是进行学法指导,因此,要改变传统的教学观念、改革旧的教学方式、收集学生对学习方法掌握情况,有效地指导学生科学地学习,这需要中学数学教师具备多种素质和能力。笔者在多年的教学实践中对教师应具备的素质与能力深有感悟,做了以下简单的阐述。
一、教师要对自己的工作有责任心
教师要热爱自己的工作和事业,要满怀热情地去投入到教学中去,这是因为,教师工作不仅仅是完成几节课的教学那么简单,它还包括言传身教、思想品德教育等多方面的内容。这些教育并非通过简单的说教来完成,它需要我们从细微处做起,在授课的时候教师的点点滴滴都在影响着学生,因此教师要时刻注意自己言行。让学生感受到我们在用心在授课,让学生感受到我们是多么地爱他们。我们怀着这样的 情感去授课一定会达到事半功倍的效果。所以,为了对学生负责,对家长负责,为了对社会负责,也为了对我们自己负责,我们就该以极大的热情与责任心投身于教育工作。
二、教师要不断地提高自己,跟得上时代的步伐 现代信息技术的发展之快,使得以前的那种传统的中学数学教育方式和方法被淘汰,这无疑对中学数学教师提出了更高、更新的要求,不断促使中学数学教师在教学中运用新的教学方式和方法。新的教学方式和方法要适应当今的社会发展步伐,更主要的是要适应学生的学习习惯。新的教学方法要以学生为主体,让学生成为课堂的主人,教师引导学生自主学习,以培养学生学习数学兴趣为基础。教师要让学生了解和掌握数学专业在世界范围的重要性,让学生感到学习数学很有用,这样他们就会对这个学科产生兴趣,令教学活动更为生动和有趣,培养学生的创新能力。
三、数学教师要有深厚的数学基础
中学数学教师肩上担负着巨大的责任,必须有较高的数学专业素质和能力。因为只有教师自己有了这种素质和能力才会去把知识传授给学生,所以中学数学教师不能每天按部就班地讲解课本上的知识,也要多看一些课外的书籍来充实自己。目前还有好多中学数学教师在数学专业素质和能力方面薄弱,因而也就很难提高学生的数学解题能力。我觉得应
该从以下方面改变这种状况。首先,数学教师要扩宽自己的知识层面。教师要学习现代化信息知识,不断地吸收现代化教学理念,只有这样才能更好地去给学生传授知识。学生看到自己的老师什么问题也难不倒,不管多难的数学问题都能很透彻给他们解答,会从内心里对教师产生了一种钦佩的感觉。其次,要求中学数学教师把数学教学作为数学活动的教学,在教学中师生要能够相互作用,相互配合。教师和学生去共同研究问题和解答问题,让学生也参加进来,让他们真正地成为课堂的主人,这样可以最大限度地调动学生的积极性和创造力。
四、数学教师要有综合运用各类科学知识的素质与能力 现实生活和教学活动中,问题是多种多样的,不是一成不变的。在新课程标准下强调了学生提出问题、分析和解决问题的能力。这要求教师要给学生们创造一个好的课堂氛围,让学生积极地提问题,然后分组讨论,这样既提高了学生的动脑能了同时也提高了他们的表达能力。因此,这就要求数学教师必须具备多学科知识综合运用的素质与能力。
五、教师要和学生走到一起,共同讨论问题和分析问题 在长期应试教育的大背景下,教师的职能主要是通过课堂教学给学生传授课本知识;教师的期望主要是学生能在应试中考出好成绩:教师的行为表现是偏爱优等生,讨厌差生。
因此,在课堂教学中教师就往往不是平等地对待每一个学生。优等生受表扬鼓励的多,参与课堂训练的机会多;差生受训斥的多,参与课堂训练的机会少,甚至有的受到体罚和变相体罚。这种人格上的不平等,抑制了学生个性发展,挫伤了绝大部分学生的学习主动性和积极性。
新的课程改革倡导培养学生积极交流、合作探究、解决问题的能力,有组织、有目的地讨论能激发学生智慧的火花。这就要求教师在教学课堂上要多给学生这样的机会和空间。如在讲到某个知识点的时候教师可以先停下来,让学生们发表自己对这个知识点的看法,这样教师就了解了学生在哪个方面了解不够透彻。还可以开展小组合作学习和专题讨论会,让学生知道团队精神的重要性,在发表自己的见解时也要学习其他同学,习他人之长补己之短。教师也要参加进去和学生一起讨论和分析,这样可以充分调动学生的积极性。不仅可以锻炼学生的思维能力,很大程度上也锻炼了学生的语言表达能力,达到异曲同工之效。在数学课堂上改变以前那种“教师讲、学生练、再讲、再练”的单一模式,让学生在课堂上相互交流和讨论,教师讲得比以前少了,但要参与到学生的讨论当中,作为小组的一个成员,而不单单是一名数学教师,时而是讲解者,时而是辅导员,时而是台上的表演者,时而台下的观众,学生也会比过去喜欢提问题,学生
思维活动更多,对数学的学习兴趣也就更浓了。中学数学教师的讨论交流、共同参与的能力可以在数学课堂教学中起到关键的作用。
第四篇:中学数学教学中的素质教育论文
一、应试教育的弊端
随着教育事业的发展,越来越多的教师和教育家认识到应试教育的弊端,认识到实行素质教育的重要性。那么,应试教育又有哪些弊端呢?从学校方面来说,重视重点院校,轻视一般或是薄弱学校。教学方面,重视智育,轻视德育;将学生当成学习的机器,刻板地向学生传授课本上的知识,让学生通过死记硬背的方式提高考试能力;忽略学生主观能动的发挥,忽略了学生实践能力、创新思维的培养,学生的人文知识水平难以得到提高。
在对待学生方面,教师看重考试得分高的学生,轻视考试得分低的学生,认为得分低的学生就是在拖班级的后腿,根本就不是读书的料。为了提高学校的升学率,学校就组织教师中考或是高考题,组织教师开展各科的猜题,并编印大量的模拟试题,利用题海战术来提高学生的考试能力。而许多专家和学者也趋之若鹜,积极猜题并编印大量的试卷和书籍,这样就导致了教学的畸形发展。
中学生的个性和主观能动性被压制住了,学生每天都承受着巨大的学习压力。从早上天没亮醒来的第一秒开始学习,一直到深夜才熄灯睡觉,学生整天忙着背书、做题,根本就没有时间去深刻理解知识、探究知识,学生的天性被压制住了,学生的创造性也逐渐被遏制了。这种应试的教育的直接结果就是学生成了课本的奴隶,成了读书的工具。学生学习知识不是因为自己想学,而是迫于教师和家长的压力而不得不学,每天都逼着自己去学习,逼着自己去做题。于是,出现了越来越多的高分低能学生,这些学生每天就在课本和试卷中徘徊,不关心社会,不关心政治,没有远大的发展目标,心理素质低下,意志力低。
现在许多城市里的小学就开始了应试教育,小学一年级的学生每天都有家庭作业,而且还不少,这些小学生根本就没有时间去玩耍,小孩子的活泼天真被扼杀在摇篮里了。到了二年级,开始由教育局组织拟题,开展语数外的期末会考。原本天真可爱的小学生每天不得不埋头于课本和作业之中,天性被遏制了。随着教育事业的发展,素质教育逐渐为教师所接收和认可,但是,仍然有很多中小学将升学率作为教育之根本,教育上残留有大量应试教育的影子,学生的全面发展受到很大影响,即使将来进入了好大学,学生的发展也存在很多问题。
二、加强素质教育的内容
现在的中学生,求知欲非常旺盛,做任何事都喜爱多问几个为什么。我们培养人才的目标是培养德智体美劳全面发展的合格人才。因此,在普通中学,数学教学中,不仅要全面传授书本知识,培养学生的思维能力,还要加强素质教育,使每一个学生在德智体美劳各个方面都得到充分、和谐发展,下面谈谈几点内容:
1.加强身心教育
初中生正从少年儿童向青少年转变,大脑不断得到营养,逐渐发育成熟,男女同学之间渐渐变得有点“陌生”。因此,保持良好的生理卫生是有效学习的基础。在数学教育过程中,教师应因材施教,由浅入深,由易到难,循循善诱,对个别同学情绪反常应多加关心、呵护、给予真切关怀。对女生更要耐心细致,同时加强坚强意志教育,有的同学意志薄弱,耐挫力差,缺乏明确的行动目标,做事虎头蛇尾,见异思迁,遇难而退等。数学教师应当尽量创设一定教育情境,培养学生耐挫能力,训练学生与困难做斗争的勇敢精神和坚毅品质。
2.加强科学文化素质教育
普通中学的数学教育对中学生的个性塑造,智力发展,创造力、分析能力、思维能力的培养起奠基性作用。数学本身属于三大自然科学,是各门功课的基础,因此数学教师应加强工具性知识(如数学语言、符号、算术等)、理论性知识(如公式、定理、原理、公理、法则等)、创造性知识(如写小数学论文、小发现等)的培养,学生若有进步,应及时总结给予表扬。中学生时代是学习的黄金时代,也是青少年打基础的时候,要掌握系统的科学文化基础知识,是时代的需要,也是祖国建设的需要。因此,中学数学教师更应说得上肩上重担千钧。
3.加强思想道德教育
第一,加强爱国主义教育。我国古代在初等数学上有过辉煌成就,在世界数学发展史上也有一席之地,如祖冲之推算圆周率,就比欧洲早1000多年。数学教师可以在教学过程中,利用这样的典型事例进行爱国主义教育,激发学生民族自尊和自豪感。对近代数学家华罗庚、陈景润等事迹进行宣扬,可使爱国主义教育得到有机渗透。在教学过程这些史实很容易与教学内容有机融合在一起,能使学生极易接受,回味无穷!
第二,还应加强辩证唯物主义教育。数学是一门研究现实中数量与空间形式的学科,以初中生口吻来说就是代数、几何。现实世界是客观存在且变化和发展的,这就使数学教学内容必定包含辩证法的思想。因此数学教师在课堂教学中,应有意识地利用辩证思想,运动观点来观察、分析、解决问题。如七年级的正数与负数,几何中的数与形,作圆时的静与动,以及函数中的常量与变量,证明几何题的分析法和综合法、归纳法和演绎法等,让学生接受简单辩证法的训练,可使学生素质得到提高。
4.加强劳动素质教育
劳动素质教育是人类教育的基本职能。在某种意义上讲,人类教育的历史就是劳动素质教育的历史,我们教育的目的,就是培养未来建设社会主义事业的接班人。在普通中学,数学教师在传授知识的同时,应加强劳动教育,城区和乡级中学可因地制宜地进行素质教育。如在乡级中学,在讲授面积公式时,可带学生到田间帮助农民拔杂草,同时用皮尺等工具测量农田面积等。城区有条件的学校,可进校办工厂干力所能及的活,然后测量窗户、产品的尺寸等。总之,寓劳动于教学中,其乐融融。5.加强数学审美教育有些人认为数学比较枯燥,乏味,我认为,数学充满了美,关键在于教师如何引导学生发现和注意它。因此,中学数学教师不仅要传授学生数学知识,还要培养学生的审美情趣。如在讲授乘法公式“完全平方公式”中,教材中出现了一个“杨辉三角”公式,也就是我们所说的二项式定理(a+b),取此公式展开后取系数顺次从上到下排列,就形成了一个三角形,愈往下,愈像等边三角形,或者像一座金字塔,1与1像塔人字梯一样两边分,它们内部的数学家就像跳动的音符,引你进入美丽的殿堂,你说它美不美?几何中,点动成线,线动成面,面动成体,以及黄金分割的美等,还有“两点确定一条直线”的数学语言和简洁美,只有先让学生学会鉴赏美,才能促使学生在生活中发现美和创造美。
三、结语
总之,在教学中,特别是作为基础学科的数学,其教学应顺应时代潮流,努力加强素质教育。因此,中学数学教师应从应试教育误区中走出来,大力加强素质教育,努力培养全面发展的合格人才,这是历史赋予我们的使命,也是教改发展的必然趋势!
第五篇:(no.1)2013年高中数学教学论文 几何画板在中学数学教学中的应用
知识改变命运
百度提升自我
本文为自本人珍藏
版权所有
仅供参考
几何画板在中学数学教学中的应用
当今世界日益信息化,信息日益网络化。教育信息化正在成为社会信息化的重要组成部分,技术发展的趋势是不言而喻的。以前,我们对数学以及数学教学的认识总是和黑板粉笔或者纸笔联系在一起,人们局限在有限的空间中,能力受到很大的限制。计算机使人脑得以大大的扩展和延伸,同时为数学教学和数学学习提供了广阔的空间。下面仅就几何画板辅助数学教学中的问题谈谈几点思考。
一、问题与思考
1、《几何画板》在辅助数学教学中的特点
问题与解决是数学的心脏。提出问题并解决问题是数学发展的原动力。由于各种原因,今天的中学数学教材中,难以体现出“问题与解决”的韵味,也没有机会让中学生接触丰富的数学遗产。问题提出的唐突化,过度的公式化、形式化及解题的模式化,使数学失去了原有的魅力。至使部分学生错误地认为数学只是符号与公式的组合,难以激发他们学习数学的热情和兴趣。而《几何画板》的精髓是:动态地保持了几何图形中内在的、恒定不变的几何关系及几何规律。它的最大特点是:让学生自己动手按给定的数学规律和关系来制作图形(或图像、表格),从中观察事物的现象,通过类比和分析提出问题,还可进行实验来验证问题的真与假,从而发现恒定不变的几何规律,以及十分丰富的数学图像的内在美、对称美。学生可以驾驶《几何画板》这一叶扁舟,在数学发展的历史长河中漫游,兴之所至,或探踪寻源,或荡舟而过。这是其它的教学媒体所办不到的,也是一般CAI软件功能所不及的。
数学课堂教学的特点是:具有很强的逻辑性和系统性以及高度的抽象性和概括性。现代教学媒体GSP(《几何画板》的简称)能化静态为动态,化抽象为具体,能够寓趣味性、技巧性和知识性于一体。传统的数学教学方法,基本上是信息的单向传输,即“讲、练、评”三位一体的教学模式,反馈处于不自觉状态中,不利于分层次教学、因材施教,不易激发学生的求知欲和兴趣。在教学中通过使用《几何画板》,感受到GSP在数学教学中有着独特魅力,与传统教学手段或一般CAI软件不能相比的。《几何画板》在教学中的辅助作用
计算机辅助教学,是随着计算机技术的发展而形成的现代教育技术。被视为电化教育的最高形式,随着我国中小学CAI 的进展,一批好的CAI软件已进入学校,最近我校将《几何画板》引入数学课堂教学,从中体会到GSP在数学教学中有以下主要作用。
(1)有助于提高课堂效率,增大知识的覆盖面。能给学生以更多的操作机会,培养学生的动手动脑的能力。
(2)有助于提高课堂教学效果,由于情况的快速反馈,老师的讲课时更具有针对性,并能及时调整教学内容和节奏。
用心 爱心 专心
知识改变命运
百度提升自我
(3)有助于培养学生敏捷思维和观察问题、分析问题、解决问题的能力。利用现代化的教育手段进行快速训练,有助于个性特长的培养和发挥。
二、几何画板在解析几何中的应用
(一)椭圆的画法
1、由椭圆的标准方程绘制椭圆
2、bx2y2a2x2,只需确原理:由于椭圆的标准方程为:221,可得表达式yaab定变量x和参数a、b的值即可。步骤如下:
①建立直角坐标系;
②在x轴上取一点C,度量其坐标并分离出它的横坐标改名为a,类似地,在y轴上取一点D,度量出它的坐标并分离出它的纵坐标改名为b;a、b分别是椭圆在x轴、y轴上的截距;
③在x轴上取一点E,度量出点E的坐标并分离出它的横坐标改名为x;
④计算y的值,通过 “度量—计算”,得到ba2x2的值; a⑤绘出x、y的坐标点F; ⑥选择点E、F,执行“作图——轨迹”,得到上半椭圆;⑦最后通过“变换——反射”得到下半椭圆。
2、根据圆锥曲线的第二定义绘制椭圆 原理:由圆锥曲线的第二定义:平面内与一个定点的距离和它到一条直线的距离的比是常数e的点的轨迹是圆锥曲线,定点叫做圆锥曲线的焦点,定直线叫做圆锥曲线的准线。常数e叫做圆锥曲线的离心率,当0e1时为椭圆。
①建立直角坐标系;
②画一条射线CD,在射线上画一点E,使点E在点D的右侧; ③度量CD、CE的长度,计算出
CE的值,该名为e=0.73; CD④在x轴的正半轴画一点F,画直线GH,找出直线GH与y轴的交点I,在直线GH上任取一点J,连接线段IJ;
⑤以F为圆心,IJ为半径画圆,度量出线段IJ的长度;
用心 爱心 专心
知识改变命运
百度提升自我
⑥计算出⑦选择IJIJ的值,如=7.12cm eeIJ=7.12cm,执行“图像——绘制度量值”,使屏幕出现一条与x轴垂直且与y轴eIJ距离等于=7.12cm的直线(虚线m);
e⑧用“选择”工具作出直线m与圆F的交点K、L;
⑨用“选择”工具双击y轴,把y轴标记成反射镜面,再选择直线m,执行“变换—反射”,得到直线m关于y轴对称的直线m’;
⑩同时选择点J和点K,执行“作图—轨迹”,屏幕上(第一象限)出现点K的轨迹,类似地,分别选择点J和点L、点J和点M,点J和点N,作出点L、M、N的轨迹; 移动点E的位置,使离心率0 3、根据椭圆的参数方程绘制椭圆 xacost原理:椭圆的参数方程为:(t为参数),在坐标系中确定参数t和常量a、ybsintb,注意这里的t为弧度,应更改参数为弧度制。 ①建立直角坐标系; ②在x轴上任取一点C,度量其坐标和横坐标,改为a=6.30; ③在y轴上任取一点D,度量其坐标和纵坐标,改为b=2.88; ④在屏幕下方画一圆,在圆上任取一点G,构造弧FG,填充扇形EFG; ⑤度量扇形EFG的弧度,该为t=-0.88弧度; ⑥计算:a*cost=-5.06,改为x=-5.06;b*sint=-1.72,改为y=-1.72; ⑦选择x=-5.06,y=-1.72,执行“图表—绘制点(x,y)”,画出点H; 用心 爱心 专心 知识改变命运 百度提升自我 ⑧依次选择点G、H,执行“构造—轨迹”,即得到椭圆。 (二)直线与圆锥曲线的交点的几何构造 (三)如图:直线GE是过平面任意一点G和椭圆上任意一点E,求作直线和椭圆的交点F,在几何画板中,不能直接找出直线和椭圆的交点,这里通过几何的思路找出直线和椭圆交点的一般方法。 几何构造(1)思路分析 先请了解一下椭圆弦的几何性质。如图:EF是椭圆的弦,其延长线交准线于P,的延长线交准线于Q,则F1P平分∠QF1E。 想一想:如果已知P、E、F1,你能否作出点如果您注意到点F是两条直线的交点,只要 F? 作EFF1关于直线QF1的对称点E,则直线PE和直线EF1的交点就是F。我们就用这样的想法来构造直线与椭圆的交点。 (2)操作步骤: ①画椭圆 ; ②画直线GE , E为椭圆上一点; ③画椭圆的准线 ;度量点A的横坐标,并把度量结果的标签分别改为a=5.57;度量点B的纵坐标,并把度量结果的标签分别改为b=2.78;计算a2b2 a2并把度量结果的标签分别改为c=4.82;再计算,作出椭圆的左准线; c④画直线GE与椭圆的另一交点 ;画线段F1P,点P是直线GE和准线的交点→对点E作反射变换(线段F1P)得到E→画直线(E,F1)→画交点F(直线GE,直线EF1) 用心 爱心 专心 知识改变命运 百度提升自我 国中小学教学领域,使教学改革发生根本的变化。 用心 爱心 专心