第一篇:全日制普通高级中学生物教学大纲(试验修订版)
一 课程目的 二 课程目标 三 课程安排 四 教学内容 五 教学中应该注意的几个问题 六 教学评价 七 教学设备
附录: 生物学是研究生命现象和生命活动规律的科学,它与人类的生存和发展,与社会生产和个人生活,与其他自然科学和社会科学的发展,都有密切的关系。生物学在我国社会主义现代化建设中起着重要的作用。生物学将是二十一世纪领先的科学之一。>>返回
一、课程目的普通高中生物课程是一门学科类基础课程。学生通过高中生物课程的学习,将在以下几个方面得到发展。
1.获得关于生命活动基本规律的基础知识,了解并关注这些知识在生产、生活和社会发展方面的应用。
2.树立辩证唯物主义观点,养成科学态度和科学精神,树立创新意识,逐步形成科学的世界观。增强爱国主义思想感情。
3.初步学会生物科学探究的一般方法,具有较强的生物学基本操作技能、收集和处理信息的能力、观察能力、实验能力、思维能力和解决实际问题的能力。>>返回
二、课程目标
通过教学过程应当实现以下课程目标,以达到本课程的教学目的。
1.知识方面(1)获得关于生物学基本事实、基本原理和规律等方面的基础知识,主要包括生命的物质基础和结构基础、生物的新陈代谢、生命活动的调节、生物的生殖和发育、遗传和变异、生物的进货、生物与环境等方面的内容。
(2)了解并关注生物学知识在生活、生产、科学技术发展和环境保护等方面的应用。(3)获得适应现实生活所需要的自我保健知识,促进生理和心理健康。[!--empirenews.page--](4)了解现代生物科学技术的主要成就及期对社会发展的影响。
2.态度观念方面
(1)通过生物学知识的学习,初步形成生物体的结构和功能、局部与整体、多样性与共同性相统一的观点,生物进货观点和生态学观点,树立辩证唯物主义自然观,逐步建立科学的世界观。
(2)正确认识我国生物资源状况、生物科学技术的发展,增强爱车主我思想感情。
(3)懂得爱护自然界的生物,认识保护生物多样性的重要意义,提高环境保护意识,树立人与自然和谐统一和可持续发展的观念。
(4)养成实事求是的科学态度,初步具有勇于探索、不断创新的精神和合作精神。
3.能力方面
(1)能够正确使用解剖器、显微镜等常用工具和仪器,掌握采集和处理实验材料等操作技能。
(2)具有利用课本以外的图文资料和其他信息资源进一步收集和处理生物科学信息的能力。(3)学会科学观察的方法,能够记录、整理观察结果,得出结论。
(4)初步学会生物学实验方法,能够提出问题做出假设,设计实验,分析和解释实验中产生的现象或数据,得出合理的结论。
(5)进一步形成比较、判断、推理、分析、综合等思维能力,初步形成思维的独特性、新颖性和创造性思维品质和创新思维习惯,能运用学到的生物学知识评价和解决某些实际问题。>>返回
三、课程安排
普通高中生物课程是在义务教育初中生物课程的基础上开设的。高中生物课程包括必修课和选修课。必修课是高中阶段全体学生必须学习的,教学内容侧重于生命活动的基本规律,包括十个单元,可以概括为三个部分:第一部分是关于生命的物质基础结构基础的内容;第二部分是关于生物体生命活动本质的内容;第三部分是关于生物界的发展和生物与环境的内容。[!--empirenews.page--] 选修课是在必修课的基础上开设的,由学生在老师指导正根据自己的志向、爱好和需要自主选择修习。选修课课程内容的安排侧重于体现生物科学技术与人类的生存和发展的密切关系,包括人体生命活动的调节和免疫、光合作用和生物固氮、微生物与发酵工程细胞与细胞工程、遗传与基因工程、生态环境及其保护等基础性内容。以上选修课教学内容,与必修课内容既不重复,又有密切的内存联系,而且是必要的延伸和提高。
在必修课和选修课中都安排了研究性课题,这些课题要求学生以独立或小组合作的方式完成,有些课题需要在教师的适当指导下完成。研究性课题主要利用课外时间进行,教师可以利用机动课时安排学生做课题研究报告。教师要在课题研究活动中着重发展学生的科学探究和实践能力,包括收集和处理信息的能力,分析和解决问题的能力,语言文字表达能力,以及团结协作和一定的社会活动能力,尤其要鼓励创新精神和实践能力。>>返回
四、教学内容 高中生物必修课:普通高中课程计划规定,高中生物必修课每周3课时,共105课时。其中讲课的参考课时为70课时,实验等的参考课时为15课时,地方教材和机动20课时。具体教学内容(略)>>返回
五、教学中应该注意的几个问题
(一)要认真改进生物学基础知识的教学
学生通过高中生物课的学习,要获得关于生命活动基本规律的基础知识,了解现代生物科学技术的主要成就及其对社会发展的影响。教师在教学中要根据教学目标和学生的认知水平,重视通过生物科学事实和科学研究过程过渡到有关概念、原理和规律的教学,并经过学生的分析、比较、概括等思维活动,正确理解和把握概念、原理和规律的实质。[!--empirenews.page--] 在教学中要突出重点、突破难点,引导学生从问题、图表、数据等情境中分析教材中生物学知识的内存联系,并通过加工、整理、贮存等信息处理的方法,逐步形成各层次的知识结构系统,使他们对所学的生物学知识能够灵活应用,触类旁通。
在教学中要注意理论联系实际,适当补充现代生物科学和技术对社会发展影响的内容,使学生在学习知识的同时,正确认识科学技术的价值,理解科学、技术和社会之间的相互作用。
在教学中,同时要注意生物必修廛和选修廛知识内容的相互联系,处理好两者之间的分工和衔接。
(二)增强态度观念教育的实效性
对学生进行态度观念教育,是高中生物教学的重要任务。
高中生物教学内容有丰富的辩证唯物主义和爱国主义教育因素。教师在教学中,要引导学生通过学习生物学基础知识,认识到生命的物质性性、生命运动的多样性、生物界存在的普遍联系和协同发展,树立辩证唯物主义自然观和科学的世界观。要引导学生通过课堂教学和课题研究活动,了解我国生物科学技术发展和野生生物资源的状况,以及与生物学有关的社会问题,增强学生的民族自豪感和民族责任感,教学学生热爱祖国、热爱家乡。
教师在教学过程中,要通过介绍科学家进行科学研究的事例、指导学生的实验和研究性课题等,引导学生热爱科学,初步建立科学的价值观,对学生进行科学精神和科学态度教育,培养学生的创新意识、良好的合作精神、行为习惯和心理素质。
教师在教学过程中,要通过生物与环境、生态环境的保护等内容的教学,对学生进行生态学观点、环境保护意识、环境伦理道德观和可持续发展观点的教育。
对学生进行观念态度教育,要做到潜移默化,寓德于教。既要克服单纯传授知忽视德育的倾向,又要克服脱离学科教学内容空洞说教的倾向。要坚持教学的科学性与教育性相统一,促进学生的态度观念与认知能力直辖市发展。[!--empirenews.page--]
(三)以培养学生的创新精神和实践能力为重点 培养学生的实践能力是素质教育的重点之一。教师要积极创造条件,按照教学大纲的要求,让学生有效、安全地完成实验、实习和研究性课题等实践活动,掌握基本的操作技能;培养观察、实验等获取生物科学知识的能力,培养收集和处理生物科学信息的能力,以及应用生物学知识解决简单的实际问题的能力。教师在教学过程中,要重视通过基础知识和知识获取过程的教学,使学生形成比较、分类、判断、分析和综合、归纳和演绎推理等思维能力。
教师在各种类型的教学活动中,都要努力使学生初步学会生物科学探究的一般方法,包括提出问题、做出假设和实践验证等;注意学生发散思维和集中思维能力的培养,使学生逐步养成创新思维习惯。教师应当充分利用科学技术发展史上的重大发现和发明,使学生了解生物科学认识模式,包括从实践中发现问题,通过研究实现知识创新(如酶和光合作用的发现);或者先在理论上获得突破,再通过实践探索实现技术创新(如基因重组技术的发明),以发展学生的创造能力。
(四)积极改进教学方法,提高教学效益
教师要按照深化教育改革全面推进素质教育的要求,转变教育思想,更新观念,积极进行教学方法的改革,提高生物学教学质量。教学改革要逐步形成以学生为主体,以主动参与和自主探究为基本学习方式的新型教学模式,为发展学生的创新能力打下基础。
教师要根据不同的教学目标、教学内容和学生的认知规律,采取相应的教学方法,积极进行启发式、讨论式和探究式教学,引导学生主动参与教学过程,激发他们的独立思考和创新意识,发展他们的兴趣、爱好和特长。
在教学中要积极创
造条件,加强直观教学;重视信息技术在教学改革中的作用,运用先进的教学手段,提高课堂教学效益。[!--empirenews.page--] 从终身教育的需要出发,教师在改进教学方法的同时,要注重学生学习方法的指导,在认真研究学生的知识现状、生理和心理特点的基础上,指导学生掌握获取知识和探究生物科学的基本方法,培养学生终身学习的能力。
教师要因材施教,培养学生学习生物学的兴趣和能力。要积极组织和指导学生开展各种生物科技活动。例如,设计和做生物实验,建立生物园,进行生物资源调查和生态调查,开展生物小论文、小制作、小发明等活动。>>返回
六、教学评价
(一)评价的目的 教学评价是教学过程中不可缺少的重要五一节。通过教学评价,教师可以获得学生学习情况的反馈,检查教学质量,并针对学生学习中的问题不断改进教学;学生可以了解自己学习中存在的问题,从而有助于改进自己的学习方法,并从成功的学习中获得激励,促进自己在态度观念、知识和能力等方面的发展。
(二)评价的依据和内容
教学评价应当以教学大纲为依据。评价内容应当符合教学大纲的要求,主要从知识、态度观念和能力三个方面,对达成教学目标的程度进行评价。
(三)评价的原则
教学评价应当体现普通高中的性质和任务;应当有利于实施素质教育,有利于学生的主动发展;做到公平、公正、客观;应当根据不同内容,采取适当的评价方式,充分发挥教学评价在教学中的正面导向作用。
(四)评价的方式
教学评价的方式包括通过平时提问、交谈、实验报告、形成性检测等进行的形成性评价和期末考试、毕业水平考试(会考)等终结性评价。其中会考应当包括书面考试和实验操作考查,其命题范围在生物必修课必学内容的范围之内。教师既要重视终结性评价,更要重视教学过程中的形成性评价,如形成性检测结果分析、对学生撰写的课题研究报告或小论文作出评价、观察记录学生主动参与教学过程或课题研究活动的程度、对学生的综合能力进行阶段性评价等。在此基础上及时调整教学策略,提高教学质量。教师还应当注意指导学生进行自我评价,使学生增强自主学习意识,提高学习能力。[!--empirenews.page--] >>返回
七、教学设备
(一)教学设备是保证按质按量完成高中生物课堂教学、观察、实验、实习、演示等教学活动的必要的物质条件。各级教育行政领导部门和学校领导要为生物课程的教学努力创造条件,配备各项有关的生物教学仪器设备,包括实验室、标本室、实验准备室及其内部必要设备,使之达到国家规定的要求,并且要积极创造条件,建立和建好生物园。同时,为了达到教学手段的多样化,教师要积极带领学生自制教具,为教学服务。
(二)生物课教师和实验员要充分利用现有的教学设备,尽量给学生提供亲自动手的机会,使高中生物教学大纲规定的有关实验等项目都能得到落实,并且也为生物科技活动的开展提供良好的设备备件。
(三)各校应该制订生物课教学设备管理制度,以便使教学设备得到合理、科学的使用,并且培养学生科学地、规范地使用教学设备的良好习惯,形成爱惜教学设备的好风气。>>返回 附录: 关于教学要求层次的说明
一、知识方面
从认识水平和该知识点在本学科教学内容中的地位和作用考虑,将对知识点的教学要求,从低到高依次划分为A、B、C、D四个层次。A:知道。对所学知识有大致的印象。
B:识记。记住所学知识的要点,能够说出它们的大意,能够在有关情境中识别它们。
C:理解。在“B”基础上,能够解释和说明所学知识的含义,能够对不同知识采用适当的形式(文字、图、表)予以表达。D:应用。在“C”基础上,能够分析知识的联系和区别,能够在新情境中综合运用所学知识,解决一些与生物学有关实际问题;能够运用所学知识,对有关见、实验方案和结果进行评价。[!--empirenews.page--]
二、学生实验、实习方面
对学生实验、实习的教学要求,划分为I和II两类。
I.理解实验的目的、原理和方法步骤,初步掌握有关的操作技能,进一步理解有关的生物学知识。
II.能够独立完成实验或实习,理解探索性实验的基本过程,初步学会探索性实验的一般方法。
三、研究性课题方面
对研究性课题的教学要求,划分为小组合作完成和独立完成两个层次.小组合作完成:同学间组成 研究小组,共同商定课题研究计划和方案,分工协作,共同完成课题研究任务。独立完成:独立制订课题研究计划和方案,按照计划和方案独立完成课题研究任务。
第二篇:全日制普通高级中学数学教学大纲(试验修订版)
全日制普通高级中学数学教学大纲(试验修订版)
中华人民共和国教育部制订
数学是研究空间形式和数量关系的科学。数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。随着社会的发展,数学的应用越来越广泛。它是人们参加社会生活、从事生产劳动和学习、研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。
高中数学是义务教育后普通高级中学的一门主要课程。它是学习物理、化学、计算机等学科以及参加社会生产、日常生活和进一步学习的必要基础,对形成良好的思想品质和辩证唯物主义世界观有积极作用。因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。
一、教 学 目 的
高中数学的教学目的是:使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何的基础知识和概率统计、微积分的初步知识,并形成基本技能;进一步培养学生的思维能力、运算能力、空间想象能力、解决实际问题的能力,以及创新意识;进一步培养良好的个性品质和辩证唯物主义观点。
基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。
基本技能是指:按照一定的程序与步骤进行运算、处理数据(包括使用计算器)、简单的推理、画图以及绘制图表等技能。
思维能力主要是指:会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。
运算能力是指:会根据法则、公式正确地进行运算、处理数据,并理解算理;能够根据问题的情景,寻求与设计合理、简捷的运算途径。
空间想象能力主要是指:能够由实物形状想象出几何图形,由几何图形想象出实物形状、位置和大小;能够想象几何图形的运动和变化;能够从复杂的图形中区分出基本图形,并能分析其中的基本元素及其关系;能够根据条件作出或画出图形;会运用图形与图表等手段形象地揭示问题本质。
解决实际问题的能力是指:会提出、分析和解决带有实际意义的或在相关学科、生产和生活中的数学问题;会使用数学语言表达问题、进行交流,形成用数学的意识。
创新意识主要是指:对自然界和社会中的数学现象具有好奇心,不断追求新知,独立思考,会从数学的角度发现和提出问题,进行探索和研究。
良好的个性品质主要是指:正确的学习目的,学习数学的兴趣、信心和毅力,实事求是的科学态度,勇于探索创新的精神,欣赏数学的美学价值。
高中数学中所培养的辩证唯物主义观点主要是指:数学来源于实践又反过来作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。二 教学内容的确定和安排
高中数学教学内容应精选那些在现代社会生活、生产和科学技术中有着广泛应用的,为进一步学习所必需的,在理论上、方法上、思想上是最基本的,同时又是学生所能接受的知识。在内容安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育初中数学内容相衔接。
高中数学分必修课、选修课,选修课包括选修Ⅰ和选修Ⅱ。必修课总计280课时,选修Ⅰ总计52课时,选修Ⅱ总计104课
时。学校根据教学实际自行安排必修课、选修课的开设。每学期至少安排一个研究性课题。三 教学内容和教学目标
必修课
1.集合、简易逻辑(14课时)
集合。子集。补集。交集。并集。
逻辑联结词。四种命题。充要条件。教学目标
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义。
2.函数(30课时)
映射。函数。函数的单调性。函数的奇偶性。
反函数。互为反函数的函数图象间的关系。
指数概念的扩充。有理指数幂的运算性质。指数函数。
对数。对数的运算性质。对数函数。
函数的应用举例。
实习作业。教学目标
(1)了解映射的概念,在此基础上加深对函数概念的理解。
(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程。
(3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
(4)理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
(6)能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
(7)实习作业以函数应用为内容,培养学生应用函数知识解决实际问题的能力。
3.不等式(22课时)
不等式。不等式的基本性质。不等式的证明。不等式的解法。含绝对值的不等式。教学目标
(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
(3)掌握分析法、综合法、比较法证明简单的不等式。
(4)掌握某些简单不等式的解法。①
②
③
(5)理解不等式|a|-|b|≤|a+b|≤|a|+|b|。
4.平面向量(12课时)
向量。向量的加法与减法。实数与向量的积。平面向量的坐标表示。线段的定比分点。平面向量的数量积。平面两点间的距离。平移。教学目标
(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
(2)掌握向量的加法与减法。
(3)掌握实数与向量的积,理解两个向量共线的充要条件。
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
(6)掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
5.三角函数(46课时)
角的概念的推广。弧度制。
任意角的三角函数。单位圆中的三角函数线。同角三角函数的基本关系式。正弦、余弦的诱导公式。
两角和与差的正弦、余弦、正切。二倍角的正弦、余弦、正切。
正弦函数、余弦函数的图象和性质。周期函数。函数y=Asin(ωx+φ)的图象。正切函数的图象和性质。已知三角函数值求角。
正弦定理。余弦定理。斜三角形解法举例。
实习作业。教学目标
(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
(2)掌握任意角的正弦、余弦、正切的定义,并会利用单位圆中的三角函数线表示正弦、余弦和正切。了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式:sin2α+cos2α=1,=tanα,tanαcotα=1;掌握正弦、余弦的诱导公式。
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
(5)会用单位圆中的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
(6)会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。
(7)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
(8)通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
(9)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。
6.数列(12课时)
数列。
等差数列及其通项公式。等差数列前 n 项和公式。
等比数列及其通项公式。等比数列前 n 项和公式。教学目标
(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前 n 项和公式,并能运用公式解决简单的问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前 n 项和公式,并能运用公式解决简单的问题。
7.直线和圆的方程(22课时)
直线的倾斜角和斜率。直线方程的点斜式和两点式。直线方程的一般式。
两条直线平行与垂直的条件。两条直线的交角。点到直线的距离。
用二元一次不等式表示平面区域。简单的线性规划问题。
实习作业。
曲线与方程的概念。由已知条件列出曲线方程。
圆的标准方程和一般方程。圆的参数方程。教学目标
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
(2)掌握两条直线平行与垂直的条件,掌握两条直线所成的角和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系。
(3)会用二元一次不等式表示平面区域。
(4)了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
(5)了解解析几何的基本思想,了解用坐标法研究几何问题的方法。
(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
(7)结合教学内容进行对立统一观点的教育。
(8)实习作业以线性规划为内容,培养解决实际问题的能力。
8.圆锥曲线方程(18课时)
椭圆及其标准方程。椭圆的简单几何性质。椭圆的参数方程。
双曲线及其标准方程。双曲线的简单几何性质。
抛物线及其标准方程。抛物线的简单几何性质。教学目标
(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)能够利用工具画圆锥曲线的图形,了解圆锥曲线的简单应用。
(5)结合教学内容,继续进行运动、变化观点的教育。
9(A)直线、平面、简单几何体(36课时)
直线、平面、简单几何体的教学内容和教学目标在9(A)和9(B)两个方案中只选一个执行。
平面及其基本性质。平面图形直观图的画法。
平行直线。对应边分别平行的角。异面直线所成的角。异面直线的公垂线。异面直线的距离。
直线和平面平行的判定与性质。直线和平面垂直的判定与性质。点到平面的距离。斜线在平面上的射影。直线和平面所成的角。三垂线定理及其逆定理。
平面与平面平行的判定与性质。平行平面间的距离。二面角及其平面角。两个平面垂直的判定与性质。
多面体。棱柱。棱锥。正多面体。球。教学目标
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)了解空间两条直线的位置关系;掌握两条直线平行与垂直的判定定理和性质定理;掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。
(3)了解空间直线和平面的位置关系;掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;了解三垂线定理及其逆定理。
(4)了解平面与平面的位置关系;掌握两个平面平行的判定定理和性质定理;掌握二面角、二面角的平面角、两个平行平面间的距离的概念;掌握两个平面垂直的判定定理和性质定理。
(5)进一步熟悉反证法,会用反证法证明简单的问题。
(6)了解多面体的概念,了解凸多面体的概念。
(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(9)了解正多面体的概念,了解多面体的欧拉公式。
(10)了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
(11)通过空间图形的各种位置关系间的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
9(B)直线、平面、简单几何体(36课时)
平面及其基本性质。平面图形直观图的画法。
平行直线。
直线和平面平行的判定与性质。直线和平面垂直的判定。三垂线定理及其逆定理。
两个平面的位置关系。
空间向量及其加法、减法与数乘。空间向量的坐标表示。空间向量的数量积。
直线的方向向量。异面直线所成的角。异面直线的公垂线。异面直线的距离。
直线和平面垂直的性质。平面的法向量。点到平面的距离。直线和平面所成的角。向量在平面内的射影。
平面与平面平行的判定和性质。平行平面间的距离。二面角及其平面角。两个平面垂直的判定和性质。
多面体。棱柱。棱锥。正多面体。球。教学目标
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)了解空间两条直线、直线和平面、两个平面的位置关系。
(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理;了解三垂线定理及其逆定理。
(4)理解空间向量的概念,掌握空间向量的加法、减法和数乘。
(5)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算。
(6)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式。
(7)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。
(8)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离);掌握直线和平面垂直的性质定理;掌握两个平面平行的判定定理和性质定理;掌握两个平面垂直的判定定理和性质定理。
(9)了解多面体的概念,了解凸多面体的概念。
(10)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(11)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(12)了解正多面体的概念,了解多面体的欧拉公式。
(13)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。
(14)通过空间图形的各种位置关系间的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
10.排列、组合、二项式定理(18课时)
分类计数原理与分步计数原理。
排列。排列数公式。
组合。组合数公式。组合数的两个性质。
二项式定理。二项展开式的性质。教学目标
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率(12课时)
随机事件的概率。等可能性事件的概率。互斥事件有一个发生的概率。相互独立事件同时发生的概率。独立重复试验。教学目标
(1)了解随机事件的统计规律性和随机事件概率的意义。
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。
(4)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
(5)会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。
(6)结合概率的教学,进行偶然性和必然性对立统一观点的教育。
12、研究性课题(12课时)
研究性课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。充分地体现学生的自主活动和合作活动。研究性课题应以所学的数学知识为基础,并且密切结合生活和生产实际。课题的选择可以从下面提供的参考课题中选择,也可以师生自拟课题。提倡教师和学生自已提出问题。参考课题
数列在分期付款中的应用;向量在物理中的应用;线性规划的实际应用;多面体欧拉定理的发现等。教学目标
(1)学会提出问题和明确探究方向。
(2)体验数学活动的过程。
(3)培养创新精神和应用能力。
(4)以研究报告或小论文等形式反映研究成果,学会交流。
选修课
选修Ⅰ
1.统计(12课时)
抽样方法。总体分布的估计。正态分布。
线性回归。
实习作业。教学目标
(1)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。(2)会用样本频率分布估计总体分布。(3)了解正态分布的意义及主要性质。(4)了解线性回归的方法。
(5)实习作业以统计中抽样方法为内容,培养学生用数学解决实际问题的能力。2.极限与导数(20课时)
数列的极限。
函数的极限。极限的四则运算。
导数的概念。多项式函数的导数。
导数的应用:变化率。利用导数研究函数的单调性和极值。函数的最大值和最小值。
微积分建立的时代背景和历史意义。
教学目标
(1)从数列和函数的变化趋势理解数列极限和函数极限的概念。
(2)掌握极限的四则运算法则,并会求某些数列与有理函数的极限。
(3)理解导数概念及其几何意义;掌握函数y=xn(n∈N*)的导数公式;会求多项式函数的导数。
(4)会用导数求变化率;理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
(5)通过函数极限与导数的教学,了解微积分建立的时代背景和历史意义,进行客观事物的相互制约、相互转化、对立统一的辩证关系等观点的教育。
选修Ⅱ
1.概率与统计(14课时)
离散型随机变量的分布列。离散型随机变量的期望值和方差。
抽样方法。总体分布的估计。正态分布。线性回归。
实习作业。教学目标
(1)了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
(4)会用样本频率分布估计总体分布。
(5)了解正态分布的意义及主要性质。
(6)通过生产过程的质量控制图了解假设检验的基本思想。
(7)了解线性回归的方法。
(8)实习作业以抽样方法为内容,培养学生用数学解决实际问题的能力。
2.极限(12课时)
数学归纳法。数学归纳法应用举例。
数列的极限。
函数的极限。极限的四则运算。函数的连续性。教学目标
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
(2)从数列和函数的变化趋势理解数列极限和函数极限的概念。
(3)掌握极限的四则运算法则;会求某些数列与函数的极限。
(4)了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数与微分(16课时)
导数的概念。导数的几何意义。几种常见函数的导数。
两个函数的和、差、积、商的导数。复合函数的导数。基本导数公式。
微分的概念与运算。
利用导数研究函数的单调性和极值。函数的最大值和最小值。教学目标
(1)了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
(2)熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x, logax的导数);掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。
(3)理解微分的概念(dy=y'dx),了解函数在一点处的微分是函数增量的线性近似值,会求某些简单函数的微分。
(4)会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
4.积分(14课时)
定积分的概念。定积分的简单性质。微积分基本公式。
原函数与不定积分的概念。不定积分的线性性质。基本积分公式。
平面图形的面积。旋转体的体积。路程问题。变力作功。
微积分学建立的时代背景和历史意义。教学目标
(1)了解定积分概念的某些实际背景(如变速直线运动的路程,曲边梯形的面积等);了解定积分的定义和定积分的几何意义;知道函数连续是定积分存在的充分条件。
(2)理解定积分的简单性质(线性性质和对区间的可加性);了解微积分基本公式(牛顿-莱布尼兹公式),会用它来求一些函数的定积分。
(3)掌握原函数与不定积分的概念,掌握不定积分的线性性质;熟记基本积分公式(c,xm(m为有理数),sin x,cos x,ex,ax的积分);会利用线性性质和基本积分公式求较简单的函数的不定积分。
(4)会用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程、变力所作的功。
(5)通过微积分初步的教学,了解微积分学产生的时代背景和历史意义,进行客观事物相互制约、相互转化、对立统一的辩证关系等观点的教育。
5.复数(16课时)
复数的概念。复数的向量表示法。
复数的加法与减法。复数的乘法与除法。
复数的三角形式。复数三角形式的乘法、除法、乘方、开方。教学目标
(1)了解引进复数的必要性;理解复数的有关概念;掌握复数的代数表示及向量表示。
(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算。
(3)掌握复数三角形式,会进行复数三角形式和代数形式的互化;掌握复数三角形式的乘法、除法、乘方、开方运算。
6.研究性课题(选修Ⅰ3课时,选修Ⅱ6课时)
有关研究性课题的要求和教学目标见本大纲必修课中“研究性课题”的说明。参考课题
杨辉三角;定积分在经济生活中的应用
四、教学中应注意的几个问题
高中数学教学要以《全日制普通高级中学课程计划(试验修订稿)》为依据,全面贯彻教育方针,积极实施素质教育,实现本大纲所确定的数学教学目的,完成规定的教学内容,遵守规定的教学时间,在教学中应该注意以下问题。
1.面向全体学生
面向全体学生就是要促进每一个学生的发展,既要为所有的学生打好共同基础,也要注意发展学生的个性和特长。
由于各种不同的因素,学生在数学知识、技能、能力方面和志趣上存在差异。因此教学中要承认这种差异,区别对待,因材施教,因势利导。在课内外教学中宜从学生的实际情况出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。
2.进行思想品徳教育
结合数学教学内容和学生实际对学生进行思想品徳教育,逐步树立科学的世界观和人生观,是数学教学的一项重要任务。要用辩证唯物主义的观点阐述教学内容,使学生领悟到数学来源于实践,又反过来作用于实践,以及反映在数学中的辩证关系,从而受到辩证唯物主义观点的教育。应该通过数学教学,激发学生的民族自尊心和凝聚力,努力使学生形成为我国社会主义事业兴旺发达和中华民族伟大复兴而努力学习的志向。教学中要注意阐明数学的产生和发展的历史,使学生了解我国和世界各国的古今数学成就,以及数学在现代科学技术、社会生产和日常生活中的广泛应用。激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚韧不拔的意志、实事求是的科学态度和勇于创新的精神。在数学教学中对学生既要严格要求,又要热情关怀,使他们树立学好数学的信心。帮助学生通过学习数学,养成良好的学习习惯,认识数学的科学意义、文化内涵,理解和欣赏数学的美学价值。
3、重视基础知识的教学、基本技能的训练和能力的培养
知识、技能和能力三者的关系是互相依存、互相促进的。能力是在知识的教学和技能的训练过程中,通过数学思想的形成和数学方法的掌握才能得到培养和发展;同时,能力的提高又会加速加深对知识的理解和技能的掌握。
在教学中,要突出重点、抓住关键、解决难点,要引导学生在学好概念的基础上掌握数学的规律,进行基本技能训练,并着重培养学生的能力。在进行基础知识教学时,应当从实际事例或学生已有的知识中,逐步引导学生加以抽象,弄懂它们的含义。还要引导学生搞清它们的来源,分清条件和结论,弄清抽象、概括或证明的过程,了解它们的用途和适用范围。对于基本技能的训练和能力的培养,要遵循学生的认识规律,结合教学内容,选择合适的教学方法,有目的有计划分阶段地进行训练和培养。要随着学生对基础知识的理解的不断加深,逐步提高对基本技能的训练和能力培养的要求。
在教学中,还必须注意知识的整体性,把各个局部知识按照一定的观点和方法组织成整体,以便于存储、提取和应用。要指导学生认真阅读课文,及时进行复习和总结,把所学知识系统化。
4、重视创新意识和实践能力的培养
培养学生的创新意识和实践能力要成为数学教学的一个重要目的和一条基本原则。在教学中要激发学生学习数学的好奇心,不断追求新知,要启发学生能够发现问题和提出问题,善于独立思考,要学会分析问题和创造性地解决问题,使数学教学成为
再创造、再发现的教学。在必修课和选修课中增加的实习作业和研究性课题为创新意识和实践能力的培养提供了一个机会,要在教学中加以实施。
在数学教学中,要增强用数学的意识,一方面应使学生通过背景材料,进行观察、比较、分析、综合、抽象和推理,得出数学概念和规律(包括公理、性质、法则、公式、定理及其联系,数学思想、方法),另一方面更重要的是使学生能够运用已有的知识进行交流,并能将实际问题抽象为数学问题,建立数学模型,从而形成比较完全的数学知识。要引导学生去接触自然,了解社会,鼓励学生积极参加形式多样的课外实践活动。
5、改进教学方法,正确组织练习
数学教师必须转变教育观念,改变向学生灌输知识的单一教学模式。积极实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,激发学生独立思考及对数学问题的好奇心,让学生感受、理解知识的产生和发展的过程,培养学生的科学精神和创新意识,形成学生获取新知识,发展新知识和运用新知识解决问题的能力,以及用数学语言进行交流的能力。
练习是数学教学的有机组成部分,是学生学好数学的必要条件。练习的目的是使学生进一步理解和掌握数学基础知识,训练、培养和发展学生的基本技能和能力,能够及时发现和弥补教和学中的遗漏或不足,培养学生良好的学习习惯和品质。要注意充分发挥练习的作用,要正确组织练习,加强对解题的指导,引导学生在弄懂课文内容的基础上独立完成作业,弄清产生错误的原因并及时加以改正,对解题的思想方法作必要的概括。要注意题目的典型性和多样性,习题要精选,题量要适度,要有一定数量的基本题,由单一到综合,循序渐进,由浅入深;不要增加过量的课外题,以免造成学生过重的课业负担。对完成作业有困难的学生要给予必要的指导。要重视实习作业具体内容的选择和安排。对学生完成的作业,要及时检查,并作必要的评析。
6、重视现代教育技术的运用
应根据教学需要重视投影、录像、计算器、计算机和多媒体技术等现代教育技术手段的运用。现代技术的使用将会深刻地影响数学教学内容、方法和目标的改变。一切有条件和能够创造条件的学校,都应使计算机及其网络成为数学课堂及课外教育的辅助工具。要在教学和考试中广泛使用计算器,要提倡教师自制教具,自己设计教学课件,努力提高教学质量和教学效益。
7、严格执行课程计划
必须严格执行《全日制普通高级中学课程计划(试验修订稿)》所规定的教学周数和每周的教学课时数。不得增加课时数,不得提前结束数学课程,不得随意增加毕业前数学课的复习时间,确保学生在德、智、体、美等方面得到全面发展。
五 教学测试和评估
数学教学测试和评估,必须以教学目标为依据,其目的不仅是评定学生的学习成绩,促进教师改进教学,更重要的是为了激励学生努力学习。
要注意通过课堂提问、观察、谈话、学生作业和平时测验,及时了解学生学习状况,吸收教学的反馈信息。
要注意评估手段和方法的改革。科学的考试,既要测量学生理解和掌握数学基础知识与数学基本技能的情况,又要测量学生的数学基本能力和综合应用数学的能力,并注意评估学生的创新意识和能力的发展情况。要按照课程计划的要求,控制考试的次数,命题要依据教学内容和教学目标,题目要体现教学重点,难易适当,不出偏题、怪题和助长死记硬背的题目。要及时做好考卷分析和教学评估工作,针对发现的问题,调整教学。对于学生学习中的缺陷,积极采取补救措施。
教学测试和评估的过程是师生交流的过程,应有利于学生树立学好数学的信心,充分发挥他们的才能去获得更好的学习效果。要改进测试和评估的结果的报告形式,选择描述学生学习效果的最佳方法,鼓励他们的点滴进步,促进他们数学素养的不断提高。
本大纲的必修课内容作为各省、自治区、直辖市制订高中数学会考标准的依据。
说明:本大纲阐述教学目标分为了解、理解、掌握、灵活运用等四个层次,其含义参照《九年义务教育全日制初级中学数学教学大纲(试用)》(1995年第2版)的提法:
(1)了解:对知识的含义有感性的、初步的认识,能够说出这一知识是什么,能够(或会)在有关的问题中识别它。
(2)理解:对概念和规律(定律、定理、公式、法则等)达到了理性认识,不仅能够说出概念和规律是什么,而且能够知道它是怎样得出来的,它与其他概念和规律之间的联系,有什么用途。
(3)掌握:一般地说,是在理解的基础上,通过练习,形成技能,能够(或会)用它去解决一些问题。
(4)灵活运用:是指能够综合运用知识并达到了灵活的程度,从而形成了能力。
第三篇:全日制普通高级中学数学教学大纲
全日制普通高级中学数学教学大纲
日期:2003-08-16 来源:
作者:
数学是研究空间形式和数量关系的科学。数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。随着社会的发展,数学的应用越来越广泛。它是人们参加社会生活、从事生产劳动和学习、研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。
高中数学是义务教育后普通高级中学的一门主要课程。它是学习物理、化学、计算机等学科以及参加社会生产、日常生活和进一步学习的必要基础,对形成良好的思想品质和辩证唯物主义世界观有积极作用。因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。
一、教 学 目 的
高中数学的教学目的是:使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何的基础知识和概率统计、微积分的初步知识,并形成基本技能;进一步培养学生的思维能力、运算能力、空间想象能力、解决实际问题的能力,以及创新意识;进一步培养良好的个性品质和辩证唯物主义观点
基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。
基本技能是指:按照一定的程序与步骤进行运算、处理数据(包括使用计算器)、简单的推理、画图以及绘制图表等技能。
思维能力主要是指:会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。
运算能力是指:会根据法则、公式正确地进行运算、处理数据,并理解算理;能够根据问题的情景,寻求与设计合理、简捷的运算途径。
空间想象能力主要是指:能够由实物形状想象出几何图形,由几何图形想象出实物形状、位置和大小;能够想象几何图形的运动和变化;能够从复杂的图形中区分出基本图形,并能分析其中的基本元素及其关系;能够根据条件作出或画出图形;会运用图形与图表等手段形象地揭示问题本质。
解决实际问题的能力是指:会提出、分析和解决带有实际意义的或在相关学科、生产和生活中的数学问题;会使用数学语言表达问题、进行交流,形成用数学的意识。
创新意识主要是指:对自然界和社会中的数学现象具有好奇心,不断追求新知,独立思考,会从数学的角度发现和提出问题,进行探索和研究。
良好的个性品质主要是指:正确的学习目的,学习数学的兴趣、信心和毅力,实事求是的科学态度,勇于探索创新的精神,欣赏数学的美学价值。
高中数学中所培养的辩证唯物主义观点主要是指:数学来源于实践又反过来作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
二教学内容的确定和安排
高中数学教学内容应精选那些在现代社会生活、生产和科学技术中有着广泛应用的,为进一步学习所必需的,在理论上、方法上、思想上是最基本的,同时又是学生所能接受的知识。在内容安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育初中数学内容相衔接。
高中数学分必修课、选修课,选修课包括选修Ⅰ和选修Ⅱ。必修课总计280课时,选修Ⅰ总计52课时,选修Ⅱ总计104课时。学校根据教学实际自行安排必修课、选修课的开设。每学期至少安排一个研究性课题。
三教学内容和教学目标
必修课
1.集合、简易逻辑(14课时)
集合。子集。补集。交集。并集。
逻辑联结词。四种命题。充要条件。
教学目标
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
本大纲阐述教学目标分为了解、理解、掌握、灵活运用等四个层次,其含义参照《九年义务教育全日制初级中学数学教学大纲(试用)》(1995年第2版)的提法:
(1)了解:对知识的含义有感性的、初步的认识,能够说出这一知识是什么,能够(或会)在有关的问题中识别它。
(2)理解:对概念和规律(定律、定理、公式、法则等)达到了理性认识,不仅能够说出概念和规律是什么,而且能够知道它是怎样得出来的,它与其他概念和规律之间的联系,有什么用途。
(3)掌握:一般地说,是在理解的基础上,通过练习,形成技能,能够(或会)用它去解决一些问题。
(4)灵活运用:是指能够综合运用知识并达到了灵活的程度,从而形成了能力。
(2)理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义。
2.函数(30课时)
映射。函数。函数的单调性。函数的奇偶性。
反函数。互为反函数的函数图象间的关系。
指数概念的扩充。有理指数幂的运算性质。指数函数。
对数。对数的运算性质。对数函数。
函数的应用举例。
实习作业。
教学目标
(1)了解映射的概念,在此基础上加深对函数概念的理解。
(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程。
(3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
(4)理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
(6)能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
(7)实习作业以函数应用为内容,培养学生应用函数知识解决实际问题的能力。
3.不等式(22课时)
不等式。不等式的基本性质。不等式的证明。不等式的解法。含绝对值的不等式。
教学目标
(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
(3)掌握分析法、综合法、比较法证明简单的不等式。
(4)掌握某些简单不等式的解法。
(5)理解不等式
|a|-|b|≤|a+b|≤|a|+|b|。
4.平面向量(12课时)
向量。向量的加法与减法。实数与向量的积。平面向量的坐标表示。线段的定比分点。平面向量的数量积。平面两点间的距离。平移。
教学目标
(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
(2)掌握向量的加法与减法。
(3)掌握实数与向量的积,理解两个向量共线的充要条件。
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
(6)掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
5.三角函数(46课时)
角的概念的推广。弧度制。
任意角的三角函数。单位圆中的三角函数线。同角三角函数的基本关系式。正弦、余弦的诱导公式。
两角和与差的正弦、余弦、正切。二倍角的正弦、余弦、正切。
正弦函数、余弦函数的图象和性质。周期函数。函数y=Asin(ωx+φ)的图象。正切函数的图象和性质。已知三角函数值求角。
正弦定理。余弦定理。斜三角形解法举例。
实习作业。
教学目标
(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
(2)掌握任意角的正弦、余弦、正切的定义,并会利用单位圆中的三角函数线表示正弦、余弦和正切。了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式:
掌握正弦、余弦的诱导公式。
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
(5)会用单位圆中的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
(6)会由已知三角函数值求角,并会用符号arcsin x、arccos x、arctan x表示。
(7)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
(8)通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
(9)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。
6.数列(12课时)
数列。
等差数列及其通项公式。等差数列前n 项和公式。
等比数列及其通项公式。等比数列前n 项和公式。
教学目标
(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。
7.直线和圆的方程(22课时)
直线的倾斜角和斜率。直线方程的点斜式和两点式。直线方程的一般式。
两条直线平行与垂直的条件。两条直线的交角。点到直线的距离。
用二元一次不等式表示平面区域。简单的线性规划问题。
实习作业。
曲线与方程的概念。由已知条件列出曲线方程。
圆的标准方程和一般方程。圆的参数方程。
教学目标
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
(2)掌握两条直线平行与垂直的条件,掌握两条直线所成的角和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系。
(3)会用二元一次不等式表示平面区域。
(4)了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
(5)了解解析几何的基本思想,了解用坐标法研究几何问题的方法。
(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
(7)结合教学内容进行对立统一观点的教育。
(8)实习作业以线性规划为内容,培养解决实际问题的能力。
8.圆锥曲线方程(18课时)
椭圆及其标准方程。椭圆的简单几何性质。椭圆的参数方程。
双曲线及其标准方程。双曲线的简单几何性质。
抛物线及其标准方程。抛物线的简单几何性质。
教学目标
(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)能够利用工具画圆锥曲线的图形,了解圆锥曲线的简单应用。
(5)结合教学内容,继续进行运动、变化观点的教育。
9(A)直线、平面、简单几何体(36课时)
直线、平面、简单几何体的教学内容和教学目标在9(A)和9(B)两个方案中只选一个执行。
平面及其基本性质。平面图形直观图的画法。
平行直线。对应边分别平行的角。异面直线所成的角。异面直线的公垂线。异面直线的距离。
直线和平面平行的判定与性质。直线和平面垂直的判定与性质。点到平面的距离。斜线在平面上的射影。直线和平面所成的角。三垂线定理及其逆定理。
平面与平面平行的判定与性质。平行平面间的距离。二面角及其平面角。两个平面垂直的判定与性质。
多面体。棱柱。棱锥。正多面体。球。
教学目标
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)了解空间两条直线的位置关系;掌握两条直线平行与垂直的判定定理和性质定理;掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。
(3)了解空间直线和平面的位置关系;掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;了解三垂线定理及其逆定理。
(4)了解平面与平面的位置关系;掌握两个平面平行的判定定理和性质定理;掌握二面角、二面角的平面角、两个平行平面间的距离的概念;掌握两个平面垂直的判定定理和性质定理。
(5)进一步熟悉反证法,会用反证法证明简单的问题。
(6)了解多面体的概念,了解凸多面体的概念。
(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(9)了解正多面体的概念,了解多面体的欧拉公式。
(10)了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
(11)通过空间图形的各种位置关系间的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
9(B)直线、平面、简单几何体(36课时)
平面及其基本性质。平面图形直观图的画法。
平行直线。
直线和平面平行的判定与性质。直线和平面垂直的判定。三垂线定理及其逆定理。
两个平面的位置关系。
空间向量及其加法、减法与数乘。空间向量的坐标表示。空间向量的数量积。
直线的方向向量。异面直线所成的角。异面直线的公垂线。异面直线的距离。
直线和平面垂直的性质。平面的法向量。点到平面的距离。直线和平面所成的角。向量在平面内的射影。
平面与平面平行的判定和性质。平行平面间的距离。二面角及其平面角。两个平面垂直的判定和性质。
多面体。棱柱。棱锥。正多面体。球。
教学目标
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)了解空间两条直线、直线和平面、两个平面的位置关系。
(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理;了解三垂线定理及其逆定理。
(4)理解空间向量的概念,掌握空间向量的加法、减法和数乘。
(5)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算。
(6)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式。
(7)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。
(8)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离);掌握直线和平面垂直的性质定理;掌握两个平面平行的判定定理和性质定理;掌握两个平面垂直的判定定理和性质定理。
(9)了解多面体的概念,了解凸多面体的概念。
(10)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(11)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(12)了解正多面体的概念,了解多面体的欧拉公式。
(13)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。
(14)通过空间图形的各种位置关系间的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
10.排列、组合、二项式定理(18课时)
分类计数原理与分步计数原理。
排列。排列数公式。
组合。组合数公式。组合数的两个性质。
二项式定理。二项展开式的性质。
教学目标
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率(12课时)
随机事件的概率。等可能性事件的概率。互斥事件有一个发生的概率。相互独立事件同时发生的概率。独立重复试验。
教学目标
(1)了解随机事件的统计规律性和随机事件概率的意义。
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。
(4)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
(5)会计算事件在n 次独立重复试验中恰好发生 k 次的概率。
(6)结合概率的教学,进行偶然性和必然性对立统一观点的教育。
12、研究性课题(12课时)
研究性课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。充分地体现学生的自主活动和合作活动。研究性课题应以所学的数学知识为基础,并且密切结合生活和生产实际。课题的选择可以从下面提供的参考课题中选择,也可以师生自拟课题。提倡教师和学生自已提出问题。
参考课题
数列在分期付款中的应用;向量在物理中的应用;线性规划的实际应用;多面体欧拉定理的发现等。
教学目标
(1)学会提出问题和明确探究方向。
(2)体验数学活动的过程。
(3)培养创新精神和应用能力。
(4)以研究报告或小论文等形式反映研究成果,学会交流。
选修课
选修Ⅰ
1.统计(12课时)
抽样方法。总体分布的估计。正态分布。
线性回归。
实习作业。
教学目标
(1)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
(2)会用样本频率分布估计总体分布。
(3)了解正态分布的意义及主要性质。
(4)了解线性回归的方法。
(5)实习作业以统计中抽样方法为内容,培养学生用数学解决实际问题的能力。
2.极限与导数(20课时)
数列的极限。
函数的极限。极限的四则运算。
导数的概念。多项式函数的导数。
导数的应用:变化率。利用导数研究函数的单调性和极值。函数的最大值和最小值。
微积分建立的时代背景和历史意义。
教学目标
(1)从数列和函数的变化趋势理解数列极限和函数极限的概念。
(2)掌握极限的四则运算法则,并会求某些数列与有理函数的极限。
(3)理解导数概念及其几何意义;掌握函数y=xn(n∈N*)的导数公式;会求多项式函数的导数。
(4)会用导数求变化率;理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
(5)通过函数极限与导数的教学,了解微积分建立的时代背景和历史意义,进行客观事物的相互制约、相互转化、对立统一的辩证关系等观点的教育。
选修Ⅱ
1.概率与统计(14课时)
离散型随机变量的分布列。离散型随机变量的期望值和方差。
抽样方法。总体分布的估计。正态分布。线性回归。
实习作业。
教学目标
(1)了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
(4)会用样本频率分布估计总体分布。
(5)了解正态分布的意义及主要性质。
(6)通过生产过程的质量控制图了解假设检验的基本思想。
(7)了解线性回归的方法。
(8)实习作业以抽样方法为内容,培养学生用数学解决实际问题的能力。
1.极限(12课时)
数学归纳法。数学归纳法应用举例。
数列的极限。
函数的极限。极限的四则运算。函数的连续性。
教学目标
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
(2)从数列和函数的变化趋势理解数列极限和函数极限的概念。
(3)掌握极限的四则运算法则;会求某些数列与函数的极限。
(4)了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数与微分(16课时)
导数的概念。导数的几何意义。几种常见函数的导数。
两个函数的和、差、积、商的导数。复合函数的导数。基本导数公式。
微分的概念与运算。
利用导数研究函数的单调性和极值。函数的最大值和最小值。
教学目标
(1)了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
(2)熟记基本导数公式(c,xm(m为有理数),sin x, cos x, ex, ax, ln x, logax的导数);掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。
(3)理解微分的概念(dy=y‘
第四篇:全日制普通高级中学数学教学大纲
全日制普通高级中学数学教学大纲
数学是研究空间形式和数量关系的科学。数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。随着社会的发展,数学的应用越来越广泛。它已经成为人们参加社会生活、从事生产劳动的需要。它是学习和研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。
高中数学是义务教育后普通高级中学的一门主要课程。它是学习物理、化学、计算机和进一步学习的必要基础,也是参加社会生产、日常生活的基础,对于培养学生的创新意识和应用意识,认识数学的科学和文化价值,形成理性思维有积极作用。因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。
一、教学目的
高中数学教学应该在9年义务教育数学课程的基础上进一步做到:
使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何、概率统计、微积分初步的基础知识、基本技能,以及其中的数学思想方法。
在数学教学过程中注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生数学探究能力、数学建模能力和数学交流能力,进一步发展学生的数学实践能力。
努力培养学生数学思维能力,包括:空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,能够对客观事物中的数量关系和数学模式作出思考和判断。
激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辩证唯物主义的世界观。
二、教学内容的确定和安排
高中数学教学内容应精选那些在现代社会生活、生产和科学技术中有着广泛应用的,为进一步学习所必需的,在理论上、方法上、思想上是最基本的,同时又是学生所能接受的知识。在内容安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育初中数学内容相衔接。高中数学分必修课、选修课,选修课包括选修Ⅰ和选修Ⅱ。必修课总计280课时,选修Ⅰ总计52课时,选修Ⅱ总计104课时。学校根据教学实际自行安排必修课、选修课的开设。每学期至少安排一个研究性课题。
三、教学内容和教学目标
必修课
1.平面向量(12课时)
向量。向量的加法与减法。实数与向量的积。平面向量的坐标表示。线段的定比分点。平面向量的数量积。平面两点间的距离。平移。
教学目标
(1)理解①向量的概念,掌握向量的几何表示,了解共线向量的概念。
①(注):本大纲阐述教学目标分为了解、理解、掌握、灵活运用等四个层次,其含义参照《九年义务教育全日制初级中学数学教学大纲(试用)》(1995年第2版)的提法:
(1)了解:对知识的含义有感性的、初步的认识.能够说出这一知识是什么,能够(或会)在有关的问题中识别它。
(2)理解:对概念和规律(定律、定理、公式、法则等)达到了理性认识,不仅能够说出概念和规律是什么,而目能够知道它是怎样得出来的,它与其他概念和规律之间的联系,有什么用途。
(3)掌握:一般地说,是在理解的基础上,通过练习,形成技能,能够(或会)用它在解决一些问题。
(4)灵活运用:是指能够综合运用知识并达到了灵活的程度,从而形成了能力。
(2)掌握向量的加法与减法。
(3)掌握实数与向量的积,理解两个向量共线的充要条件。
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
(6)掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
2.集台、简易逻辑(14课时)
集合。子集。补集。交集。并集。
逻辑联结词。四种命题。充要条件。
教学目标
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义。
3.函数(30课时)
映射。函数。函数的单调性。
反函数。互为反函数的函数图象间的关系。
指数概念的扩充。有理指数幂的运算性质。指数函数。
对数。对数的运算性质。对数函数。
函数的应用举例。
实习作业。
教学目标
(1)了解映射的概念,在此基础上加深对函数概念的理解。
(2)了解函数单调性的概念,掌握判断一些简单函数单调性的方法。
(3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
(4)理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
(6)能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
(7)实习作业以函数应用为内容,培养学生应用函数知识解决某些实际问题的能力。
4.不等式(22课时)
不等式。不等式的基本性质。不等式的证明。不等式的解法、含绝对值的不等式。
教学目标
(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理。并会简单的应用。
(3)掌握分析法、综合法、比较法证明简单的不等式。
(4)掌握二次不等式、简单的绝对值不等式和简单的分式不等式的解法。
(5)理解不等式
|a|-|b|≤|a+b|≤|a|+|b|
5.三角函数(46课时)
角的概念的推广、弧度制。
任意角的三角函数。单位圆中的三角函数线。同角三角函数的基本关系式。正弦、余弦的诱导公式。两角和与差的正弦、余弦、正切。二倍角的正弦、余弦、正切。
正弦函数、余弦函数的图象和性质。周期函数、函数的奇偶性。函数y=Asin(ωx+φ)的图象。正切函数的图象和性质。已知三角函数值求角。
正弦定理。余弦定理。斜三角形解法举例。
实习作业。
教学目标
(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
(2)掌握任意角的正弦、余弦、正切的定义,并会利用单位圆中的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角一角函数的基本关系式:掌握正弦、余弦的诱导公式。
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
(5)会用单位圆中的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的定义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
(6)会由已知三角函数值求角,并会用符号arcsinx、arccosx、arctanx表示。
(7)掌握正弦定理、余弦定理,并能运用它们解斜二角形,能利用计算器解决解斜三角形的计算问题。
(8)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。
(9)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。
6.数列(12课时)
数列。
等差数列及其通项公式。等差数列前n项和公式。
等比数列及其通项公式。等比数列前n项和公式。
教学目标
(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
7.直线和圆的方程(22课时)
直线的倾斜角和斜率。直线方程的点斜式和两点式。直线方程的一般式。
两条直线平行与垂直的条件。两条直线的交角。点到直线的距离。
用二元一次不等式表示平面区域。简单线性规划问题。
实习作业。
曲线与方程的概念。由已知条件列出曲线方程。
圆的标准方程和一般方程。圆的参数方程。
教学目标
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
(2)掌握两条直线平行与垂直的条件,掌握两条直线所成的角和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系。
(3)会用二元一次不等式表示平面区域。
(4)了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
(5)了解解析几何的基本思想,了解用坐标法研究几何问题的方法。
(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
(7)结合教学内容进行对立统一观点的教育。
(8)实习作业以线性规划为内容,培养解决实际问题的能力。
8.圆锥曲线方程(18课时)
椭圆及其标准方程。椭圆的简单几何性质。椭圆的参数方程。
双曲线及其标准方程。双曲线的简单几何性质。
抛物线及其标准方程。抛物线的简单几何性质。
教学目标
(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)了解圆锥曲线的简单应用。
(5)结合教学内容,进行运动、变化观点的教育。
9(A).①直线、平面、简单几何体(36课时)
①{(注):直线、平面、简单几何体的教学内容和教学目标在9(A)和9(B)两个方案中只选一个执行。}
平面及其基本性质。平面图形直观图的画法。
平行直线。对应边分别平行的角。异面直线所成的角。异面直线的公垂线、异面直线的距离。
直线和平面平行的判定与性质。直线和平面垂直的判定与性质。点到平面的距离、斜线在平面上的射影。直线和平面所成的角。三垂线定理及其逆定理。
平面与平面平行的判定与性质。平行平面间的距离。二面角及其平面角、两个平面垂直的判定与性质。
多面体。棱柱。棱锥。正多面体、球。
教学目标
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)掌握两条直线平行与垂直的判定定理和性质定理;掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。
(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;了解三垂线定理及其逆定理。
(4)掌握两个平面平行的判定定理和性质定理;掌握二面角、二面角的平面角、两个平行平面间的距离的概念;掌握两个平面垂直的判定定理和性质定理。
(5)进一步熟悉反证法,会用反证法证明简单的问题。
(6)了解多面体的概念,了解凸多面体的概念。
(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(9)了解正多面体的概念,了解多面体的欧拉公式。
(10)了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
(11)通过空间图形的各种位置关系的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
9(B).直线、平面、简单几何体(36课时)
平面及其基本性质。平面图形直观图的画法。
平行直线。
直线和平面平行的判定与性质。直线和平面垂直的判定。三垂线定理及其逆定理。
两个平面的位置关系。
空间向量及其加法、减法与数乘。空间向量的坐标表示。空间向量的数量积。
直线的方向向量。异面直线所成的角。异面直线的公垂线、异面直线的距离。
直线和平面垂直的性质。平面的法向量。点到平面的距离。直线和平面所成的角。向量在平面内的射影。
平面与平面平行的判定和性质。平行平面间的距离。二面角及其平面角。两个平面垂直的判定和性质。
多面体。棱柱。棱锥。正多面体。球。
教学目标
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理;了解三重线定理及其逆定理。
(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘。
(4)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算。
(5)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式。
(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。
(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离);掌握直线和平面垂直的性质定理;掌握两个平面平行的判定定理和性质定理;掌握两个平面垂直的判定定理和性质定理。
(8)了解多面体的概念,了解凸多面体的概念
(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(10)了解棱锥的慨念,掌握正棱锥的性质,会画正棱锥的直观图。
(11)了解正多面体的概念,了解多面体的欧拉公式。
(12)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。
(13)通过空间图形的各种位置关系间的教学,培养空间想象能力,发展逻辑思维能力,并培养辩证唯物主义观点。
10.排列、组合、二项式定理(l8课时)
分类计数原理与分步计数原理。
排列、排列数公式。
组合、组合数公式。组合数的两个性质。
二项式定理、二项展开式的性质。
教学目标
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率(12课时)
随机事件的概率。等可能性事件的概率。互斥事件有一个发生的概率。相互独立事件同时发生的概率。独立重复试验。
教学目标
(1)了解随机事件的统计规律性和随机事件概率的意义。
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。
(4)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
(5)会计算事件在n次独立重复试验中恰好发生k次的概率。
(6)结合概率的教学,进行偶然性和必然性对立统一观点的教育。
12.研究性学习课题(l2课时)
研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究,充分地体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。课题可以从下面提供的参考课题中选择,也可以师生自拟。
参考课题
数列在分期付款中的应用;向量在物理中的应用;线性规划的实际应用;多面体欧拉定理的发现等。
教学目标
(1)学会提出问题和明确探究方向。
(2)体验数学活动的过程。
(3)培养创新精神和应用能力。
(4)以研究报告或小论文等形式反映研究成果,学会交流。
选修课
选修Ⅰ
1.统计(9课时)
抽样方法。
总体分布的估计。
总体期望值和方差的估计。
实习作业。
教学目标
(1)本单元内容均通过统计案例进行教学。
(2)通过统计案例,了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;通过统计案例,会用样本频率分布估计总体分布,会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。
(3)实习作业用统计思想方法处理实际问题,体验从抽样到统计推断的过程。
2.导数(15课时)
导数的背景。
导数的概念。
多项式函数的导数。
利用导数研究函数的单调性与极值,函数的最大值与最小值。
利用导数研究简单实际问题的最大值与最小值。
微积分建立的时代背景和历史意义。
教学目标
(1)通过丰富的实际材料体验导数概念的背景。
(2)理解导数是平均变化率的极限;理解导数的几何意义。
(3)掌握函数y=Asin(ωx+φ)的导数公式,会求多项式函数的导数。
(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
(5)通过解决科技、经济、社会中的某些简单实际问题,体验导数求最大值与最小值的应用。
(6)通过介绍微积分建立的时代背景和过程,了解微积分的科学价值、文化价值及基本思想。
选修Ⅱ
1.概率与统计(14课时)
离散型随机变量的分布列。离散型随机变量的期望值和方差。
抽样方法。总体分布的估计。正态分布。线性回归。
实习作业。
教学目标
(1)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
(4)会用样本频率分布估计总体分布。
(5)了解正态分布的意义及主要性质。
(6)了解线性回归的方法和简单应用。
(7)实习作业以抽样方法为内容,培养学生解决实际问题的能力。
2.极限(12课时)
数学归纳法。数学归纳法应用举例。
数列的极限。
函数的极限。极限的四则运算。函数的连续性。
教学目标
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
(2)从数列和函数的变化趋势了解数列极限和函数极限的概念。
(3)掌握极限的四则运算法则;会求某些数列与函数的极限。
(4)了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数(l8课时)
导数的概念。导数的几何意义、几种常见函数的导数。
两个函数的和、差、积、商的导数。复合函数的导数。基本导数公式。
利用导数研究函数的单调性和极值。函数的最大值和最小值。
微积分建立的时代背景和历史意义。
教学目标
(1)了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
(2)熟记基本导数公式(c,(m为有理数),sinx,cosx,,lnx,的导数);掌握两个函数和、差、积、商的求导法则;了解复合函数的求导法则,会求某些简单函数的导数。
(3)会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
(4)通过介绍微积分建立的时代背景和过程,了解微积分的科学价值、文化价值和基本思想。
4.数系的扩充——复数(4课时)
复数的概念。复数的加法和减法。复数的乘法与除法。数系的扩充。
教学目标
(1)了解引进复数的必要性;理解复数的有关概念。掌握复数的代数表示与几何意义。
(2)掌握复数代数形式的运算法则,能进行复数代数形式的加减乘除运算。
(3)了解数系从自然数到有理数到实数再到复数扩充的基本思想。
5.研究性学习课题(选修Ⅰ 3课时,选修Ⅱ 6课时)
有关研究性学习课题的要求和教学目标见本大纲必修课中“研究性学习课题”的说明。
参考课题
杨辉三角;极值问题在经济生活中的应用;统计方法在现实生活中的应用;数学软件的应用;复数的几种不同的表示及运算(包括向量表示)。
四、教学中应注意的几个问题
高中数学教学要以《全日制普通高级中学课程计划》为依据,全面贯彻教育方针,积极实施素质教育,实现本大纲所确定的数学教学目的,完成规定的教学内容,遵守规定的教学时间,在教学中应该注意以下问题。
l.面向全体学生
面向全体学生就是要促进每一个学生的发展,既要为所有的学生打好共同基础,也要注意发展学生的个性和特长。
由于各种不同的因素,学生在数学知识、技能、能力方面以及数学经验、志趣上存在差异。因此,教师应尊重学生的人格,关注个体差异,区别对待,因材施教,因势利导、在教学中宜从学生的实际情况出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,调动所有学生学习数学的积极性。改进教学策略,满足学生的不同学习需求,发展学生的数学才能。
2.进行思想品德教育
结合数学教学内容和学生实际对学生进行思想品德教育,逐步树立实事求是、一丝不苟的科学精神,是数学教学的一项重要任务。要用辩证唯物主义的观点阐述教学内容,使学生领悟到数学来源于实践,又反过来作用于实践,从中体会反映在数学中的辩证关系,从而受到辩证唯物主义观点的教育。
应该通过数学教学,激发学生的民族自尊心和凝聚力,努力使学生形成为国家和民族振兴而努力学习的志向。教学中要注意阐明数学的产生和发展的历史,使学生了解国内外的古今数学成就,以及数学在现代科学技术、社会生产和日常生活中的广泛应用。
要陶冶学生的情操,培养学生勤于思考的习惯、坚韧不拔的意志和勇于创新的精神。帮助学生通过学习数学,养成良好的学习习惯,认识数学的科学意义、文化内涵,理解和欣赏数学的美学价值。
3.转变教学观念,改进教学方法
数学教学要以学生发展为本,提高学生的数学素养,丰富学生的精神世界。
我国数学教学具有重视基础知识教学、基本技能训练和能力培养的传统,在高中数学教学中应发扬这种传统。但是,随着时代的发展,特别是现代信息技术对社会各领域广泛而深入的影响,数学教学应“与时俱进”,重新审视基础知识、基本技能和能力的内涵、揭示数学发生发展的过程,加强数学与其它学科和日常生活的关系,提高对数学科学的学习兴趣和信心,形成正确的数学价值观。
教师在教学中的主导作用必须以确立学生主体地位为前提。教师要了解学生的知识基础、学习经验、认知特点和学习兴趣,作为确定教学策略的依据。教师要依据教材,又不囿于教材,把学生的知识、经验、生活世界作为重要的课程资源,鼓励学生自主学习。在教学过程中,要充分发挥学生的自主性和创造性,鼓励学生即兴创造、超越预设的教学目标。
教学过程是学生与教师相互交流、共同参与的过程。教学中,要发扬民主,师生相互尊重,密切合作,共同探索。要鼓励学生质疑、探究,让学生感受和体验数学知识产生、发展和应用的过程。
练习是数学教学的有机组成部分,要精心组织练习,引导学生在理解所学内容的基础上独立完成作业,对解题方法作必要的概括。习题要精选,题量要适当。
教师要有反思教学的意识,及时调整教学方法和策略,以获得更佳的教学效果。
4.重视创新意识和实践能力的培养
培养学生的创新意识和实践能力要成为数学教学的一个重要目标和一条基本原则。在教学中要激发学生学习数学的兴趣和好奇心,不断追求新知。要鼓励学生质疑问难,提出自己的独到见解,启发学生发现问题和提出问题,善于独立思考,使数学学习成为再创造、再发现的过程。在数学教学中,要增强用数学的意识。一方面应使学生通过背景材料,进行观察、比较、分析、综合、抽象和推理,得出数学概念和规律;另一方面要使学生接触自然、了解社会,能用数学知识和思想方法解决简单的实际问题,提高数学建模的能力。要把实习作业和研究性学习课题作为培养创新意识和实践能力的重要载体。
5.重视现代教育技术的运用
在教学过程中,应有意识地利用计算机和网络等现代信息技术,认识计算机的智能图画、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。
要因地制宜,积极稳妥地在数学教学中推广使用现代信息技术。要重视教学设计,实现教师与专业信息技术工作者的优势互补。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用现代信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。
6.严格执行课程计划
必项严格执行《全日制普通高级中学课程计划》规定的教学周数和每周的教学课时数。不得增加课时数,不得提前结束数学课程,不得随意增加毕业前数学课的复习时间,确保学生在德、智、体、美等方面得到全面发展。
五、教学评价
数学教学评价必须以本大纲为依据。评价的目的在于了解学生的学习进程和学习能力。应全面评价学生的学习成绩,激励学生的学习积极性,提高学习效率,促进教师改进教学。
教学评价的内容必须多元化。既关注学生理解和掌握数学基础知识和基本技能的情况,又关注学生的数学基本能力和综合应用数学的能力;既关注学生的创新意识和实践能力的发展情况,又关注学生学习兴趣和情感体验等方面的发展;既尊重个体差异,对学生个体发展的独特性给予积极评价,又关注学生学习策略和学习行为的共同规律,发挥学生学习数学的潜能。
要注意改进评价手段和方法。将教学过程、教学目标和学生发展有机地结合起来。可通过课堂提问、谈话、学生作业、研究性学习课题、学习交流、学业成绩测定、自评与互评、多次评价等方式方法进行评价,并关注学生对评价结果的认可。
教学评价的过程,应有利于学生树立学好数学的信心,要采用定性评定和定量评定相结合的方法,改进测试的评价结果的报告形式,选择描述学生学习效果的最佳方法,鼓励他们的点滴进步,促进他们数学素养的不断提高。
五、教学评价
数学教学评价必须以本大纲为依据。评价的目的在于了解学生的学习进程和学习能力。应全面评价学生的学习成绩,激励学生的学习积极性,提高学习效率,促进教师改进教学。
教学评价的内容必须多元化。既关注学生理解和掌握数学基础知识和基本技能的情况,又关注学生的数学基本能力和综合应用数学的能力;既关注学生的创新意识和实践能力的发展情况,又关注学生学习兴趣和情感体验等方面的发展;既尊重个体差异,对学生个体发展的独特性给予积极评价,又关注学生学习策略和学习行为的共同规律,发挥学生学习数学的潜能。
要注意改进评价手段和方法。将教学过程、教学目标和学生发展有机地结合起来。可通过课堂提问、谈话、学生作业、研究性学习课题、学习交流、学业成绩测定、自评与互评、多次评价等方式方法进行评价,并关注学生对评价结果的认可。
教学评价的过程,应有利于学生树立学好数学的信心,要采用定性评定和定量评定相结合的方法,改进测试的评价结果的报告形式,选择描述学生学习效果的最佳方法,鼓励他们的点滴进步,促进他们数学素养的不断提高。
中华人民共和国教育部制订
第五篇:全日制普通高级中学语文教学大纲
《全日制普通高级中学语文教学大纲(供试验用)》指出“语文是最重要的交际工具”这一语文的本质属性外,同时特意指出语文“也是最重要的文化载体”这一特殊属性。赋予语文教学进行人文素质教育的任务。为此,在面向新世纪人才需要的今天,我们必须树立大语文观,注重学生人文素质的培养。
一、人文素质是现实和未来对人的需求
人文,是指与人类社会有直接关系的文化现象,人们一般把文学、史学、哲学、经济学、政治学、法学、伦理学、语言学和艺术等统称为人文科学。人文素质,是指社会中的人建立在人文科学知识之上,通过对人类优秀文化吸纳、受人类优秀文化熏陶所反映出来的精神风貌和内在气质的综合体现。
那么人文素质教育的目标就是提高人的文化修养、理论修养、道德修养,就是要教会学生怎样做人。
作为基础教育,其使命价值体现于未来。我国已进入社会主义现代化建设的新的历史时期。现代化建设的首要任务就是人的现代化,只有人的现代化才能建设社会的现代化。教育为现代化建设服务,其核心问题是培养德、智、体等方面全面发展的“有理想、有道德、有文化、有纪律”社会主义建设者和接班人。
教育学生做“有理想、有道德、有文化、有纪律”的社会主义新人,必须以人文素质为基础,因为人文科学体系既是一种知识体系,也是一种价值观体系。“人文学科关系到一个社会的价值导向和人文导向,关系到一个民族的生命力、创造力和凝聚力。”“轻视人文学科,必然导致民族精神和民族智慧的衰退,必然导致整个社会的庸俗化”(叶朗《人文学科大有作为》)。人类社会科学技术革命性的飞跃和经济的巨大发展,一方面给社会的进步和发展以强大的动力,另一方面也带来了一系列社会问题,人口问题、贫富差别问题、环境与生态问题、毒品问题、暴力问题、道德伦理问题等,都严重地威胁着人类的生存和发展。在我国,“在社会精神生活方面存在着不少问题,有的还相当严重,一些领域道德失落,拜金主义、享乐主义、个人主义滋长;封建迷信和黄赌毒等丑恶现象沉渣泛起;假冒伪劣、欺诈活动成为社会公害,文化事业受到消极因素的严重冲击,危害青少年身心健康的东西屡禁不止(《中共中央关于加强社会主义精神文明建设的若干重要问题的决议》)。”这些问题,都不是科学技术和物质财富所能够解决的。涉及人与人的关系、人与自然环境的关系等。因此,人文素质是一个人的道德修养的基础,是学生学会做人的基础。人文教育应当作为提高学生思想道德素质的重要手段,也应当作为国家经济发展、社会进步的重要手段。
重视和加强对学生的人文素质的培养是时代的需求,也是当务之急。
二、语文教学要责无旁贷地承担人文素质教育《全日制普通高级中学语文教学大纲(供试验用)》特意指出语文“也是最重要的文化载体”,深刻地揭示了语文的文化内涵,为语文教学提供了博大精深、熏陶灵魂的文化基础,具有深远的意义。然而,现阶段的语文教学模式化、教条化倾向十分严重,虽然语文教学在从只注重知识的传授向知识和能力并重方面的转移有了很大的进步,但的目只是为应试而训练语文能力,为应试而养成语文习惯,导致了语文教学耗时费力,效益低下,更谈不上“交际”了。
怎样才能使语文课真正走上素质教育的轨道?笔者认为:
第一、语文教学要以人的发展为培养目标。“经师易做,人师难当”。要培养出具有人文素质的学生,需有较高人文素养的老师。从这个意义上说,提高教师自身的人文素质显得尤为重要。
语文教师首先要有良好的职业道德和心理品质,其次要以高度的社会责任感,敢于挑战,勇于走出“应试教育”误区。因为应试教育不除,人文精神不复,素质教育就会成为一句空话,语文教学就永远不会走出低谷,语文老师就永无“翻身”之日。
第二、语文教学要把语文训练和人文素质教育和谐地统一起来。语文反映人类社会的事、情、理、志,表现民族精神、民族情操、民族审美情趣等,负载着丰富多采的文化。在语文训练过程中如果不理解这些文化内容,就不能理解语言的表现力,不能运用语言很好地表情达意;如果理解了这些文化内容,就能更好地理解语言的表现力,更好地用语言表情达意,思想教育也就寓于其中。语言本身就是人的生命意志的体现。纵观古今,大凡优秀的文学作品,其辉煌之处,常常就是作家人格的伟大体现。因此,语文教学不能人为地把“心”、“言”割裂而谈能力培养。“诗在诗外”,要培养优秀的“诗人”,首先要造就优秀的人格。
第三、要充分利用新课程方案选修课和活动课的设置,开出具浓厚的人文色彩的课程。语文老师要根据自己的特长,利用选修课的拓展性,以中华民族传统文化为基础,对学生进行人文知识的基本训练。如:书法、作文、诵读、文学鉴赏、人物评传、文化常识等,或侧重于情感熏陶,或侧重于健康人格的培养,或侧重于审美情趣的引导。要利用活动课程实践性原则,可组织读书会、诵读会、演讲会、辩论会、文学社团,通过国学讲座、读书、讨论、参观、访问、考察等方式积极开展活动,以此为根基,引导学生兼收并蓄了解和学习世界各民族的优秀文化,创造学习的人文氛围,使我们的人文教育既具有中国特色,又具有鲜明的时代特色。
语文教学的性质决定了语文教学任务的双重性,即它的“交际工具”性和“文化载体”性,二者是相辅相成的,但“文化”是底蕴是基础,只有树立大语文观,注重对学生进行人文素质的培养,语文教学才能走上一条可持续发展的道路,培养出来的学生才能适应21世纪的需求。
摘自: 《教学与管理》1999年第6期