苏教版九年级数学下册第六章知识点归纳:二次函数(定稿)

时间:2019-05-12 23:30:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《苏教版九年级数学下册第六章知识点归纳:二次函数(定稿)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《苏教版九年级数学下册第六章知识点归纳:二次函数(定稿)》。

第一篇:苏教版九年级数学下册第六章知识点归纳:二次函数(定稿)

苏教版九年级数学下册第六章知识点归纳:

二次函数

一、定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(ane;0),则称y为x的二次函数。二、二次函数的三种表达式 一般式:y=ax2+bx+c(ane;0)顶点式:y=a(x-h)2+k(ane;0),此时抛物线的顶点坐标为P(h,k)交点式:y=a(x-x1)(x-x2)(ane;0)仅用于函数图像与x轴有两个交点时,x1、x2为交点的横坐标,所以两交点的坐标分别为A(x1,0)和 B(x2,0)),对称轴所在的直线为x= 注:在3种形式的互相转化中,有如下关系:h=-,k=;x1, x2=;x1+x2=-三、二次函数的图像 从图像可以看出,二次函数的图像是一条抛物线,属于轴对称图形。

四、抛物线的性质1.抛物线是轴对称图形,对称轴为直线 x =-,对称轴与抛物线唯一的交点是抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-,)。当x=-时,y最值=,当agt;0时,函数y有最小值;当alt;0时,函数y有最大值。当-=0时,P在y轴上(即交点的横坐标为0);当Delta;= b2-4ac=0时,P在x轴上(即函数与x轴只有一个交点)。3.二次项系数a决定抛物线的开口方向和大小(即形状)。当agt;0时,抛物线开口向上;当alt;0时,抛物线开口向下。|a|越大,则抛物线的开口越小。对于两个抛物线,若形状相同,开口方向相同,则a相等;若形状相同,开口方向相反,则a互为相反数。4.二次项系数a和一次项系数b共同决定对称轴的位置,四字口诀为“左同右异”,即:当对称轴在y轴左边时,a与b同号(即abgt;0);当对称轴在y轴右边时,a与b异号(即ablt;0)。5.常数项c决定抛物线与y轴交点位置,抛物线与y轴交于点(0,c)。6.抛物线y=ax2+bx+c(ane;0)与x轴交点个数与方程ax2+bx+c=0的根的判定方法:Delta;= b2-4acgt;0时,抛物线与x轴有2个交点,对应方程有两个不相同的实数根;Delta;= b2-4ac=0时,抛物线与x轴有1个交点,对应方程有两个相同的实数根。Delta;= b2-4aclt;0时,抛物线与x轴没有交点,对应方程没有实数根。五、二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax2+bx+c(ane;0),当y=0时,二次函数为关于x的一元二次方程,即ax2+bx+c=0,此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。(参考四-6)

六、常用的计算方法:

1、求解析式的时候:若给定三个普通点的坐标,则设为一般式y=ax2+bx+c(ane;0),分别将三点坐标代入组成三元一次方程组,然后解此方程组求出a、b、c,再代回设的一般式中即可求出解析式;若给定有顶点坐标或对称轴、最值,则设为顶点式y=a(x-h)2+k(ane;0),再找一点坐标代入即可求出a,再代回设的顶点式即可求出解析式;若给定有与x轴的交点坐标,则设为交点式y=a(x-x1)(x-x2)(ane;0),再找一点坐标代入即可求出a,再代回设的交点式即可求出解析式。以上方法特别要注意括号内的正负号。

2、若求函数与x轴的交点坐标,让y=0,解一元二次方程所得的根就是交点的横坐标;

3、若求函数的顶点坐标,用配方的方法或者直接套用顶点坐标的公式;

4、若求函数的最大值或者最小值,也可以用配方的方法或者直接套用最值的公式(同顶点坐标)。

5、当需要判定函数y=ax2+bx+c(ane;0)与x轴没有交点时,需判定方程ax2+bx+c=0的Delta;lt;0,同理,与x轴只有一个交点时,Delta;=0,与x轴有两个交点时,Delta;gt;0。对Delta;的判定方法仍然是用配方的方法。

为大家推荐的九年级数学下册第六章知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。

九年级下学期数学第25章知识点总结:三角形的内切圆 青岛版九年级数学第五章知识点总结:5.3 反比例函数

第二篇:九年级数学下册《二次函数》知识点总结苏教版

九年级数学下册《二次函数》知识点总

结苏教版 一、二次函数

一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二、二次函数的图像和性质

1二次函数的图像是一条抛物线。

2抛物线是轴对称图形。对称轴为直线x=-b/2a。

特别地,当b=0时,抛物线的对称轴是y轴。

3二次项系数a决定抛物线的开口方向。

当a>0时,抛物线向上开口;

当a<0时,抛物线向下开口。

三、用待定系数法确定二次函数表达式

待定系数法只是一种方法,是一套固定程序,并不是什么公式。就比如说二次函数,有一种一般表达式y=ax²+bx+c,那么a、b、c叫做系数,它们未知,有待确定所以叫“待定系数法”。

待定系数法就是要想办法找出这个二次函数过的三个已知点,把

式ax1²+by1+c=0ax2²+by2+c=0ax3²+by3+c=0解这三个方程可以求出a、b、c就算出了二次函数表达式。有时候也不一定非要把这三个数都求出来,只是要它们之间的某些关系。四、二次函数与一元二次方程

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

五、用二次函数解决问题

利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:

建立适当的平面直角坐标系;

把实际问题中的一些数据与点的坐标联系起来;

用待定系数法求出抛物线的关系式;

利用二次函数的图象及其性质去分析问题、解决问题.

第三篇:湘教版九年级数学下册二次函数教学案

湘教版九年级数学下册

第二章二次函数教学案

总 1 3 课时

编写人 阳卫民

第二章、二次函数

总序第9个教案

课 题 建立二次函数模型 第1课时 编写时间 2012年11 月 日 执教时间 2012年11 月 日 执教班级

教学目标:知识与技能:

1.探索并归纳二次函数的概念,熟练掌握二次函数的一般形式及自变量的取值范围。

2.能够表示简单变量之间的二次函数关系。

过程与方法:

通过用二次函数表示变量之间关系的体验过程,增强对函数的感性认识,培养学生分析问题,解决问题的能力。

情感态度价值观:

通过学生之间的交流合作的过程,培养学生的合作意识,体验与他人交流合作的重要性。

教学重点:建立二次函数数学模型和理解二次函数概念。教学难点:建立二次函数数学模型。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课

1.欣赏一组录像画面:篮球场上同学们传球投篮,田径场上同学们投掷铅球„„

2.观察:篮球投篮时,掷铅球时„„在空中运行的路线是一条什么样的路线?

3.导入课题

二、合作交流,解读探究(课件演示)1.通过实际问题建立二次函数模型

问题一:植物园的面积(教科书“动脑筋”问题1)------植物园的面积随着砌法的不同怎样变化?

问题二:电脑的价格(教科书“动脑筋”问题2)2.二次函数的概念和一般形式

A.交流讨论:观察上面得出的两个函数关系式有什么共同点? B.归纳及注意:二次函数的自变量取值范围是所有实数。C.二次函数的特殊形式。

三、应用迁移,巩固提高(课件演示例题)1.类型之一----二次函数的概念 2.类型之二----建立二次函数模型

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

总序第10个教案

第二章、二次函数

课 题 二次函数的图象与性质 第1课时 编写时间 2012年11 月 日 执教时间 2012年11 月 日 执教班级

教学目标:知识与技能:

1.能够运用描点法作出函数y=ax2(a>0)的图象。2.能根据图象认识和理解二次函数y=ax2(a>0)的性质。

过程与方法:

通过观察图象,并概括出图象的有关性质,训练学生的观察、分析能力。

情感态度价值观:

通过用描点法画出函数的图象,培养学生尊重客观事实的科学态度。

教学重点:会用描点法画出二次函数y=ax2(a>0)的图象以及探索函数性质。

教学难点:探索二次函数性质。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课

1.什么是二次函数?一般形式是什么?

2.反比例函数的图象是什么呢?它有哪些性质? 3.二次函数的图象是什么呢?它又有哪些性质?

二、合作交流,解读探究(课件演示)1.画出二次函数y=x2的图象

引导学生探索二次函数y=x2的图象的画法(列表、描点、1212连线)

2.二次函数y=x2的图象的性质

A.引导学生探索二次函数y=x2的图象的性质 B.归纳总结二次函数y=ax2(a>0)的图象画法和性质

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=ax2(a>0)图象性质的运用 2.类型之二----二次函数y=ax2(a>0)图象性质的实际运用 例:已知正方形周长为Ccm,面积为Scm2。

(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求S=1cm2出时,正方形的周长;(3)根据图象,求出C取何值时,S≥4cm2。

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

1212

总序第11个教案

第二章、二次函数

课 题 二次函数的图象与性质 第2课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级

教学目标:知识与技能:

1.会用描点法画出二次函数y=ax2(a<0)的图象。2.了解y=ax2与y=-ax2(a≠0)的图象的位置关系。3.理解二次函数的图象是抛物线以及抛物线的概念。

过程与方法:

通过观察图象,类比二次函数y=ax2(a>0)与y=ax2(a<0)两种函数图象的相互关系,培养学生的观察、分析能力,渗透数形结合的思想方法。

情感态度价值观:

增强学生对数学学习的好奇心与求知欲。

教学重点:会用描点法画二次函数y=ax2(a<0)的图象及探索其性质。教学难点:二次函数y=ax2(a<0)的图象特点及性质的探究。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课

1.怎样画出函数y=ax2(a>0)的图象? 2.我们已画过y=x2的图象,能不能由它得出y=-x2的图象?

二、合作交流,解读探究(课件演示)1.由y=x2画出y=-x2的图象

A.讨论回顾:反比例函数y=与y=-的图象有什么关系? B.猜一猜:y=-x2的图象与y=x2的图象会是怎样的关系? C.验证猜想:引导学生分析讨论。2.y=-x2的图象与性质

A.讨论交流:对比y=x2的图象与性质,说一说y=-x2具

12121212122x2x12121212有哪些性质? B.归纳总结

C.做一做:画出二次函数y=-x2的图象。

3.抛物线及其有关概念

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=ax2(a<0)的图象与性质的运用 2.类型之二----抛物线y=ax2性质的运用

例:函数y=ax2(a≠0)与直线y=2x-3的图象交于点(1,b)。求:(1)a和b的值;(2)求抛物线y=ax2的开口方向,对称轴,顶点坐标;(3)作y=ax2的草图。

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

第二章、二次函数

总序第12个教案

课 题 二次函数的图象与性质 第3课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级.教学目标:知识与技能:

1.会用描点法画二次函数y=a(x+d)2的图象,并能理解它与y=ax2的关系,理解a,d对二次函数图象的影响。2.能正确说出y=a(x+d)2的图象的开口方向、对称轴和顶点坐标。

过程与方法:

通过研究y=a(x+d)2与y=ax2的位置关系,培养学生观察、分析、总结的能力。

情感态度价值观:

让学生体会与人合作,与人交流思维的过程与结果。

教学重点:会用描点法画二次函数y=a(x+d)2的图象,理解它的性质。教学难点:理解y=a(x+d)2与y=ax2的关系。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课 1.设计一个小船平移的多媒体动画进行演示。(引导回顾平移的概念及性质)

2.提问:抛物线y=ax2(a>0)是否也可以这样平移? 3.引入课题。

二、合作交流,解读探究(课件演示)1.二次函数y=(x+1)2的图象与性质

A.观察多媒体动画演示教科书P.31图2-5。B.各自记录观察结果,然后进行讨论。C.归纳总结。

2.二次函数y=a(x+d)2的图象与性质

A.做一做:写出三条抛物线的开口方向、对称轴、顶点坐标。B.讨论交流。C.归纳总结。

3.用描点法作出y=a(x+d)2的图象

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=a(x+d)2的图象与性质 2.类型之二----抛物线平移规律的运用

3.类型之三----二次函数y=a(x+d)2的性质的运用

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

12第二章、二次函数

总序第13个教案

课 题 二次函数的图象与性质 第4课时 编写时间2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.理解y=a(x+d)2的图象与y=a(x+d)2+h的图象的关系。2.能正确说出y=a(x+d)2+h的图象的开口方向、对称轴和顶点坐标。

过程与方法:

通过研究y=a(x+d)2+h与y=a(x+d)2的位置关系,培养学生观察、分析、总结的能力。

情感态度价值观:

让学生体会与人合作,与人交流思维的过程与结果。

教学重点:会画形如y=a(x+d)2+h的二次函数的图象,理解它的性质。教学难点:理解y=a(x+d)2与y=a(x+d)2+h的图象之间的关系。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、复习引入(课件演示)

1. 抛物线y=x2的顶点是(),对称轴是(),开口向()。

122.抛物线y=(x+1)2的顶点是(),对称轴是(),开口向()。

3.说一说,下列函数是将抛物线y=2x2经过怎样的平移得到的?(1)y=2(x+3)2(2)y=2(x-1)2 4.引入课题。

二、合作交流,解读探究(课件演示)

1.理解抛物线y=(x+1)2与抛物线y=(x+1)2-3的平移关系。2.探索二次函数y=a(x+d)2+h的图象性质。(用观察比较的方法

121212得到y=a(x+d)2+h的图象性质)

3.探索画二次函数y=a(x+d)2+h的图象的一般步骤

A.归纳总结

B.做一做:画出二次函数y=(x+1)2-3的图象。

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=a(x+d)2+h的图象与性质的运用 例1:已知二次函数y=ax2+bx+c的图象的顶点为(1,﹣),且经过点(﹣2,0),求该二次函数的函数关系式。

2.类型之二----抛物线平移规律的运用 例2:把抛物线y=a(x+d)2+h向左平移4个单位,再向上平移

29212个单位,得到抛物线y=x2,求函数的解析式。

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

总序第14个教案

第二章、二次函数

课 题 二次函数的图象与性质 第5课时 编写时间 2012年 月 日 执教时间2012年 月 日 执教班级.教学目标:知识与技能:

1.会用配方法确定抛物线y=ax2+bx+c的顶点和对称轴;会求它的最大值与最小值。

2.会用描点法画出二次函数y=ax2+bx+c的图象。

过程与方法:

通过将二次函数y=ax2+bx+c配方成y=a(x+d)2+h的过程,培养观察、分析、总结的能力。

情感态度价值观:

让学生体会与人合作,与人交流思维的过程与结果。

教学重点:用配方法确定抛物线y=ax2+bx+c的顶点和对称轴。教学难点:用配方法将y=ax2+bx+c转化为y=a(x+d)2+h的形式。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、复习引入(课件演示)

1.已知二次函数:y=2x2,y=2(x+1)2,y=2(x+1)2-3,分别说出它们图象的开口方向、顶点坐标、对称轴。

2.填空:4x2-4x+1=()2

二、创设情境

三、探究新知

1.如何将二次函数y=-2x2+6x-1化成y=a(x+d)2+h的形式?

2.探索二次函数y=ax2+bx+c的图象画法。

分析:(1)用配方法将y=-2x2+6x-1转化为y=-2(x-)2+的3272形式,找出其顶点坐标和对称轴(2)用描点法和对称性画出y=-2(x-)2+的图象。

3.探索二次函数y=ax2+bx+c的图象性质(课件演示)(1)引导学生思考:当x等于多少时?函数y=-2x2+6x-1有最3272大值?最大值是多少?(2)概括总结二次函数y=ax2+bx+c的图象性质

四、讲解例题(课件演示)例:教科书P.37的例6---求函数y=-x2+2x-1的最大值。

五、应用新知

完成教科书P.38练习第1、2、3题。

六、课堂小结 作业: 后记:

第二章、二次函数

总序第15个教案

课 题 把握变量之间的依赖关系 第1课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.能利用二次函数解决实际问题和对变量的变化趋势进行预测。

2.会用待定系数法求二次函数的解析式。

过程与方法:

经历运用二次函数解决实际问题的过程:问题情境—建模—解释。

情感态度价值观:

让学生认识到数学是解决问题和进行交流的工具。

教学重点:会根据不同的条件,利用二次函数解决生活中的实际问题。教学难点:建立二次函数模型,渗透数形结合的思想。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、复习引入(课件演示)

1.复习二次函数的解析式、图象及性质。2.在现实生活中,我们常常会遇到与二次函数及其图象有关的问题。例如拱桥的跨度、拱高的计算的等。本节课,我们共同研究,尝试利用二次函数的有关知识解决实际问题。

二、创设情境(课件演示)问题:一座拱桥的纵截面是抛物线的一段,拱桥的跨度是4.9m,水面宽4m时,拱顶离水面2m,如图所示。想了解水面宽度变化时,拱顶离水面的高度怎样变化。你能想出办法来吗?

三、探究新知

引导学生思考下列问题:(1)拱桥的纵截面是什么样的函数?(2)怎样建立直角坐标系比较简便?(3)如何写出抛物线的解析式?(4)自变量x的取值范围是多少?

引导学生思考:你能求出当水面宽3m时,拱顶离水面高多少米吗?

四、讲解例题(课件演示)例:教科书P.42例1。说明:成本函数、利润函数,学生初次遇到,教师要引导学生认真理解题意,把握变量之间的相依关系。

解:见教科书P.42。

五、应用新知(课件演示)

六、课堂小结 作业: 后记:

总序第16、17个教案

第二章、二次函数

课 题

二次函数与一元二次方程的联系 第1、2课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.通过探索,使学生了解二次函数与一元二次方程的联系。

2.已知函数值,会求自变量的对应值。

3.会利用二次函数的图象求一元二次方程的近似解。

过程与方法:

经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

情感态度价值观:

经历探索二次函数与一元二次方程的关系的过程,感受发展实践能力和创新精神的重要性。

教学重点:会求出二次函数y=ax2+bx+c(a≠0)与坐标轴的交点坐标。教学难点:培养学生综合解题能力,渗透转化及数形结合的思想。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)课件演示:教科书P.43投掷铅球的示意图。提问:(1)铅球在空中经过的路线是什么图象?(2)建立直角

129x+x+1,其4020坐标系,如果铅球在空中经过的抛物线解析式为y=-中x是铅球离初始位置的水平距离,y是铅球离地面的高度。你能求出铅球被扔出多远吗?(3)当铅球离地面的高度为2m时,它离初始位置的水平距离是多少?

二、合作交流,解读探究(课件演示)

1.通过一元二次方程求抛物线与x轴的交点的横坐标。例1 :求抛物线y=4x2+12x+5与x轴的交点的横坐标。例2 :求抛物线y=x2+2x+2与x轴的交点的横坐标。

2.抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系。例3: 抛物线y=x2+2x+2与x轴有交点吗?

3.已知二次函数值,通过一元二次方程求自变量的对应值。例4:若铅球在空中经过的抛物线解析式为y=-129x+x+1,当4020铅球离地面的高度为2m时,它离初始位置的水平距离是多少?

4.利用二次函数的图象求一元二次方程的解的近似值。

例5:求一元二次方程y=x2-2x-1的解的近似值。(精确到0.1)

三、应用迁移,巩固提高(课件演示)

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

第二章、二次函数

总序第18个教案

课 题

优化问题 第1课时 编写时间 2012年 月 日 执教时间2012年 月 日 执教班级.教学目标:知识与技能:

1.会用配方法将y=ax2+bx+c变形为y=a(x+d)2+h的形式。2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,使实际问题获得最优决策。

过程与方法:

通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力。

情感态度价值观:

能够对解决问题的基本策略进行反思,形成个人解决问题的风格。

教学重点:利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。

教学难点:将实际问题转化为函数问题,并利用函数的性质进行决策。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)最大面积问题,最大利润问题是实际生活中常见的问题。例如: 问题一:学校准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形植物园,如图所示,学校现已备足可以砌100米长的墙的材料,怎样砌法,才能使矩形植物园的面积最大?(图见第一节2-1-1)

问题二:某商场将进货单价为18元的商品,按每件20元销售,每天可销售100件。如果每提价1元(每件),日销售量就要减少10件,那么该商品的售出价格为多少时,才能使每日获得利润最大?最大利润为多少?

二、合作交流,解读探究(课件演示)

1.对于问题1,先进行自主分析,再小组讨论、交流。2.问题2让一学生在黑板上板书其解答过程,师生共同评析。

三、应用迁移,巩固提高(课件演示)1.类型之一----社会经济中的优化问题 2.类型之二----几何中的优化问题

四、总结反思,拓展升华

五、当堂检测反馈(课件演示)

1.龙泉休闲山庄现有116米长篱笆材料,山庄计划利用这些材料和已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,让游客能自己进菜地采摘新鲜蔬菜,菜地当然是越大越好,若你是庄主,你将如何使得这块菜地的面积达到最大?

作业: 后记:

总序第19个教案

第二章、二次函数

课 题

小结与复习

(一)第1课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.通过对本章知识的梳理,使学生深刻理解二次函数的概念、图象与性质。

2.能灵活运用二次函数的概念与性质解决有关数学问题。

过程与方法:

通过练习掌握基本知识和基本技能,体会不同的数学思想方法解决实际问题。

情感态度价值观:

积极参与交流,并积极发表意见,体验与他人交流合作的重要性。

教学重点:二次函数的概念、图象与性质。教学难点:二次函数图象与性质的运用。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)

1.学生自学教科书P.50“小结与复习”中的内容提要。2.归纳:(1)(2)二次函数的图象都是抛物线。

画二次函数y=ax2+bx+c(a≠0)图象的步骤。

3.抛物线y=ax2+bx+c(a≠0)的特征与系数a,b,c,的关系:

二、合作交流,解读探究(课件演示)

1.举例复习二次函数的概念及二次函数y=ax2(a≠0)的图象的性质。例1:已知函数y=(k+2)x

k

2+k-

4是关于x的二次函数,求:(1)满足条件的k值;(2)k为何值时,函数有最小值?最小值是什么?这时当x为何值时,y随x增大而增大?(3)k为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x增大而减小?

2.用配方法求抛物线的顶点、对称轴;抛物线画法,平移规律。例2:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴。说明通过怎样的手段,可得到y=-3x2.三、应用迁移,巩固提高(课件演示)

1.类型之一----二次函数的概念与图象性质的综合运用 2.类型之二----二次函数解析式的确定 3.类型之三----二次函数与几何知识的综合运用

四、总结反思,拓展升华

五、当堂检测反馈(课件演示)作业: 后记:

第二章、二次函数

总序第20个教案

课 题

小结与复习

(二)第2课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.通过复习使学生掌握二次函数模型的建立,能灵活运用二次函数的相关知识来解决实际问题。

2.提高学生运用数学思维方法分析、解决问题的能力。

过程与方法:

通过练习掌握基本知识和基本技能,体会不同的数学思想方法解决实际问题。

情感态度价值观:

积极参与交流,并积极发表意见,体验与他人交流合作的重要性。

教学重点:利用二次函数的知识解决实际问题。教学难点:建立二次函数模型解决实际问题。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)1.一次函数图象的特征和性质。

2.二次函数图象的特征和性质。

3.学生阅读教科书P.51----“

一、二次函数的应用”。

二、合作交流,解读探究(课件演示)1.何时获得最大利润问题。

例1 :某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系,如图所示。(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润为s元。A.试用销售单价x表示毛利润s;B.试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?

2.如何得到最大面积问题。

例2:用6米长的铝合金型材做一个形状如图所示的矩形窗框。应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?

三、应用迁移,巩固提高(课件演示):见教科书P.53C组题

四、总结反思,拓展升华

引导学生小结将实际问题转化为二次函数问题,从而利用二次函数的性质解决优化问题的过程。

五、当堂检测反馈(课件演示)作业: 后记:

第二章、二次函数

总序第21个教案

课 题

数学建模 第1课时 编写时间 2012年 月 日 执教时间 2012年 月 日 执教班级 教学目标:知识与技能:

1.经历“问题解决”的全过程,了解“数学建模”的过程。

2.了解“数学结果”与“实际结果”的差异。

过程与方法:

通过以活动形式引导学生研究数学知识的课堂教学,激发学生学习兴趣,打开学生的思维。

情感态度价值观:

积极参与交流,并积极发表意见,体验与他人交流合作的重要性。

教学重点:经历数学建模的全过程。教学难点:将实际问题抽象成数学问题。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情景,导入新课(课件演示)

同学们假期出去旅游过吗?你所乘坐的火车或汽车有没有经过隧道?隧道的纵截面由什么图形构成?车辆的高度和宽度与隧道的高度和宽度有怎样的大小关系?

二、合作交流,解读探究

以小组讨论、交流、合作的形式进行探究。1.议一议 2.想一想

3.做一做(学生动手,老师引导点拨)(1)画出隧道的截面图。(2)建立直角坐标系。(3)求解

(4)将“数学结果”转化为“实际结果”。4.评一评

5.说一说(让同学们充分发表意见)(1)什么是数学建模?

(2)你获得了哪些研究问题的方法和经验?

三、应用迁移,巩固提高(课件演示)

四、总结反思,拓展升华

请同学们说说,这节课有什么收获和体会或有什么疑难。

五、当堂检测反馈(课件演示)作业: 后记:

第四篇:九年级数学下册《二次函数》教学反思

九年级数学下册《二次函数》教学反思

在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。

本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。

本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。

在学习了二次函数的知识后,我们尝试运用于解决三个实际问题.问题是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。

教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。

总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱

第五篇:初中九年级二次函数知识点总结

初中九年级二次函数知识点总结

总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能使我们及时找出错误并改正,让我们一起认真地写一份总结吧。那么总结应该包括什么内容呢?以下是小编收集整理的初中九年级二次函数知识点总结,希望能够帮助到大家。

初中九年级二次函数知识点总结1

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学难点:求出函数的自变量的取值范围。

教学过程:

一、问题引新

1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长_(m)1 2 3 4 5 6 7 8 9

BC长(m)12

面积y(m2)48

2._的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

二、提出问题,解决问题

1、引导学生看书第二页问题一、二

2、观察概括

y=6_2 d= n /2(n-3)y= 20(1-_)2

以上函数关系式有什么共同特点?(都是含有二次项)

3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.4、课堂练习

(1)(口答)下列函数中,哪些是二次函数?

(1)y=5_+1(2)y=4_2-1

(3)y=2_3-3_2(4)y=5_4-3_+1

(2).P3练习第1,2题。

五、小结叙述二次函数的定义.

第二课时:26.1二次函数(2)

教学目标:

1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

初中九年级二次函数知识点总结2

I.定义与定义表达式

一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线_=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与_轴交点个数

Δ=b^2-4ac>0时,抛物线与_轴有2个交点。

Δ=b^2-4ac=0时,抛物线与_轴有1个交点。

Δ=b^2-4ac<0时,抛物线与_轴没有交点。

_的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=a_^2+b_+c,当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0

此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。

初中九年级二次函数知识点总结3

当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;

当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小.4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

(a≠0)的两根.这两点间的距离AB=|_?-_?|

当△=0.图象与_轴只有一个交点;

当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

y=a_^2+b_+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).(3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

初中九年级二次函数知识点总结4

一、基本概念

1.方程、方程的解(根)、方程组的解、解方程(组)

2.分类:

二、解方程的依据—等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc(c≠0)

三、解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法

②加减法

四、一元二次方程

1.定义及一般形式:

2.解法:⑴直接开平方法(注意特征)

⑵配方法(注意步骤—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左边=0)

3.根的判别式:

4.根与系数顶的关系:

逆定理:若,则以为根的一元二次方程是:。

5.常用等式:

五、可化为一元二次方程的方程

1.分式方程

⑴定义

⑵基本思想:

⑶基本解法:①去分母法②换元法(如,)

⑷验根及方法

2.无理方程

⑴定义

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!)②换元法(例,)⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程(组)解应用题

一概述

列方程(组)解应用题是中学数学联系实际的'一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二常用的相等关系

1.行程问题(匀速运动)

基本关系:s=vt

⑴相遇问题(同时出发):

+ =;

⑵追及问题(同时出发):

若甲出发t小时后,乙才出发,而后在B处追上甲,则

⑶水中航行:;

2.配料问题:溶质=溶液_浓度

溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率_工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

初中九年级二次函数知识点总结5

计算方法

1.样本平均数:

2.样本方差:

3.样本标准差:

相交线与平行线、三角形、四边形的有关概念、判定、性质。

内容提要

一、直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成13.公理、定理

14.逆命题

二、三角形

分类:

⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,3.三角形的主要线段

讨论:①定义②__线的交点—三角形的_心③性质

①高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法—反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

菱形

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

6.作图:任意等分线段。

下载苏教版九年级数学下册第六章知识点归纳:二次函数(定稿)word格式文档
下载苏教版九年级数学下册第六章知识点归纳:二次函数(定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中九年级二次函数知识点总结

    二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a......

    九年级数学下二次函数教案

    教学课题:二次函数(1) 教案背景 这节课是在学完正、反比例、一次函数,认识了一元二次方程之后的二次函数的第一节课。本章内容,既是对之前所学函数知识的一个补充,对函数知识系统......

    《二次函数》九年级数学教学案例

    《二次函数》教学案例 一、教学内容:怎样求二次函数解析式 二、教学重点:求二次函数解析式的几种方法。难点:二次函数解析式的求法。 三、教学案例过程: 问题:已知二次函数的......

    九年级数学下册《1.1二次函数》教学教案(湘教版)

    九年级数学下册《1.1二次函数》教学教案(湘教版) 【知识与技能】 .理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式. 2.能够表示简单变量之间的二次......

    九年级 数学二次函数单元测试题及答案

    二次函数单元测评 (试时间:60分钟,满分:100分) 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是()......

    数学北师大版九年级下册22.2.1《二次函数》教学设计

    22.2.1《二次函数》教学设计 一、 教学目标: 1、经历根据具体问题的数量关系探索二次函数的模型的过程,初步形成学生利用函数的观点认识现实世界的意识和能力。 2、通过二次......

    苏教语文六年级下册知识点大全

    苏教版六年级语文下册复习要点 1、本学期培养的学习习惯:①读万卷书,行万里路;②在实践中学会运用。 2、《长江之歌》是电视系列片《话说长江》的主题歌歌词,词作者是胡宏伟,曲......

    2018中考数学专题二次函数

    2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=......